宜都市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜都市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )
A .若x ∉A ,则y ∉A
B .若y ∉A ,则x ∈A
C .若x ∉A ,则y ∈A
D .若y ∈A ,则x ∉A
2. 已知函数f (x )=
,则f (0)=( )
A .﹣1
B .0
C .1
D .3
3. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1
4. 已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=
,
则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )
A .12
B .11
C .10
D .9
5. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )
A .(﹣∞,1)
B .(﹣∞,1]
C .(﹣∞,0)
D .(﹣∞,0]
6. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )
A .2017
B .﹣8
C .
D .
7. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
8.已知正方体ABCD﹣A1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为()
A.x=1,y=1 B.x=1,y=C.x=,y=D.x=,y=1
9.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()
A.3 B.6 C.7 D.8
10.△ABC的三内角A,B,C所对边长分别是a,b,c,设向量,
,若,则角B的大小为()
A.B.C.D.
11.已知命题p:2≤2,命题q:∃x0∈R,使得x02+2x0+2=0,则下列命题是真命题的是()
A.¬p B.¬p∨q C.p∧q D.p∨q
12.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()
A.3个B.2个C.1个D.无穷多个
二、填空题
13.设函数f(x)=,
①若a=1,则f(x)的最小值为;
②若f(x)恰有2个零点,则实数a的取值范围是.
14.(文科)与直线10x -=垂直的直线的倾斜角为___________.
15.设,x y 满足条件,
1,x y a x y +≥⎧⎨-≤-⎩
,若z ax y =-有最小值,则a 的取值范围为 .
16.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .
17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长
为 .
18.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .
三、解答题
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤
∈⎢⎥⎣⎦
且()()00f x g x ≤成立,求b a 的取值范围.
21.(本小题满分12分) 已知函数21
()x f x x +=
,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭
(N n *∈). (1)求数列{}n a 的通项公式;
(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和n T .
【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
22.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x . (1)求当x >0时f (x )的解析式; (2)画出函数f (x )在R 上的图象; (3)写出它的单调区间.
23.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12
(1)求a ,b 的值.
(2)当x ∈[1,2]时,求f (x )的最大值.
(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x
﹣m 的图象恒有两个交点.
24.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为2
22
12
3cos 4sin ρθθ
=
+,点12,F F
为其左、右焦点,直线的参数方程为22
x y ⎧=+⎪⎪⎨
⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;
(2)求点12,F F 到直线的距离之和.
宜都市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.
与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.
故选D.
2.【答案】B
【解析】解:函数f(x)=,
则f(0)=f(2)=log22﹣1=1﹣1=0.
故选B.
【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.
3.【答案】D
【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,
而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,
所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.
故选D.
4.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)
对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A,B,C,D的横坐标分别为a,b,c,d,
则a+d=4,b+c=4,由图象知另一交点横坐标为3,
故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,
即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.
故选:B.
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
5.【答案】D
【解析】解:如图,
M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,
则a≤0.
∴实数a的取值范围为(﹣∞,0].
故选:D.
【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.
6.【答案】D
【解析】解:∵f(x+2)=﹣f(x),
∴f(x+4)=﹣f(x+2)=f(x),
即f(x+4)=f(x),
即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,
∴f(1)=f(﹣1)=,
∴a2017=f(1)=,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.7.【答案】B
8.【答案】C
【解析】解:如图,
++().
故选C.
9.【答案】B
【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,
∴2a4=a3+a5=8,解得a4=4,
∴公差d==,
∴a7=a1+6d=2+4=6
故选:B.
10.【答案】B
【解析】解:若,
则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,
由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,
化为a2
+c2﹣b2=﹣ac,
∴cosB==﹣,
∵B∈(0,π),
∴B=,
故选:B.
【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.
11.【答案】D
【解析】解:命题p:2≤2是真命题,
方程x2+2x+2=0无实根,
故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,
故命题¬p,¬p∨q,p∧q是假命题,
命题p∨q是真命题,
故选:D
12.【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,
又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,
即M={x|﹣1≤x≤3},
在此范围内的奇数有1和3.
所以集合M∩N={1,3}共有2个元素,
故选B .
二、填空题
13.【答案】 ≤a <1或a ≥2 .
【解析】解:①当a=1时,f (x )=
,
当x <1时,f (x )=2x
﹣1为增函数,f (x )>﹣1,
当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2
﹣3x+2)=4(x ﹣)2
﹣1,
当1<x <时,函数单调递减,当x >时,函数单调递增,
故当x=时,f (x )min =f ()=﹣1,
②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,
所以a >0,并且当x=1时,h (1)=2﹣a >0,所以0<a <2,
而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1,
所以≤a <1,
若函数h (x )=2x
﹣a 在x <1时,与x 轴没有交点,
则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,
当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),
当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的,
综上所述a 的取值范围是≤a <1,或a ≥2.
14.【答案】3
π 【解析】
3
π. 考点:直线方程与倾斜角.
15.【答案】[1,)+∞
【解析】解析:不等式,
1,x y a x y +≥⎧⎨-≤-⎩
表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,
平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处
取得最大值,综上所述,1a ≥.
16.【答案】 m >1 .
【解析】解:若命题“∃x ∈R ,x 2
﹣2x+m ≤0”是假命题,
则命题“∀x ∈R ,x 2
﹣2x+m >0”是真命题,
即判别式△=4﹣4m <0, 解得m >1,
故答案为:m >1
17.【答案】 4 .
【解析】解:由已知可得直线AF 的方程为y=
(x ﹣1),
联立直线与抛物线方程消元得:3x 2
﹣10x+3=0,解之得:x 1=3,x 2=(据题意应舍去),
由抛物线定义可得:AF=x 1+=3+1=4.
故答案为:4.
【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.
18.【答案】 [1,5)∪(5,+∞) .
【解析】解:整理直线方程得y ﹣1=kx ,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y 轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y 2=5m
得到y 2
=m
要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是
y 2≥1
得到m ≥1
∵椭圆方程中,m ≠5
m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
三、解答题
19.【答案】(1)()2
6ln f x x x x =--;(2)3n =;(3)证明见解析.
【解析】
试
题解析: (1)()2a f'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨
=+==⎩⎩
, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
20.【答案】(1)在0,b e ⎛⎫ ⎪⎝⎭
上单调递减,在,b e ⎛⎫
∞
⎪⎝⎭
上单调递增.(2)7b e a ≤<
【解析】【试题分析】(1)先对函数()()ln ln ,0,h x x x x b a x =-+∈∞求导得()'ln 1ln h x x b =+-,再解不
等式()'0h x >得b x e >
求出单调增区间;解不等式()'0h x <得b
x e
<求出单调减区间;(2)先依据题设345a b a b ++<得7b a <,由(1)知()m in 0h x ≤,然后分345a b b a b e ++≤≤、4b a b e +<、35
b a b
e +>三种情形,分别研究函数()()ln ln ,0,h x x x x b a x =-+∈∞的最小值,然后建立不等式进行分类讨论进行求解出其取值范围7b
e a
≤
<: 解:(1)()()()ln ln ,0,,'ln 1ln h x x x x b a x h x x b =-+∈∞=+-,由()'0h x >得b x e >,()'h x ∴在0,b e ⎛⎫
⎪⎝⎭
上单调递减,在,b e ⎛⎫
∞
⎪⎝⎭
上单调递增. (2)由345a b a b ++<得7b
a <,由条件得()min 0h x ≤. ①当345a
b b a b e ++≤≤,即345e b e e a e ≤≤--时,()min b b h x h a e e ⎛⎫
==-+ ⎪⎝⎭,由0b a e -+≤得 3,5b b e e e a a e
≥∴≤≤-. ②当4b a b e +<时,()4,e a b h x a ->∴在3,4
5a b a b ++⎡⎤
⎢⎥⎣⎦上单调递增, ()min ln ln ln ln 4444a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43?3044e b b
a b e e b e --+-=>=>,矛盾,∴不成立. 由0b
a e
-+≤得.
③当35b a b e +>,即35b e a e >-时,53e a b e ->,()h x ∴在3,45a b a b ++⎡⎤
⎢⎥⎣⎦
上单调递减,
()min 3333ln ln ln ln 5555a b a b a b a b b h x h b a b a
e ++++⎛⎫⎛⎫⎛⎫
==-+≥-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52?2230553e b b
a b e
e b e
----=>=>,∴当35b e a e >
-时恒成立,综上所述,7b e a ≤<. 21.【答案】
【解析】(1)∵211()2x f x x x +=
=+,∴11
()2n n n
a f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,
∴1()(22)(1)22
n n a a n n n
S n n ++===+, ∴1111(1)1
n S n n n n ==-
++. (8分) ∴1231111n n T S S S S =++++
11111111()()()()1223341
n n =-+-+-++-+ 111n =-+1
n n =+. (12分) 22.【答案】
【解析】解:(1)若 x >0,则﹣x <0…(1分) ∵当x <0时,f (x )=()x
.
∴f (﹣x )=()﹣x
.
∵f (x )是定义在R 上的奇函数, f (﹣x )=﹣f (x ),
∴f (x )=﹣()﹣x =﹣2x
.…(4分)
(2)∵(x )是定义在R 上的奇函数, ∴当x=0时,f (x )=0,
∴f (x )=.…(7分)
函数图象如下图所示:
(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)
无增区间…(12分)
【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.
23.【答案】
【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,
∴a﹣b=2,a2﹣b2=12,
解得:a=4,b=2;
(2)由(1)得:函数f(x)=lg(4x﹣2x),
当x∈[1,2]时,4x﹣2x∈[2,12],
故当x=2时,函数f(x)取最大值lg12,
(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.
则4x﹣2x=m有两个解,令t=2x,则t>0,
则t2﹣t=m有两个正解;
则,
解得:m∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
24.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22
143
x y +=;(2). 【解析】
试题分析:(1)由公式cos sin x
y ρθρθ=⎧⎨=⎩
可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;
考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.。