山城区第二中学七年级数学上册第4章图形的初步认识4.5最基本的图形__点和线1点和线教案新版华东师大

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5 最基本的图形——点和线
1.点和线
【基本目标】
1.使学生理解任何图形都是由点和线组成的,体会线段、射线、直线的形象,正确区分这三个图形,掌握它们的表示方法.
2.感受、体会、理解“两点之间,线段最短以及两点确定一条直线”,掌握两点间距离的概念.
【教学重点】线段、射线、直线的定义以及表示方法,熟悉简单的几何语言.
【教学难点】线段、射线、直线的区别与联系.
一、情境导入,激发兴趣
1.如果你站在一座足够高的楼上,望着楼底下的某一个人,那么你将能见到什么?
2.黑夜中用聚光灯照射远处的墙壁,我们会看到什么?
3.如果你把一条两头都打结的绳子拉直了,你将能发现什么?
【教学说明】让学生充分发挥想象,对于学生的回答教师应该给予肯定,激发学生探究的兴趣.
二、合作探究,探索新知
1.从情景中,我们可以知道,你能看到的将是一个点,而这个点就表示着这个人或
聚光灯照射处
的位置,因此,可以概括:点通常表示一个物体的位置.

图形:·A
表示:点A(A点).
2.日常生活中,一根拉紧的绳子、一根竹竿、人行横道线都给我们以线段的形象.
线段
图形:
表示:线段AB 线段d
【教学说明】在讲解时,要注意一方面通过现实生活中的实例让学生理解这些概念,另一方面要引导学生考虑现实生活中的哪些事物具有这些形象.
3.利用线段的形象,我们顺利引出了射线与直线.
概括:把线段向一方无限延伸所形成的图形叫做射线;把线段向两方无限延伸所形成
的图形叫做直线.
射线
图形:
表示:射线AB 射线d
直线
图形:
表示:直线AB直线d
【教学说明】考虑到“线段”的概念更为直观,所以由“线段”引入“射线”和“直线”,可让学生经历直线和射线的形成过程.注意几个概念间的区别和联系.
4.小结:对于线段、射线、直线,应该进行综合的比较:
【教学说明】将线段、射线、直线之间的区别以表格形式呈现,便于学生进行对比,从而更好的掌握特征.可以先呈现表格,然后让学生观察填空.
5.试一试.
(1)线段公理
观察下图,从A地到B地有三条路径,你会选择哪一条?
从上边的图中,我们很容易发现:如果从A地到B地,走直路的路程是最短的,即在这些把A、B连结起来的线中,线段AB是最短的.
概括:两点之间,线段最短.
连结两点间的线段的长度叫做两点间的距离.
【教学说明】两点间的距离是指连结两点的线段的长度而不是线段本身,这是一个数量概念,要求学生正确理解两点间距离的含义.
(2)直线的公理
我们要把一根木条钉紧,只用一个钉子,行吗?那么至少需要订几个钉子才能将木条钉紧?
由生活中的经验,我们都知道,一个是不够的,至少需要两个钉子才能将木条钉紧.
概括:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.
【教学说明】由实际生活现象归纳出相应的数学原理,是一个难点,教师可多举一些实例便于学生理解和应用.
三、练习反馈,巩固提高
1.如图所示,A、B、C是同一直线上的依次三点,下列说法正确的是()
A.射线AB与射线BA是同一条射线
B.射线AB与射线BC是同一条射线
C.射线AB与射线AC是同一条射线
D.射线BA与射线BC是同一条射线
2.下列说法正确的是()
A.直线AB的长是A、B两点间的距离
B.线段AB是A、B两点间的距离
C.A、B两点间连线的长是A、B两点间的距离
D.线段AB的长是A、B两点间的距离
3.平面上有四个点,经过每两个点作一条直线,则作出的直线最多有()
A.3条
B.4条
C.5条
D.6条
4.四条直线两两相交,其交点个数最多有()
A.3个
B.4个
C.5个
D.6个
5.如图所示,共有线段条;共有射线条;共有直线条.
6.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .
【教学说明】学生独立完成,对于第5题,学生容易数漏,教师应引导学生总结规律,第6题是学生不太熟悉此的问题,教师可适当补充一些实例,加深学生的理解.
【答案】1.C 2.D 3.D 4.D
5.5,6 ,3
6.经过一点可以画无数条直线,两点确定一条直线
四、师生互动,课堂小结
1.线段、射线和直线有什么联系和区别?
2.两点之间,线段最短.
连结两点间的线段的长度叫做两点间的距离.
3.经过两点有一条直线,并且只有一条直线.即两点确定一条直线.
【教学说明】教师引导学生对所学内容进行总结,主要是比较三线的区别,对相关的方法进行总结,加强学生对本节课知识的理解.
完成本课时对应的练习.
本节课是学生学习几何的入门课,培养学生的几何意识对于本节课来讲就很重要.教师可以从具体形象的实际例子入手,使学生经历从具体到抽象的思维过程,从而培养学生的几何意识.抽象是数学的一种基本思想和基本方法,让学生从实际生活的物体、图形中抽象得到点、线、面、体等数学概念.概括事物的数学属性,引导学生从数学的角度去看待实际物体,提高学生的抽象思维能力,引导学生的思维习惯.
第4课时整式的加减
让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.
重点
整式的加减.
难点
总结出整式的加减的一般步骤.
一、创设情境,复习引入
练习:化简:
(1)(x+y)-(2x-3y);
(2)2(a2-2b2)-3(2a2+b2).
提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?
二、推进新课
师:出示投影.
例8:做两个长方体纸盒,尺寸如下(单位:cm)
长宽高
小纸盒 a b c
大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米?
分析:做一个纸盒用料多少,实际上是在求什么?
学生回答.
大盒用料多少,小盒用料多少?请列式表示.
解:略
教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.
教师出示教材例9.
教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.
三、练习与小结
练习:教材第69页练习第3题.
小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?
四、布置作业
习题2.2第4,7题.
其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.
相反数2
1. 只有______________称互为相反数.在数轴上表示互为相反数的两数的点分别位于原点的______,且与原点的距离______.0的相反数是______.相反数等于本身的数有______.
2. 如果4.5-=-a ,那么a = ,如果()9--=b ,那么b -= ,如果-a =a ,那么
a = .
3. 如果a 表示有理数,那么下列说法中正确的是( ) A.+a 和-(-a )互为相反数 B.+a 和-a 一定不相等 C.-a 一定是负数
D.-(+a )和+(-a )一定相等 4. 分别写出下列各数的相反数. -312,+183
4
,-6.534,π-1. 5. 化简下列各式:(1)⎪
⎭⎫ ⎝

+-812; (2)+(-7);
(3)()[]2---; (4)()[]5-+-; (5)()[]{}3+--+
6. 同学们都看过中央电视台《三星智力快车》吧,那可是针对我们中学生的节目,其中有一个小栏目是主持人提出一个问题,然后再给出一些提示性语言,学生根据提示性语言回答出问题.下面我们也来做一个类似的题,根据提示分析相信聪明的你一定能判断出它是一个什么数. (1)它是一个整数;
(2)它在数轴上表示的点在原点左边;
(3)它的相反数比2小.答:这个数是 ;请你将这个数及它的相反数在数轴上表示出来.
7. 如果a 与-2互为相反数,那么a 等于( ).
A. -2
B. 2
C. -12
D. 1
2
8. 数轴上A 点表示+5,B ,C 两点所表示的数互为相反数,且B 到A 的距离为2,求点B 和点C 各对应的数.
9. (2011广东广州市)9的相反数是 .
10. (2011浙江丽水)下列各组数中,互为相反数的是( ) A .2和-2
B .-2和12
C .-2和-12
D .1
2
和2
11. (2012•遵义)-(-2)的值是( ) A .-2 B .2 C .±2 D .4 参考答案 略。

相关文档
最新文档