七数上绝对值

合集下载

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结宝子们,今天咱们来唠唠七年级上册数学里绝对值这个知识点哈。

一、绝对值是个啥玩意儿。

1. 定义。

- 简单来说,绝对值就是一个数在数轴上离原点的距离。

比如说,5这个数,它在数轴上离原点0的距离是5个单位长度,那|5|就等于5;同样的, - 5离原点的距离也是5个单位长度,所以| - 5|也等于5。

就像你从家到学校不管是向左走还是向右走,只要走的路程一样,那这个路程的长度就是绝对值啦。

2. 表示方法。

- 绝对值用两条竖线来表示,就像这样|a|,这里的a可以是正数、负数或者0。

二、绝对值的性质。

1. 非负性。

- 这可是绝对值的一个超重要的性质哦。

任何数的绝对值都是大于等于0的。

你想啊,距离哪有负的呢?就像你和朋友之间的距离,总不能是负的吧。

不管这个数是3也好, - 3也罢,|3| = 3,| - 3|=3,它们的绝对值都是正的或者0(0的绝对值就是0)。

2. 互为相反数的两个数绝对值相等。

- 比如说5和 - 5是互为相反数的,它们离原点的距离都是5,所以|5|=| -5|。

这就像你和你的小伙伴在原点的两边,但是你们离原点的距离是一样的呢。

3. 若|a| = a,则a≥0;若|a|=-a,则a≤0。

- 这个怎么理解呢?当一个数的绝对值等于它本身的时候,这个数肯定是正数或者0啦,就像|3| = 3,|0| = 0。

而当一个数的绝对值等于它的相反数的时候,这个数就是负数或者0啦,比如| - 3|=-(-3)=3,这里 - 3的绝对值就是它的相反数3,所以 - 3是符合|a|=-a(a = - 3时)这种情况的,这里的a就是小于等于0的。

三、绝对值的运算。

1. 简单数的绝对值计算。

- 这是最基础的啦。

像|4|就是4,| - 2|就是2,只要根据绝对值的定义,看这个数离原点的距离就好。

2. 含有绝对值的式子化简。

- 比如说|x - 3|,这时候就要分情况讨论了。

当x - 3≥0,也就是x≥3的时候,|x - 3|=x - 3;当x - 3<0,也就是x<3的时候,|x - 3|=-(x - 3)=3 - x。

七年级知识点绝对值

七年级知识点绝对值

七年级知识点绝对值绝对值是数学中的重要概念,也是中学数学的一个基本知识点。

在七年级的数学课上,学生首先需要学习到绝对值的定义和性质,然后学会用绝对值求解各种实际问题。

本文将对七年级知识点绝对值进行详细的介绍。

一、绝对值的定义和性质绝对值的定义:对于任意实数x,其绝对值为非负数,记为|x|,它的定义如下:当x > 0时,|x| = x ;当x = 0时,|x| = 0 ;当x < 0时,|x| = -x 。

绝对值的性质:1. |x|≥0,即绝对值是非负数。

2. |x|= | -x |,即绝对值的值与它的相反数的值相等。

3. |x·y|= |x|·|y|,即绝对值的乘积等于各自的绝对值再相乘。

4. 对于任意实数x和y,|x+y|≤|x|+|y|,即两数的绝对值之和不大于它们的和的绝对值。

二、绝对值的运算法则1. 求相反数时,先取绝对值再取反。

2. 求倒数时,先取绝对值再取倒数。

3. 求和差积时,要先算绝对值。

三、绝对值的应用1. 在求距离问题中,绝对值可用于求两点之间的距离。

2. 在解方程时,有时需要用到绝对值,例如|x|=a可表示x=a或x=-a。

3. 在计算误差时,常用绝对值,如当真实值为a,测量值为b 时,误差为|b-a|。

四、练习题1. 请计算 |-8|÷2+|5-9|×|-1|的结果。

答案:32. 请将不等式 2|x-3|+1 < 5|x-1| 简化。

答案: 0 < 3|x-1|,即|x-1| > 0.3. 请解方程 3|x+1|-5=4x+11。

答案: x=-3或8/3。

4. 请计算直线A(-3,-1)和直线B(6,5)之间的距离。

答案:√74/2。

五、小结绝对值是七年级数学中比较重要的知识点,理解和掌握它的定义、性质和运算法则,以及应用于解决实际问题的方法,是学好数学的关键之一。

在学习过程中,要多加练习,不断提高自己的数学能力。

人教版七年级数学上册1.2.4:绝对值

人教版七年级数学上册1.2.4:绝对值

③0的绝对值是0.
复习回顾
3. 任何一个有理数a的绝对值总是非负数.
数学符号表示为:|a|≥0.
生活实例
检测5个排球,其中质量超过标准的克数记为正数,不 足的克数记为负数.从轻重的角度看,哪个球最接近标 准?
所以最右边的球的质量最接近标准.
想一想
小学时,我们学习过比较两个数的大小,现在学习 了负数,该怎样比较两个有理数的大小呢?
借助数轴可以比较两个有理数的大小.
归纳方法
可不可以借助数轴,得到比较两个有理数大小的 一般方法呢?
比较两个有理数的大小,需要分几种情况考虑?
分五种情况: (1)正数与正数;(2)正数与0; (3)正数与负数; (4)负数与负数; (5)负数与0 .
归纳方法
-4 -3 -2 -1 0 1 2
(1)正数大于0,负数小于0,正数大于负数.
b0
a
将a,-a,b,-b,0按从小到大的顺序
用“<”号连接.
-a<0,|-a|>|b|,所以-a<b<0.
-b>0,|-b|<|a|,所以-a<b<0<-b<a.
例4 数轴上表示数a和数b的点如图所示:
b0
a
将a,-a,b,-b,0按从小到大的顺序 用“<”号连接.
-a b 0 -b a 所以-a<b<0<-b<a.
按照这个顺序将这些数表示在数轴上,可以看 到这些数对应的点的顺序是从左到右的.
-4 -3 -2 -1 0 1 2
数学中规定:在数轴上表示有理数,它们从左 到右的顺序,就是从小到大的顺序,即左边的 数小于右边的数.
数学中规定:在数轴上表示有理数,它们从左到 右的顺序,就是从小到大的顺序,即左边的数小 于右边的数.

人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案

人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。

绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。

但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。

他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。

三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。

2.培养学生运用绝对值解决实际问题的能力。

3.培养学生的抽象思维能力和逻辑思维能力。

四. 教学重难点1.绝对值的概念和性质。

2.运用绝对值解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。

六. 教学准备1.PPT课件。

2.相关例题和练习题。

3.学生分组合作学习资料。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。

2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。

同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。

3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。

教师选取部分题目进行讲解,分析解题思路。

5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。

引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理绝对值是学习数学的基础知识之一,它在七年级数学上册中也是一项重要的内容。

本文将对七年级数学上册《绝对值》知识点进行整理,以帮助同学们更好地掌握这一概念。

一、什么是绝对值绝对值是一个数与零之间的距离,用两个竖线表示,例如|3|,表示距离零点的距离为3。

二、绝对值的性质1. 非负性:任何数的绝对值都是非负数,即对任意实数a,|a| ≥ 0。

2. 零绝对值:若a为实数,且|a| = 0,则a = 0。

3. 正数绝对值:若a为正数,则|a| = a。

4. 负数绝对值:若a为负数,则|a| = -a。

三、计算绝对值的方法1. 若a ≥ 0,则|a| = a。

2. 若a < 0,则|a| = -a。

四、绝对值的运算性质1. 绝对值的加法:|a + b| ≤ |a| + |b|,即两个数的绝对值之和大于等于这两个数的和的绝对值。

2. 绝对值的乘法:|a · b| = |a| · |b|,即两个数的绝对值之积等于这两个数的绝对值的积。

五、绝对值的应用绝对值在数学中具有广泛的应用,下面介绍其中两个典型的应用:1. 距离的计算:通过计算绝对值,可以求出两个数之间的距离。

例如,若有两个点A和B,坐标分别为A(2, 3)和B(-1, 4),则点A和点B 之间的距离可以表示为|2 - (-1)| + |3 - 4| = 3。

2. 不等式的解集:在解不等式时,可以利用绝对值进行求解。

例如,若有不等式|2x - 5| < 3,则可以拆解成2x - 5 < 3和2x - 5 > -3两个不等式求解,得到x ∈ (1, 4)。

六、绝对值的图像表示在坐标平面上,绝对值函数y = |x|的图像是以原点为中心的一条“V”字形线段,斜率为正且对称于x轴。

当x < 0时,y = -x;当x ≥ 0时,y = x。

七、绝对值的扩展除了一元绝对值外,还存在多元绝对值。

[初中数学]绝对值+课件++人教版数学七年级上册

[初中数学]绝对值+课件++人教版数学七年级上册

(2)a,b表示任意有理数,若|a|=|b|,则a与b之间有什么关 系? 解:a=±b.
19 一条直线流水线上有5个机器人,它们站的位置在数轴 上依次用点A1,A2,A3,A4,A5表示,如图所示.
(1)站在点___A_1上的机器人表示的数的绝对值最大,站 在点__A_和2 点___A_5,点___A_3和点___A上4 的机器人到原点 的距离分别相等;
7 (7) --72 =_2_;
(2) -(-1)=_1__; (4) -|-11|=__-__1_1_; (6) +|-20|=__2_0_;
(8) |-3.1|+|1.9|=__5_.
绝对值的应用 6.一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路 程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位: 米): +5,-4,+10,-8,-5,+12,-10. 若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
14 下列各式中,等号不成立的是( D )
A. |-5|=5 B.-|-4|=-|4| C. |-3|=3 D.-|-2|=2
15 若a与1互为相反数,则|a+2|等于( C ) A. 2 B.-2 C.1 D.-1
16 如图,已知数轴上A,B两点表示的数分别是a,b,则 计算|b|-|a|正确的是( C ) A. b-a B.a-b C.a+b D.-a-b
17.若 a,b 都是非零的有理数,那么|aa|+|bb|的值是多少? 解:当 a>0,b>0 时,|aa|+|bb|=2;
当 a,b 异号时,|aa|+|bb|=0;
当 a<0,b<0 时,|aa|+|bb|=-2.
综上所述,|aa|+|bb|的值是±2 或 0.
1.|-6|=( B ) A.-6 C.-16

七年级数学知识点绝对值

七年级数学知识点绝对值

七年级数学知识点绝对值数学中,绝对值是一个非常基础且重要的知识点。

在七年级数学学习中,同学们应该比较系统的学习这一知识点,并且能够熟练地进行计算。

本文将介绍七年级数学中的绝对值知识点,以帮助同学们更好地掌握这一部分内容。

一、绝对值的概念绝对值是一个数到0的距离,通常用两条竖线|| 来表示。

例如,|3|表示数字3到0的距离,也就是3。

同理,|-3|也是3。

二、绝对值的性质1. |a| ≥ 0,即绝对值是非负数。

2. |-a| = |a|,即绝对值是对称的。

3. |a · b| = |a| · |b|,即两个数的乘积的绝对值等于这两个数的绝对值的乘积。

4. |a ± b| ≤ |a| + |b|,即两个数的和或差的绝对值小于等于这两个数的绝对值的和。

三、绝对值的运算1. 大于等于0的数的绝对值是它本身。

例如,|5| = 5;|0| = 0。

2. 小于0的数的绝对值是它自己的相反数。

例如,|-2| = 2;|-7| = 7。

3. 绝对值的运算法则:如果a≥0,则|a|=a;如果a<0,则|a|=−a。

4. 如果两个数的绝对值相等,则它们本身也相等,即|a|=|b|,a=±b。

5. 绝对值可以用来表示一组数的距离。

例如,a和b是两个数,则它们的距离是|a-b|。

四、绝对值的应用绝对值在数学中的应用非常广泛,它不仅可以用于计算,还可以用于判断等式、不等式的真假,或者用于表示距离等。

在学习数学的过程中,同学们应该总结绝对值的应用,以便更好地将其应用于实际问题中。

综上所述,七年级数学中的绝对值知识点是数学学习中非常基础和重要的部分,同学们应该认真学习并熟练掌握,以便在以后的学习中更好地应用。

七年级上册数学绝对值讲解

七年级上册数学绝对值讲解

七年级上册数学中的绝对值讲解一、绝对值的定义绝对值是一个数值不考虑它的符号的值。

具体来说,一个数 a 的绝对值 |a| 是一个定义了 a 与原点的距离的数。

如果 a 是非负的,那么 |a| = a;如果 a 是负的,那么 |a| = -a。

绝对值在数学中有着广泛的应用,它帮助我们解决许多问题,如求解方程和不等式,进行距离计算等。

二、绝对值性质绝对值具有以下性质:1.|a| ≥ 0:无论 a 是正数、负数还是零,其绝对值都大于等于零。

2.|a| = |-a|:一个数的绝对值等于其相反数的绝对值。

3.|a + b| ≤ |a| + |b|:两个数的和的绝对值小于或等于它们各自绝对值的和。

4.|ab| = |a| × |b|:两个数的乘积的绝对值等于它们各自绝对值的乘积。

三、实例讲解例如,我们要求解方程 |x - 3| = 5。

首先,我们知道 |x - 3| ≥ 0,所以 x - 3 = 5 或 x - 3 = -5。

从这两个方程中,我们可以解出 x = 8 或 x = -2。

因此,方程 |x - 3| = 5 的解为 x = 8 或 x = -2。

四、题型分析与解题技巧求解绝对值问题时,我们需要注意以下题型及其解题技巧:1.求绝对值方程:我们需要根据绝对值的定义,将问题转化为求解非绝对值方程的问题。

2.求绝对值不等式:我们需要先确定不等式的解集,然后确定符合条件的所有可能解。

3.利用绝对值的几何意义:我们可以通过绘制数轴或坐标系来帮助我们理解和解决绝对值问题。

五、扩展应用绝对值的概念在许多实际问题中都有应用,例如测量距离、计算误差等。

同时,它也与其他数学概念相关联,例如不等式、函数等。

此外,通过解决各种与绝对值相关的问题,我们可以提高我们的逻辑推理能力和问题解决能力。

六、注意事项在处理与绝对值相关的问题时,我们需要特别注意以下几点:1.要理解绝对值的定义和性质,以便正确地处理问题。

2.在求解绝对值方程或不等式时,需要小心处理不同的可能性,以确保答案的正确性。

七年级数学上册 绝对值

七年级数学上册 绝对值

绝对值(基础)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.,-0.3,0, 1a b >a b >1a b =a b =1a b<a b <112-132⎛⎫-- ⎪⎝⎭【思路点拨】,-0.3,0,在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】解法一:因为到原点距离是个单位长度,所以. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为到原点的距离是个单位长度,所以. 解法二:因为,所以. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0.因为,所以. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.下列说法正确的是( )A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确.【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】已知一个数的绝对值是4,则这个数是 .【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .112132⎛⎫-- ⎪⎝⎭112-112111122-=132⎛⎫-- ⎪⎝⎭132113322⎛⎫--= ⎪⎝⎭1102-<111111222⎛⎫-=--= ⎪⎝⎭1302⎛⎫--> ⎪⎝⎭113322⎛⎫--= ⎪⎝⎭【答案】6或-6类型二、比较大小3.比较大小: ﹣(﹣ 1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答.【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8,∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<.【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【变式1】比大小:______ ; -|-3.2|______-(+3.2); 0.0001______-1000; ______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0653-763-1.38-所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .。

人教新版(2024)七年级数学上册-1.2.4 绝对值(教案)

人教新版(2024)七年级数学上册-1.2.4 绝对值(教案)

1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。

七年级绝对值知识点

七年级绝对值知识点

七年级绝对值知识点在数学中,绝对值是一个十分重要的概念,尤其在初中阶段,更是需要学好。

本文将着重介绍七年级绝对值知识点,包括绝对值的概念、运算规则以及在不等式中的应用。

一、绝对值的概念绝对值是一个数离原点的距离,记作 |a|。

例如,|2| = 2,|-3| = 3。

绝对值是一个非负数,即使a是负数,|a|也是正数。

当a为0时,|a| = 0。

二、绝对值的运算规则1. 绝对值的基本性质:|a| ≥ 0,|a| = 0的充分必要条件是a = 0。

2. 绝对值的四则运算:(1)|a+b| ≤ |a|+|b|(2)|a-b| ≥ |a|-|b|(3)|a·b| = |a|·|b|(4)|a/b| = |a|/|b|(如果b≠0)3. 绝对值的负数性质:|-a|=|a|。

三、绝对值在不等式中的应用1. 绝对值定义了一个数的范围,可以用来解决一些不等式问题。

例如,|x-2| > 3的解为x < -1或x > 5。

2. 利用绝对值的运算规则可以简化不等式的形式。

例如,|2x+3| > 5的解为x < -2或x > 1。

3. 利用绝对值的运算规则可以使不等式具有更好的可操作性。

例如,|x-1|+|x-2| < 2的解为1 < x < 2。

四、绝对值知识点小结本文介绍了七年级绝对值知识点,包括绝对值的概念、运算规则以及在不等式中的应用。

绝对值是一个非常重要的概念,需要在数学学习中重视起来。

掌握好绝对值的基本知识和运算规则,可以使我们更好地理解数学中的其他概念和知识,也可以为后续的数学学习打下坚实的基础。

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数——绝对值考试要求:重难点:绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.例题精讲:【例1】到数轴原点的距离是2的点表示的数是( )A 、±2B 、2C 、-2D 、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.故选A.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①0是有理数,|0|=0,故本小题错误;②互为相反数的两个数的绝对值相等,故本小题错误;③互为相反数的两个数的绝对值相等,故本小题正确;④有绝对值最小的有理数,故本小题错误;⑤由于数轴上的点和实数是一一对应的,所以所有的有理数都可以用数轴上的点来表示,故本小题正确;⑥只有符号不同的两个数互为相反数,故本小题错误.所以③⑤正确.故选B.点评:本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.【例3】如果a的绝对值是2,那么a是()A、2B、-2C、±2D、【难度】1星【解析】根据题意可知:绝对值等于2的数应该是±2.【答案】2的绝对值是2,-2的绝对值也是2,所以a的值应该是±2.故选C.点评:本题考查了绝对值的概念,学生要熟练掌握.【例4】若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【难度】2星【解析】:本题考查有理数的绝对值问题,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零【答案】:解:∵a<0,∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【例5】一个数与这个数的绝对值相等,那么这个数是()A、1,0B、正数C、非正数D、非负数【难度】1星【解析】:根据绝对值的性质进行解答即可.【答案】解:因为一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,所以一个数与这个数的绝对值相等,那么这个数是非负数.故选D.【例6】已知|x|=5,|y|=2,且xy>0,则x-y的值等于()A、7或-7B、7或3C、3或-3D、-7或-3【难度】2星【解析】先根据绝对值的定义求出x、y的值,再由xy>0可知x、y同号,根据此条件求出x、y的对应值即可.【答案】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy >0,∴当x=5时,y=2,此时x-y=5-2=3;当x=-5时,y=-2,此时x-y=-5+2=-3.故选C .点评:本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.【例7】若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数 【难度】2星 【解析】本题作为选择题可用排除法进行解答,由于 是分式,所以x ≠0,故可排除C 、D ;再根据x 的取值范围进行讨论即可.【答案】:解:∵ 是分式, ∴x ≠0,∴可排除C 、D ,∵当x >0时,原式可化为 =1,故A 选项错误.故选B .点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b【难度】3星【解析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=-b,代入|a|<|b|<1,得a<-b<1,由不等式的性质得-b>a,则1-b>1+a,又1+a>1,1>-b>a,进而得出结果.【答案】∵a>0,∴|a|=a;∵b<0,∴|b|=-b;又∵|a|<|b|<1,∴a<-b<1;∴1-b>1+a;而1+a>1,∴1-b>1+a>-b>a.故选D.点评:本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【例9】已知a、b互为相反数,且|a-b|=6,则|b-1|的值为()A、2B、2或3C、4D、2或4【难度】2星【解析】根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.【答案】∵a、b互为相反数,∴a+b=0,∵|a-b|=6,∴b=±3,∴|b-1|=2或4.故选D.点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.【例10】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【难度】2星【解析】:根据已知条件先去掉绝对值即可求解.【答案】解:∵a<0,ab<0,∴b-a+1>0,a-b-5<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【例11】若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤0【难度】4星【解析】根据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤0时,|x+y|=-x-y.从中得出正确答案.:【答案】解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0∴x=0,y≥0或y=0,x≤0选D.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.【例12】已知:x<0<z,xy>0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【难度】4星【解析】:先根据已知条件确定x、y、z的符号及其绝对值的大小,再画出数轴确定出各点在数轴上的位置,根据绝对值的性质即可去掉原式的绝对值,使原式得到化简.【答案】:解:由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b,其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【难度】3星【解析】:分别根据绝对值的性质、相反数的定义进行解答.【答案】解:(1)正确,符合绝对值的性质;(2)正确,符合绝对值的性质;(3)正确,符合绝对值的性质;(4)错误,例如a=-5,b=2时,不成立.故选A.(1)相反数的定义:只有符号不同的两个数,叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例12】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________【难度】3星【解析】:根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>-1,然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【答案】:解:根据图示知:b>1>a>0>c>-1,∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.点评:本题主要考查了关于数轴的知识以及有理数大小的比较.【例13】若x<-2,则|1-|1+x||=______若|a|=-a,则|a-1|-|a-2|= ________【难度】3星【解析】根据已知x<-2,则可知1+x<0,x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义,那么a≤0,则|a-1|-|a-2|可去掉绝对值后【答案】∵x<-2,∴1+x<0,x+2<0,则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a,∴a≤0,∴a-1<0,a-2<0,,则|a-1|-|a-2|=1-a-(2-a),=1-a-2+a,=-1.故答案为:-2-x,-1.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0,这些是解答此题的关键【例14】()2120a b++-=,分别求a b,的值【难度】3星【解析】根据平方和绝对值的非负性解决。

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思一、教学目标:【知识与技能目标】:1.掌握绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

2.理解绝对值的概念,会求一个数的绝对值。

3.能够利用绝对值比较两个有理数的大小。

【过程与方法目标】:1.通过数轴上的点到原点的距离,体会绝对值的几何意义,培养学生的数形结合思想。

2.通过具体的数值计算,归纳出绝对值的代数意义,培养学生的归纳推理能力。

3.通过比较两个有理数的绝对值大小来比较它们的大小,培养学生的逻辑思维能力。

【情感价值观目标】:1.在探究绝对值概念和性质的过程中,培养学生积极思考、勇于探索的精神。

2.感受数学的严谨性和逻辑性,体会数学在实际生活中的应用价值。

3.培养学生严谨的治学态度和勇于探索的创新精神。

二、学情分析:七年级的学生已经学习了有理数的概念、数轴等知识,为学习绝对值奠定了基础。

学生对绝对值概念的理解可能存在困难,特别是对于负数的绝对值是它的相反数这一性质,在利用绝对值比较两个有理数的大小时,可能会出现错误。

三、教材分析:《绝对值》是浙教版(2024)数学七年级上册的内容,主要旨在绝对值的概念体现了数形结合的思想方法,对于培养学生的数学思维能力具有重要意义,它是进一步学习有理数的运算和实数的基础。

教材首先通过数轴上表示数的点到原点的距离引出绝对值的概念,然后通过具体的例子让学生掌握求一个数的绝对值的方法,最后介绍了绝对值的性质和利用绝对值比较两个有理数的大小。

四、教学重难点【教学重点】:绝对值的概念和性质,利用绝对值比较两个有理数的大小。

【教学难点】:对绝对值概念的理解,特别是负数的绝对值是它的相反数这一性质。

五、教学方法和策略:【教学方法】:1.讲授法:讲解绝对值的概念、性质和求法。

2.演示法:通过数轴的直观演示,帮助学生理解绝对值的概念。

3.练习法:通过练习,让学生巩固所学知识。

【教学策略】:1.创设情境法:注重知识的形成过程,让学生在体验中学习,激发学生的学习兴趣。

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结

七年级上册数学绝对值知识点总结绝对值是七年级数学中的一个基本概念,它在很多数学运算和实际应用中都有重要意义。

绝对值的引入可以帮助学生理解数轴、数与数之间的距离以及负数与正数的关系。

掌握绝对值的概念和性质是进一步学习代数、几何等数学领域的基础。

一、绝对值的定义1.绝对值的概念:绝对值表示一个数与零之间的距离。

每个实数都有一个绝对值,绝对值总是非负的。

2.数学表示:对于任何实数x,绝对值的表示为|x|。

如果x≥0,则|x|=x;如果x<0,则|x|=-x。

二、绝对值的几何意义1.数轴上的表示:在数轴上,任意一点与原点之间的距离就体现了该点的绝对值。

2.距离的计算:绝对值不仅可以用于表示数与零的距离,还可以表示两个数之间的距离。

对于任意两个实数a和b,a与b之间的距离可以表示为|a - b|。

三、绝对值的基本性质1.非负性:对于任何实数x,|x|≥0,表示绝对值永远是非负数。

2.自反性:|x|=0当且仅当x=0。

3.现实性:|x|的值与x的符号无关,只与数的大小有关。

4.乘法性质:|a * b| = |a| * |b|。

5.加法性质:|a + b| ≤ |a| + |b|(三角不等式)。

四、绝对值的运算1.加法运算:对于两个绝对值相加,一定要注意计算哪部分是负数,需要根据具体的数值来判断。

2.减法运算:|a - b|并不等于|a| - |b|,需要根据数的大小关系进行判断。

3.乘法和除法:两数的绝对值相乘或相除时,绝对值的乘法和除法性质仍然成立。

五、绝对值方程1.绝对值方程的定义:包含绝对值的方程,例如|x|=a,其中a为非负数。

2.求解绝对值方程的方法:根据定义,分情况讨论。

例如|x|=3可以分为x=3和x=-3两种情况。

3.抽象方程的解决:复杂的绝对值方程需要通过建立方程或不等式进行逐步求解。

六、绝对值不等式1.绝对值不等式的形式:一般形式为|x|<a、|x|>a。

2. |x|<a:对于这种不等式,解集为-x<a<x。

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理

七年级数学上册《绝对值》知识点整理绝对值是数学中的一个重要概念,它在数学运算、方程与不等式的求解等方面起着重要的作用。

本文将对七年级数学上册中有关"绝对值"的知识点进行整理。

一、绝对值的定义及性质绝对值是一个数与零点之间的距离,通常用两个竖杠“| |”表示。

对于任意实数a,其绝对值记作|a|,其定义如下:1. 当a≥0时,|a|=a。

2. 当a<0时,|a|=-a。

根据绝对值的定义,我们可以得到以下一些重要的性质:1. |a|≥0,绝对值不小于零。

2. |a|=0的充分必要条件是a=0。

3. 如果a和b是任意两个实数,则|ab|=|a|·|b|。

4. 如果a是任意一个实数,则|a|=|-a|。

根据性质4,我们可以将绝对值运算简化为先求出a的相反数,再取相反数的绝对值。

这对于简化绝对值运算是很有帮助的。

二、绝对值的运算规则在我们进行绝对值的运算时,需要了解以下几个重要的运算规则:1. 加减法规则:|a±b|≤|a|+|b|。

绝对值的加减可以化简为绝对值都为正号的情况,然后再进行运算。

2. 乘法规则:|ab|=|a|·|b|。

绝对值的乘法运算简化为各自数的绝对值相乘。

3. 整除规则:如果a能整除b,则|a|能整除|b|。

4. 互为倒数规则:如果a和b是互为倒数的两个数,则|a|=|b|。

根据以上的运算规则,我们可以更加方便地处理绝对值的运算。

三、绝对值的应用在数学课程中,我们经常会看到绝对值的应用,特别是在方程与不等式的求解过程中。

下面我们以一些例题来说明如何应用绝对值进行解答。

例1:求解方程|2x+3|=5。

解:根据绝对值的定义,我们可以列出等式:2x+3=5 或 2x+3=-5然后分别解得:2x=2 或 2x=-8x=1 或 x=-4所以方程的解为x=1或x=-4。

例2:求解不等式|3x-4|≥7。

解:根据绝对值的定义,我们可以列出不等式:3x-4≥7 或 -(3x-4)≥7然后分别解得:3x≥11 或 -3x≥11x≥11/3 或x≤-11/3所以不等式的解为x≥11/3或x≤-11/3。

七年级数学人教版(上册)【知识讲解】第1课时绝对值

七年级数学人教版(上册)【知识讲解】第1课时绝对值
第一章 有理数 1.2 有理数
1.2.4 绝对值
第1课时 绝对值
知识轴上表示 3 的点到原点的距离是 3 ,所以|3|= 3 ;
数轴上表示-3 的点到原点的距离是 3 ,所以|-3|= 3 ;数轴上
表示 0 的点到原点的距离是 0 ,所以|0|= 0 .
(2)|-2 022|的意义是数轴上表示 -2 022
8.在有理数中,绝对值等于它本身的数有( D )
A.1 个
B.2 个
C.3 个
D.无数个
9.(1)绝对值是 4 的数有几个?各是什么? 解:(1)绝对值是 4 的数有两个,它们分别是 4 和-4. (2)绝对值是 0 的数有几个?各是什么? 解:(2)绝对值是 0 的数只有一个,是 0. (3)是否存在绝对值是-5 的数?为什么? 解:(3)不存在绝对值是-5 的数.因为一个数的绝对值为非负数.
D.|a|+1 一定是正数
12.(2020·株洲)一实验室检测 A,B,C,D 四个元件的质量(单 位:g),超过标准质量的克数记为正数,不足标准质量的克数记为负 数,结果如图所示,其中最接近标准质量的元件是( D )
13.下列说法正确的是 ①② .(填序号) ①若 m=n,则|m|=|n|; ②若 m=-n,则|m|=|-n|; ③若|-m|=|-n|,则 m=-n; ④若|-m|=|-n|,则 m=n.
14.计算: (1)|-18|+|-6|-|-24|. 解:原式=18+6-24 =0. (2)|-313|×|-34|÷|-0.75|. 解:原式=130×34×43 =130.
15.(1)已知 m,n 满足|m-2|+|n-3|=0,求 2m+n 的值. 解:由题意,得 m-2=0,n-3=0, 所以 m=2,n=3. 所以 2m+n=4+3=7.

七年级上册绝对值的知识点

七年级上册绝对值的知识点

七年级上册绝对值的知识点
1. 绝对值的定义
绝对值是一个数距离0的距离,用双竖线表示,例如|-5|=5,|3|=3。

2. 绝对值的性质
(1)非负性:绝对值是一个非负数,即|a|≥0。

(2)对称性:如果a≠0,则|a|=|-a|。

(3)三角不等式:对于任意实数a和b,有|a+b|≤|a|+|b|。

3. 绝对值的运算
(1)加减法:|a+b|=|a|+|b|或者|a+b|=|a-b|。

(2)乘法:|ab|=|a|×|b|。

(3)倒数:如果a≠0,则1/|a|=|1/a|。

4. 绝对值的应用
(1)求距离:两个点坐标的距离可以用绝对值表示,例如点
A(x1,y1)和点B(x2,y2)的距离为|AB|=√[(x2-x1)²+(y2-y1)²]。

(2)解绝对值方程:将绝对值式子分成两种情况分别求解,
例如|2x-5|=7,可以分别得到2x-5=7和2x-5=-7,解得x=6和x=-1。

(3)解绝对值不等式:同样需要分两种情况讨论,例如|2x-
3|<4,可以分别得到-1<x<7/2和x∈R。

综上所述,绝对值是数学中重要的概念之一,应用广泛,需要
认真掌握。

通过练习和应用,学生可以更好地理解绝对值的性质
和运算,加深对数学知识的理解和掌握。

七年级数学上册教学课件《绝对值》

七年级数学上册教学课件《绝对值》

探究新知
素养考点 求相反数
2.3 绝对值
例 如果a与﹣2互为相反数,那么a等于( B )
A.-拨:求一个数的相反数的方法:求一个具体数的 相反数时,只需改变这个数前面的符号,其他部分不变.
巩固练习
变式训练
下列说法: ①-2是相反数; ② 2是相反数; ③-2是2的相反数; ④-2和2互为相反数. 其中正确的有( B ) A.1个 B.2个 C.3个 D.4个

3 6
<
46;
所以−0.5
>

2 3
.
连接中考
2.3 绝对值
1. 在0,-1,2,-3这四个数中,绝对值最小的数是( A ) A.0 B.-1 C.2 D.-3
2. |x-3|=3-x,则x的取值范围是_x__≤__3_.
课堂检测
基础巩固题
2.3 绝对值
1. 下列结论正确的是( B )
A.-4与+(-4)互为相反数 C.-23与32互为相反数
问题2:互为相反数的两个数的绝对值又有什么关系呢?
结论: 1.│a│就是数轴上表示数a的点与原点的距离. 2.互为相反数的两个数的绝对值相等.
.探究新知
做一做
|+2|=___2_____, |-2|=____2____, -|-2|=__-_2_____,-|+2|=___-_2____,
|0|=___0_____.
数学 七年级 上册
2.3 绝对值
2.3 绝对值
导入新知
2.3 绝对值
观察下列每对数,并把它们在数轴上标出: 5和- 5,3和 -3,1.5和-1.5
-5 -3 -1.5
1.5 3
5

七年级绝对值最大值最小值解法

七年级绝对值最大值最小值解法

七年级绝对值最大值最小值解法一、绝对值的基本概念。

1. 定义。

- 绝对值表示数轴上一个数所对应的点与原点的距离。

例如,|3| = 3,表示3这个点到原点的距离是3;| - 5|=5,表示 - 5这个点到原点的距离是5。

- 用数学式子表示为:| a|=a(a≥0) - a(a < 0)二、求绝对值表达式的最大值和最小值的常见类型及解法。

(一)简单的绝对值表达式。

1. 类型一:| x|形式。

- 对于y = | x|,因为绝对值是非负的,所以y=| x|≥0。

- 最小值:当x = 0时,y取得最小值0;没有最大值,因为x可以取任意实数,| x|可以无限大。

2. 类型二:| x - a|形式。

- 对于y=| x - a|,它表示数轴上x所对应的点到a所对应的点的距离。

- 最小值:当x=a时,y取得最小值0;没有最大值。

(二)含有多个绝对值的表达式。

1. 类型一:y=| x - a|+| x - b|(a < b)形式。

- 几何意义:y=| x - a|+| x - b|表示数轴上一点x到a点和b点的距离之和。

- 最小值:当a≤ x≤ b时,y取得最小值| b - a|。

- 证明:当x < a时,y=(a - x)+(b - x)=a + b-2x,y随x的增大而减小;当x > b 时,y=(x - a)+(x - b)=2x-(a + b),y随x的增大而增大;当a≤ x≤ b时,y=(x - a)+(b - x)=b - a,此时y取得最小值| b - a|,没有最大值。

2. 类型二:y=| x - a|-| x - b|(a < b)形式。

- 几何意义:y=| x - a|-| x - b|表示数轴上一点x到a点和b点的距离之差。

- 最大值:当x≥ b时,y取得最大值| b - a|;最小值:当x≤ a时,y取得最小值-| b - a|。

- 证明:当x < a时,y=(a - x)-(b - x)=a - b;当a≤ x < b时,y=(x - a)-(b -x)=2x-(a + b),y在这个区间内的值介于-| b - a|和| b - a|之间;当x≥ b时,y=(x - a)-(x - b)=b - a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)任何有理数的绝对值都是大于或等于0的数,
这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两个,这两个 数互为相反数。 (4)互为相反数的两个数的绝对值相等
前程教育
相反数与绝对值的三个台阶
相反数
字母 数字
代数式
1-x 的相反数是? a-b 的相反数是? -m的相反数是? -2的相反数是? 0的相反数是? -(-5)的相反数是?

第9题. 与原点的距离为5个单位长度的点有____ 个,它们分别表示有理数_____和_____.
第10题. |-9||=______, -|-5|=______. 第 11 题 . _____ 的相反数是 它 本 身 , ______ 的 绝 对 值是它本身. 第 12 题 . 若 =3 ,则 x=__ ; 若=0,则x=______.
6)若|a|=|b|,则a=b; ( ) (7)若a=b,则|a|=|b|; ( ) (8)若|a|>|b|,则a>b;( ) (9)若a>b,则|a|>|b|;( ) 若a>b,则|b-a|=a-b( )
|-a|=|a|; ( )
-|a|=|-a| . ()

|a|=5,|b|=7,求a+b的值。
a>0 a<0 a=0

非负数相加等于零的题型
北京:-3℃;哈尔滨:-10℃;武汉:3℃; 广州:15℃。 请按气温的高低顺序,将这几个城市排成一排。

本题只需比较- 3、-10、3、 15这四个数的大小。 常用的方法有两种: 一种是利用数轴比较,把这些 数在数轴上表示出来,则它们 从左到右的顺序就是从小到大 的顺序,即左边的数小于右边 的数; 一种是利用‘异号的数比较, 正数大于负数;零与非负数比 较,正数大于零,零大于负数; 同号两数比较,正数按小学的 方法进行,负数比较绝对值, 绝对值大的反而小’。
已知|ab-2|与|b-1|互为相反数 试求代数式 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a +2009)(b+2009)
前程教育
相反数与绝对值的三个台阶
代数式 字母 数字
分类讨论
|a|=? |+3|=3 |-2|=2 |0|=0
|1-x|=? |a-b|=?
相反数与绝对值的两种题型




a>0 |a|=a a<0 |a|=-a (注:-a不是负数) a=0 |a|=0
|a|=a |a|=-a |a|=0

第 5 题 . 若一个数 的绝对值是它 的相反数,则 这个数 是 ____ __. 第 6 题 . 数轴上离 开原点 5 个单位 的数是 ______ ___,它们互为 _______
第7题. 绝对值大 于2并且小于5 的整数分别是_ __________ 第8题. 绝对值大 于1而小于4的整 数是______
对于式子|x|+13,当x等于什么值时,有最小 值?最小值是多少?

Related Documents
Competitors
– You may want to allocate one slide per competitor

数轴上A、B、C、D四点对应的数都是整数。若A点对应的数为a,B 点对应的数为b,C点对应的数c,且2c-3a=11,问数轴上的 原点是A点呢?还是B点?还是C点?还是D点呢?
a-b__0 c-a__0 B是原点, |a|_|b|
a-c__0
b-d__0
|a|_|c| |a|_|b| |d-c|_|c-d|

若│x│+x=0,则x一定是 ( ) A.负数 B.0 C.非正数
D.非负数
如果|a|=4,|b|=3,且a>b,求a,b的值.

绝对值的理解
前程教育
前程教育
a的绝对值用“|a|”表示. 读作“a的绝对值”。
代数意义 正数和0的绝对值是它本身,负数的绝对值 是它的相反数.

几何意义 在数轴上,对值的代数意义还是
几何意义,都揭示了绝对值的
以下有关性质:

出租车司机张师傅某天上午出车,从家出发连拉了10人,如果向 东为正,向西为负,这天上午他具体行车里程(千米)如下 : +15 ,-7 ,-14 ,-21+10, -12, +4, -15, +16 ,-18 问题:1他送的第几位乘客里程最远? 2张师傅上午行驶的总里程是多少? 3最后张师傅离家有多远?

第16题. 已知|a|=3,|b|=7,且ab<0,那么 a-b=______.

判断对错. (1)如果一个数的相反数是它本身, 那么这个数是0. ( ) (2)如果一个数的倒数是它本身, 那么这个数是1和0. ( ) (3)如果一个数的绝对值是它本身, 那么这个数是0或1. ( ) (4)如果说“一个数的绝对值是负 数”,那么这句话是错的. ( ) (5)如果一个数的绝对值是它的相 反数,那么这个数是负数. ( )

第1题. 若a,b互为相反数,则|a|-|b|=_____ 第2题. 若a为整数,|a|<1.999,则a可能的取值 为_______

第3题. 在数轴上与表示3的点的距离等于4的点表 示的数是_______.
第4题. 若|x+2|+|y-3|=0,则x=___,y=____
相关文档
最新文档