AD404M322VLA-5中文资料
A4504中文资料
上图是典型的功率器件接口电路以及时序图;
众所周知,当功率管IPM开关工作时,原则上是绝对不能使上下两臂同时导通的。
即使在高下稍有交迭也会潜在威胁功率管和周遍电路,特别是在大电流状态下。
防止这一现象的办法是一只的时候必须确保他的对管已经完全关闭。
在此加入了一段小小的延时,被称之为“死区”。
如何缩是工程师的一项重要的课题。
“开通”IPM延时时间取决于光耦的寄生延时数据又要参照IPM的驱动电路,其中重要的是参大和最小延时时间,上图的LED是输入电压,OUT是输出电压。
大多数设计应用是:当输入为高电打开。
那么根据图上下输入的需要延时的时间至少应该是(tPLHmax-tPHLmin),此数据在手册上大多数情况下,IPM数据手册给定的死区时间是大于光耦所规定的最少要求延时的。
HCPL-4504高速光耦与IPM连接的例图:
设计注意:
1:7脚8脚需要短路连接;
2:IPM功率越大上拉电阻值越小;
3:光耦副边的引线须尽量小于2cm;
1)与DIP-IPM连接原理图:(见DIP-IPM设计手册)
2)与通用IPM连接原理图:
<返回>
上海嘉尚电子科技有限公司版权所有@2005咨询热线:021-********,54420290传真:021-********。
ADUM3402中文资料
Figure 3. ADuM3402 Functional Block Diagram
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
The ADuM340x isolators provide three independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. The ADuM340x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.
ADMP404ACEZ-RL7,ADMP404ACEZ-RL,EVAL-ADMP404Z-FLEX, 规格书,Datasheet 资料
Omnidirectional Microphone withBottom Port and Analog Output Data Sheet ADMP404Rev. CInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, N orwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.FEATURESTiny 3.35 mm × 2.50 mm × 0.88 mm surface-mount package High SNR of 62 dBAHigh sensitivity of −38 dBVFlat frequency response from 100 Hz to 15 kHzLow current consumption: <250 µASingle-ended analog outputHigh PSR of 70 dBCompatible with Sn/Pb and Pb-free solder processes RoHS/WEEE compliantAPPLICATIONSSmartphones and feature phonesTeleconferencing systemsDigital video camerasBluetooth headsetsVideo phonesTablets FUNCTIONAL BLOCK DIAGRAM8616-1DDOUTPUTFigure 1.GENERAL DESCRIPTIONThe ADMP4041 is a high quality, high performance, low power, analog output bottom-ported omnidirectional MEMS microphone. The ADMP404 consists of a MEMS microphone element, an impedance converter, and an output amplifier. The ADMP404 sensitivity specification makes it an excellent choice for both near field and far field applications. The ADMP404 has a high signal-to-noise ratio (SNR) and flat, wideband frequency response, resulting in natural sound with high intelligibility. Its low current consumption enables long battery life for portable applications. The ADMP404 complies with the TIA-920 Telecommunications Telephone Terminal Equipment Transmission Requirements for Wideband Digital Wireline Telephones standard.The ADMP404 is available in an ultraminiature 3.35 mm × 2.50 mm × 0.88 mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ADMP404 is halide free.1 Protected by U.S. Patents 7,449,356; 7,825,484; 7,885,423; 7,961,897. Other patents are pending.ADMP404Data SheetRev. C | Page 2 of 12TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 4 ESD Caution .................................................................................. 4 Pin Configuration and Function Descriptions ............................. 5 Typical Performance Characteristics ............................................. 6 Applications Information ................................................................ 7 Connecting to Analog Devices Audio Codecs ..........................7 Supporting Documents ................................................................7 PCB Land Pattern Layout .................................................................8 Handling Instructions .......................................................................9 Pick and Place Equipment............................................................9 Reflow Solder .................................................................................9 Board Wash ....................................................................................9 Reliability Specifications ................................................................ 10 Outline Dimensions ....................................................................... 11 Ordering Guide .. (11)REVISION HISTORY7/12—Rev. B to Rev. CChanges to Features Section, General Description Section,Figure 1, and Page 1 Layout............................................................. 1 Add Note 1 ......................................................................................... 1 Changes to Powers Supply Rejection Parameter, Table 1 ............ 3 Changes to Temperature Range Parameter, Table 2 ..................... 4 Changes to Figure 5 .......................................................................... 6 Changes to Connecting to Analog Devices Audio CodecsSection, Figure 8, and Application Notes Section ........................ 7 Added Circuit Notes Section........................................................... 7 Changes to Temperature Humidity Bias (THB) Description Column, Table 5 and Temperature Cycle Column, Table 5 ...... 10 Changes to Ordering Guide .......................................................... 11 Deleted Figure 12 ............................................................................ 11 8/11—Rev. A to Rev. BChanges to Figure 1 ........................................................................... 1 Changes to Supply Voltage Parameter, Table 1 .............................. 3 Changes to Table 3 ............................................................................. 4 Added Connecting to Analog Devices, Inc., Audio Codecs Section and Supporting Documents Section ................................. 7 Changes to Pick and Place EquipmentSection (20 kg to 10 kg) ................................................................... 9 Added LGA_CAV Tape and Reel Outline Dimensions,Figure 12 (11)12/10—Rev. 0 to Rev. AChanges to Applications Section and GeneralDescription Section ........................................................................... 1 Changes to Table 1 ............................................................................. 3 Changes to Table 2 .. (4)7/10—Revision 0: Initial VersionData Sheet ADMP404 SPECIFICATIONST A = 25°C, V DD = 1.8 V, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.Table 1.Parameter Symbol Test Conditions/Comments Min Typ Max Unit PERFORMANCEDirectionality OmniSensitivity 1 kHz, 94 dB SPL −41 −38 −35 dBV Signal-to-Noise Ratio SNR 62 dBA Equivalent Input Noise EIN 32 dBA SPL Dynamic Range Derived from EIN and maximum acoustic input 88 dB Frequency Response1Low frequency −3 dB point 100 HzHigh frequency −3 dB point 15 kHzDeviation limits from flat response within pass band−3/+2 dB Total Harmonic Distortion THD 105 dB SPL 3 % Power Supply Rejection PSR 217 Hz, 100 mV p-p square wave superimposed on V DD = 1.8 V 70 dB Maximum Acoustic Input Peak 120 dB SPL POWER SUPPLYSupply Voltage V DD 1.5 3.3 V Supply Current I S250 µA OUTPUT CHARACTERISTICSOutput Impedance Z OUT200 Ω Output DC Offset 0.8 V Output Current Limit 90 µA1 See Figure 4 and Figure 6.Rev. C | Page 3 of 12ADMP404Data SheetRev. C | Page 4 of 12ABSOLUTE MAXIMUM RATINGSTable 2.Parameter RatingSupply Voltage−0.3 V to +3.6 V Sound Pressure Level (SPL) 160 dB Mechanical Shock 10,000 gVibrationPer MIL-STD-883 Method 2007, Test Condition B Temperature Range−40°C to +85°CStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ESD CAUTIONT E M P E R A T U R ETIMET T 08616-002Figure 2. Recommended Soldering Profile LimitsTable 3. Recommended Soldering Profile LimitsProfile FeatureSn63/Pb37Pb-FreeAverage Ramp Rate (T L to T P ) 125°C/sec maximum 125°C/sec maximum PreheatMinimum Temperature (T SMIN ) 100°C 100°C Maximum Temperature (T SMAX ) 150°C200°CTime (T SMIN to T SMAX ), t S 60 sec to 75 sec 60 sec to 75 sec Ramp-Up Rate (T SMAX to T L )125°C/sec125°C/sec Time Maintained Above Liquidous (t L ) 45 sec to 75 sec ~50 sec Liquidous Temperature (T L ) 183°C217°CPeak Temperature (T P )215°C +3°C/−3°C 245°C 0°C/−5°C Time Within 5°C of Actual Peak Temperature (t P ) 20 sec to 30 sec 20 sec to 30 sec Ramp-Down Rate3°C/sec maximum 3°C/sec maximum Time 25°C (t 25°C ) to Peak Temperature5 minute maximum5 minute maximumData SheetADMP404Rev. C | Page 5 of 12PIN CONFIGURATION AND FUNCTION DESCRIPTIONSGNDOUTPUTTOP VIEW(TERMINAL SIDE DOWN)Not to ScaleADMP4041V DD3208616-003Figure 3. Pin ConfigurationTable 4. Pin Function DescriptionsPin No. Mnemonic Description1 OUTPUT Analog Output Signal2 GND Ground3V DDPower SupplyADMP404Data SheetRev. C | Page 6 of 12TYPICAL PERFORMANCE CHARACTERISTICS10–10–8–6–4–20246810010kFREQUENCY (Hz)S E N S I T I V I T Y (d B )1k08616-009Figure 4. Frequency Response Mask0–8010010kFREQUENCY (Hz)P S R (d B)1k–10–20–30–40–50–60–7008616-005Figure 5. Typical Power Supply Rejection Ratio vs. Frequency10–20–10010010kFREQUENCY (Hz)(d B )1k08616-010Figure 6. Typical Frequency Response (Measured)Data SheetADMP404Rev. C | Page 7 of 12APPLICATIONS INFORMATIONCONNECTING TO ANALOG DEVICES AUDIO CODECSThe ADMP404 output can be connected to a dedicated codec microphone input (see Figure 7) or to a high input impedance gain stage (see Figure 8). A 0.1 µF ceramic capacitor placed close to the ADMP404 supply pin is used for testing and is recom-mended to adequately decouple the microphone from noise on the power supply. A dc-blocking capacitor is required at the output of the microphone. This capacitor creates a high-pass filter with a corner frequency atf C = 1/(2π × C × R )where R is the input impedance of the codec.A minimum value of 2.2 µF is recommended in Figure 7 because the input impedance of the ADAU1361/ADAU1761 can be as low as 2 kΩ at its highest PGA gain setting, which results in a high-pass filter corner frequency at about 37 Hz. Figure 8 shows the ADMP404 connected to the ADA4897-1 op amp configured as a noninverting preamplifier.08616-020Figure 7. ADMP404 Connected to the Analog Devices ADAU1761 orADAU1361 Codec08616-021OUTFigure 8. ADMP404 Connected to the ADA4897-1 Op AmpSUPPORTING DOCUMENTSEvaluation Board User GuideUG-142, EVAL-ADMP404Z-FLEX: Bottom-Ported Analog Output MEMS Microphone Evaluation BoardApplication NotesAN-1003, Recommendations for Mounting and Connecting Analog Devices, Inc., Bottom-Ported MEMS Microphones AN-1068, Reflow Soldering of the MEMS Microphone AN-1112, Microphone Specifications ExplainedAN-1124, Recommendations for Sealing Analog Devices, Inc., Bottom-Port MEMS Microphones from Dust and Liquid IngressAN-1140, Microphone Array BeamformingCircuit NotesCN-0207, High Performance Analog MEMS Microphone’s Simple Interface to SigmaDSP Audio CodecCN-0262, Low Noise Analog MEMS Microphone and Preamp with Compression and Noise GatingADMP404Data SheetRev. C | Page 8 of 12PCB LAND PATTERN LAYOUTThe recommended PCB land pattern for the ADMP404 should be laid out to a 1:1 ratio to the solder pads on the microphone package, as shown in Figure 9. Take care to avoid applying solder paste to the sound hole in the PCB. A suggested solder paste stencil pattern layout is shown in Figure 10. The diameter of the sound hole in the PCB should be larger than the diameter of the sound port of the microphone. A minimum diameter of 0.5 mm is recommended.08616-007Figure 9. PCB Land Pattern Layout1.55/1.05 DIA.Figure 10. Suggested Solder Paste Stencil Pattern LayoutData SheetADMP404Rev. C | Page 9 of 12HANDLING INSTRUCTIONSPICK AND PLACE EQUIPMENTThe MEMS microphone can be handled using standard pick-and-place and chip shooting equipment. Care should be taken to avoid damage to the MEMS microphone structure as follows: •Use a standard pickup tool to handle the microphone. Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface.•Use care during pick-and-place to ensure that no high shock events above 10 k g are experienced because such events may cause damage to the microphone.•Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone. Do not pull air out of or blow air into the microphone port. • Do not use excessive force to place the microphone on the PCB.REFLOW SOLDERFor best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 2 and Table 3.BOARD WASHWhen washing the PCB, ensure that water does not make contact with the microphone port. Blow-off procedures and ultrasonic cleaning must not be used.ADMP404 Data Sheet RELIABILITY SPECIFICATIONSThe microphone sensitivity after stress must deviate by no more than ±3 dB from the initial value.Table 5.Stress Test DescriptionLow Temperature Operating Life −40°C, 500 hours, poweredHigh Temperature Operating Life +125°C, 500 hours, poweredTemperature Humidity Bias (THB) +85°C/85% relative humidity (RH), 500 hours, powered Temperature Cycle −40°C/+125°C, one cycle per hour, 1000 cyclesHigh Temperature Storage +150°C, 500 hoursLow Temperature Storage −40°C, 500 hoursComponent CDM ESD All pins, 0.5 kVComponent HBM ESD All pins, 1.5 kVComponent MM ESD All pins, 0.2 kVRev. C | Page 10 of 12Data SheetADMP404Rev. C | Page 11 of 12OUTLINE DIMENSIONS06-16-2010-AREFREFDIA.DIA.THRU HOLE (SOUND PORT)Figure 11. 3-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]3.35 mm × 2.50 mm Body(CE-3-2)Dimensions shown in millimetersORDERING GUIDEMode l 1Temperature Range Package DescriptionPackage Option 2 Ordering Quantity ADMP404ACEZ-RL −40°C to +85°C 3-Terminal LGA_CAV, 13” Tape and Reel CE-3-2 10,000 ADMP404ACEZ-RL7 −40°C to +85°C 3-Terminal LGA_CAV, 7” Tape and Reel CE-3-2 1,000 EVAL-ADMP404Z-FLEXEvaluation Board1 Z = RoHS Compliant Part.2This package option is halide free.芯天下--/ADMP404Data SheetRev. C | Page 12 of 12NOTES©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.D08616-0-7/12(C)芯天下--/。
AD9235中文资料
特性单3 V供应操作(2.7 V至3.6 V)信噪比= 70 dBc Nyquist在65MSPSSFDR = 85 dBc Nyquist在65MSPS低功率:300 mW 65MSPS微分输入500 MHz带宽芯片上的参考和SHADNL= 0.4 LSB灵活的模拟输入:1 Vpp- 2 Vpp范围抵消二进制或2补充数据格式时钟占空比稳定器应用超声设备如果通信接收机的采样:IS-95,cdma-ONE,imt - 2000电池供电的仪器手持Scopemeters低成本数字示波器产品描述AD9235是一个巨大的系列、供应3 V信号,12位,20/40/65MSPS模拟-数字转换器。
这个系列的特点是高性能取样保持的放大器(SHA)和电压参考。
AD9235使用多级微分管线式架构与输出误差修正提供逻辑12位精度在20/40/65MSPS数据率并且保证操作温度范围内没有缺失的代码。
宽的带宽,真正微分SHA允许各种的用户可选的输入范围包括单端应用。
适用于多路开关的系统全面的连续的电压水平通道和抽样单通道输入的速度远远超出了奈奎斯特频率。
结合能力和成本节约超过以前模拟数字转换器,AD9235适合应用在通信、成像和医学超声检查。
单端时钟输入是用来控制所有内部转换周期。
一个占空比稳定器(DCS)补偿宽在时钟的责任周期的变化,同时保持优秀ADC的整体性能。
数字数据以直接二进制或2补充格式输出。
一个超出范围(OTR)的信号表明表明一个溢出条件最重要的一点来确定低或高溢出。
捏造一个先进的CMOS工艺,AD9235可用在28-lead薄收缩(TSSOP)和一个小提纲包32-lead芯片规模包(LFCSP)和指定工业温度范围(-40°C + 85°C)。
REV. B提供的信息被认为是精确和模拟设备可靠的。
然而,没有任何责任由模拟装置的假定使用,也不是为任何侵害专利或其他第三方的权利可能由于其使用。
或以其他方式影响没有颁发的许可证在任何专利或专利权的模拟设备。
Moxa UPort 404 407 4和7口工业级USB端口扩展器说明说明书
UPort404/407Series4and7-port industrial-grade USB hubsFeatures and Benefits•Hi-Speed USB2.0for up to480Mbps USB data transmission rates•USB-IF certification•Dual power inputs(power jack and terminal block)•15kV ESD Level4protection for all USB ports•Rugged metal housing•DIN-rail and wall-mountable•Comprehensive diagnostic LEDs•Chooses bus power or external power(UPort404)CertificationsIntroductionThe UPort®404and UPort®407are industrial-grade USB2.0hubs that expand1USB port into4and7USB ports,respectively.The hubs are designed to provide true USB2.0Hi-Speed480Mbps data transmission rates through each port,even for heavy-load applications.The UPort®404/407have received USB-IF Hi-Speed certification,which is an indication that both products are reliable,high-quality USB2.0hubs.In addition,the hubs are fully compliant with the USB plug-and-play spec and provide a full500mA of power per port,ensuring that your USB devices function properly.The UPort®404and UPort®407hubs’support12-40VDC power,which makes them ideal for mobile applications. Externally powered USB hubs are the only way to guarantee the broadest compatibility with USB devices.USB-IF CertificationThe UPort®404and UPort®407USB2.0industrial-grade USB hubs have received the USB-IF(USB Implementers Forum)B-IF verifies a number of strict electrical requirements for the high-speed USB operation of USB hubs designed to the USB2.0specification.This means that the UPort®404/407support Hi-Speed USB2.0for up to480Mbps USB transmission,which is fully compliant with interoperability requirements,has enough power for devices to function,and facilitates a smooth transition back to high-speed operation from the suspended state.ESD Level4ProtectionElectrostatic discharge(ESD)could be as severe as having more than1,000volts of ESD with a high rise-time(dv/dt)breaking through the junction layer of protective devices.In order to avoid serious damage,Moxa’s UPort®404/407USB hubs provide ESD Level4(contact8kV,air15kV) protection,which increases the quality and value of the user’s end product.SpecificationsUSB InterfaceSpeed12Mbps,480MbpsUSB Connector USB Type BUSB Standards USB1.1/2.0compliantNo.of USB Ports UPort404Series:4UPort407Series:7Power ParametersInput Current UPort404Series:1.3A@12VDCUPort407Series:2.3A@12VDCInput Voltage12to40VDCPhysical CharacteristicsHousing AluminumDimensions UPort404Series:80x35x130mm(3.15x1.38x5.12in)UPort407Series:100x35x192mm(3.94x1.38x7.56in) Weight Packaged:UPort404Series:855g(1.88lb)UPort407Series:965g(2.13lb)Product Only:UPort404Series:850g(1.87lb)UPort407Series:950g(2.1lb)Installation Wall mounting,DIN-rail mounting(optional) Environmental LimitsOperating Temperature Standard Models:0to60°C(32to140°F)Wide Temp.Models:-40to85°C(-40to185°F)Storage Temperature(package included)Standard Models:-20to75°C(-4to167°F)Wide Temp.Models:-40to85°C(-40to185°F)Standards and CertificationsEMC EN55032/24EMI CISPR32,FCC Part15B Class AEMS IEC61000-4-2ESD:Contact:8kV;Air:15kVIEC61000-4-3RS:80MHz to1GHz:10V/mIEC61000-4-4EFT:Power:2kVIEC61000-4-5Surge:Power:1kVIEC61000-4-6CS:150kHz to80MHz:10V/m;Signal:0V/mIEC61000-4-8PFMFEnvironmental Testing IEC60068-2-1Safety UL508Freefall IEC60068-2-34DeclarationGreen Product RoHS,CRoHS,WEEEMTBFTime UPort404Series:1,490,340hrsUPort407Series:1,111,361hrsStandards Telcordia(Bellcore),GBWarrantyWarranty Period5yearsDetails See /warrantyPackage ContentsDevice1x UPort404/407Series USB hubInstallation Kit1x wall-mounting kitCable1x USB type A male to USB type B malePower Supply1x power adapter,universal Documentation1x quick installation guide1x substance disclosure table1x warranty cardDimensionsUPort404UPort407Ordering InformationModel Name USB Interface No.of USB Ports Housing Material Operating Temp.Power Adapter IncludedUPort404USB2.04Aluminum0to60°C✓UPort407USB2.07Aluminum0to60°C✓UPort404-T USB2.04Aluminum-40to85°C✓UPort407-T USB2.07Aluminum-40to85°C✓Accessories(sold separately)CablesCBL-USBA/B-100USB Type A to USB Type B cable,1mPower AdaptersPWR-12300-WPEU-S1Locking barrel plug,12VDC,3A,100to240VAC,Continental Europe(EU)plug,0to40°C operatingtemperaturePWR-12300-WPUK-S1Locking barrel plug,12VDC,3A,100to240VAC,United Kingdom(UK)plug,0to40°C operatingtemperaturePWR-12300-WPUSJP-S1Locking barrel plug,12VDC,3A,100to240VAC,United States/Japan(US/JP)plug,0to40°Coperating temperaturePWR-12300-WPCN-S1Locking barrel plug,12VDC,3A,100to240VAC,China(CN)plug,0to40°C operating temperature PWR-12300-WPAU-S1Locking barrel plug,12VDC,3A,100to240VAC,Australia(AU)plug,0to40°C operating temperature DIN-Rail Mounting KitsDK-25-01DIN-rail mounting kit,2screws©Moxa Inc.All rights reserved.Updated Oct24,2019.This document and any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of Moxa Inc.Product specifications subject to change without notice.Visit our website for the most up-to-date product information.。
SD404中文资料
PRODUCT MARKING TO-92 SOT-89 SD4040B SD404
元器件交易网
SD404
CORPORATION
ABSOLUTE MAXIMUM RATINGS (TA = +25oC unless otherwise noted) Drain-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . +20V Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V +20V Gate-Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V +20V Source-Drain Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V Peak Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . +0.8A Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . 100mA Power Dissipation (at or below TA = +25oC) . . . . . . . . 300mW Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . 3.0mW/ oC Operating Junction and Storage Temperature Range . . . . . . . . . . . . . . . . -55oC to +125oC
LM4041AIM3-1.2资料
Key Specifications (LM4041-1.2)
j Output voltage tolerance (A grade, 25˚C)
j Low output noise (10 Hz to 10kHz)
j Wide operating current range j Industrial temperature range j Extended temperature range j Low temperature coefficient
Reverse Breakdown
Package
Voltage Tolerance at 25˚C and
M3 (SOT-23)
M7 (SC70)
Z (TO-92) NS
Average Reverse Breakdown Voltage Temperature
Supplied as 1000 Units Tape and
20 mA 10 mA
15V
306 mW 550 mW 241mW −65˚C to +150˚C
+215˚C +220˚C
Soldering (10 seconds)
+260˚C
ESD Susceptibility
Human Body Model (Note 3)
2 kV
Machine Model (Note 3)
RAD
Voltage or Reference Voltage Tolerance A = ±0.1%, B = ±0.2%, C = ±0.5%, D = ±1.0%, E = ±2.0%
2
LM4041
[整理版]AD查寻元件和封装
通过添加通配符,可以扩大选择范围。
Miscellaneous Devices.Intlib元件库中常用元件:电阻系列(res*)排组(res pack*)电感(inductor*)电容(cap*,capacitor*)二极管系列(diode*,d*)三极管系列(npn*,pnp*,mos*,MOSFET*,MESFET*,jfet*,IGBT*)运算放大器系列(op*)继电器(relay*)8位数码显示管(dpy*)电桥(bri*bridge)光电耦合器( opto* ,optoisolator )光电二极管、三极管(photo*)模数转换、数模转换器(adc-8,dac-8)晶振(xtal)电源(battery)喇叭(speaker)麦克风(mic*)小灯泡(lamp*)响铃(bell)天线(antenna)保险丝(fuse*)开关系列(sw*)跳线(jumper*)变压器系列(trans*)(tube*)(scr)(neon)(buzzer)(coax)晶振(crystal oscillator)在search栏中输入*soc 即可Miscellaneous connectors.Intlib元件库中常用元件:(con*,connector*)(header*)(MHDR*)定时器NE555P 在库TI analog timer circit.Intlib中电阻 AXIAL无极性电容 RAD电解电容 RB-电位器 VR二极管 DIODE三极管 TO电源稳压块78和79系列 TO-126H和TO-126V场效应管和三极管一样整流桥 D-44 D-37 D-46单排多针插座 CON SIP双列直插元件 DIP晶振 XTAL1电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻: AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3. 其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小.一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管: DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块: DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系但封装尺寸与功率有关通常来说0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5关于零件封装我们在前面说过,除了DEVICE.LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE.LIB库中,简简单单的只有NPN 与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN 的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化.还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等.现将常用的元件封装整理如下:电阻类及无极性双端元件 AXIAL0.3-AXIAL1.0无极性电容 RAD0.1-RAD0.4有极性电容 RB.2/.4-RB.5/1.0二极管 DIODE0.4及 DIODE0.7石英晶体振荡器 XTAL1晶体管、FET、UJT TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2) VR1-VR5当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装.这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的.同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径.对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以.对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil.SIPxx就是单排的封装.等等.值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样.例如,对于TO-92B之类的包装,通常是1脚为E(发射极),而2脚有可能是B极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定.因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件.Q1-B,在PCB里,加载这种网络表的时候,就会找不到节点(对不上).在可变电阻上也同样会出现类似的问题;在原理图中,可变电阻的管脚分别为1、W、及2,所产生的网络表,就是1、2和W,在PCB电路板中,焊盘就是1,2,3.当电路中有这两种元件时,就要修改PCB与SCH之间的差异最快的方法是在产生网络表后,直接在网络表中,将晶体管管脚改为1,2,3;将可变电阻的改成与电路板元件外形一样的1,2,3即可。
NRLMW332M450V20X40F中文资料
Large Can Aluminum Electrolytic CapacitorsFEATURES• LONG LIFE (105°C, 2000 HOURS)• LOW PROFILE AND HIGH DENSITY DESIGN OPTIONS • EXPANDED CV VALUE RANGE• HIGH RIPPLE CURRENT• CAN-TOP SAFETY VENT • DESIGNED AS INPUT FILTER OF SMPS• STANDARD 10mm (.400") SNAP-IN SPACING NRLMW SeriesSPECIFICATIONSNotice for MountingThe space from the top of the can shall be more than (3mm) from chassis or other construction materials so that safety vent has room to expand in case of emer g en c y.Sleeve Color: Dark BlueCan Top Safety VentInsulation Sleeve and Minus Polarity Marking(4.0mm Leads Available As Option)D+1Max.L ± 26.3 ± 10.810(-)(+)MAXIMUM EX P AN S IONFOR SAFETY VENT Approx. 3.0mmRecommended PC Board Mounting Holes:10 ± .1∅= 2 ± 0.1D ∅ ± 0.5ChassisPC BoardPRECAUTIONSPlease review the notes on correct use, safety and precautions found on pages T10 & T11of NIC’s Electrolytic Capacitor catalog . Operating Temperature Range-40 ~ +105°C -25 ~ +105°C Rated Voltage Range 10 ~ 250Vdc 450Vdc Rated Capacitance Range 180 ~ 68,000µF 56 ~ 470µF Capacitance Tolerance ±20% (M) at 120Hz, +20°CMax. Leakage Current (µA)After 5 minutes (20°C)3 x C(µF)VMax. Tan δat 120Hz/20°CW.V. (Vdc)10162535506380100 ~ 400450Tan δ max.0.550.450.350.300.250.200.170.150.20Surge VoltageW.V. (Vdc)10162535506380100160S.V. (Vdc)132032446379100125200W.V. (Vdc)180200250400450----S.V. (Vdc)220250300450500----Ripple Current Correction Factors Frequency (Hz)50601001205001K 10K ~ 50K --Multiplier at 85°C16 ~ 100Vdc0.930.950.99 1.0 1.05 1.08 1.15--160 ~ 450Vdc0.750.800.95 1.0 1.20 1.25 1.40-Low Temperature Stability (10 to 250Vdc)Temperature (°C)0-25-40------Capacitance Change -5%-10-30%------Impedance Ratio 1.539------Load Life Test 2,000 hours at +105°C Capacitance ChangeWithin ±20% of initial measured valueTan δLess than 200% of specifi ed maximum valueLeakage Current Less than specifi ed maximum value Shelf Life Test 1,000 hours at +105°C(no load)Capacitance ChangeWithin ±20% of initial measured value Tan δLess than 200% of specifi ed maximum valueLeakage Current Less than specifi ed maximum value Surge Voltage TestPer JIS-C-5141 (table #6, #4)Surge voltage applied: 30 seconds "On" and 5.5 minutes no voltage "Off"Capacitance ChangeWithin ±20% of initial measured value Tan δLess than 200% of specifi ed maximum valueLeakage Current Less than specifi ed maximum value Soldering EffectRefer toMIL-STD-202F Method 210ACapacitance ChangeWithin ±10% of initial measured valueTan δLess than specifi ed maximum value Leakage CurrentLess than specifi ed maximum valueRoHSCompliantincludes all homogeneous materials *See Part Number System for DetailsLarge Can Aluminum Electrolytic Capacitors NRLMW SeriesLarge Can Aluminum Electrolytic CapacitorsNRLMW SeriesNRLMW 471 M 250V 30X35 FRoHS compliant Case Size (mm) Voltage Rating Tolerance Code Capacitance Code SeriesPART NUMBER SYSTEM。
IPAM-4050 数字量非隔离输入输出模块 用户手册
5. 免责声明............................................................................................................ 24
产品用户手册
Quanzhou Jinjiang Airport Electronic Intelligent Technology Co.,Ltd
4. IPAM-4050 命令简析.......................................................................................... 18
4.1 MODBUS 协议命令........................................................................................................ 18 4.2 Custom-ASCII 协议命令解析......................................................................................... 19 4.3 Custom-ASCII 协议结构................................................................................................. 19 4.3.1 协议命令集.......................................................................................................... 19 4.3.2 公共命令集.......................................................................................................... 19 4.3.3 数字量输入输出模块命令集.............................................................................. 22
LM4040DIM3-2.5中文资料
Typical ApplicationsV O V R V V OFigure 2. LM4041 Adjustable Shunt Regulator ApplicationFigure 1. LM4040, LM4041 Fixed Shunt Regulator Application V O = 1.233 (R 2/R 1 + 1)Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • Part Number *Voltage Accuracy,Temp. Coefficient LM4041AIM3-1.2 1.225V ±0.1%, 100ppm/°C LM4041BIM3-1.2 1.225V ±0.2%, 100ppm/°C LM4041CIM3-1.2 1.225V ±0.5%, 100ppm/°C LM4041DIM3-1.2 1.225V ±1.0%, 150ppm/°C LM4041CIM3-ADJ 1.24V to 10V ±0.5%, 100ppm/°C LM4041DIM3-ADJ1.24V to 10V±1.0%, 150ppm/°CPin Configuration–FB +Adjustable Version SOT-23 (M3) PackageTop ViewFixed Version SOT-23 (M3) PackageTop View +–Pin 3 must float orbe connected to pin 2.Part Number *Voltage Accuracy,Temp. Coefficient LM4040AIM3-2.5 2.500V ±0.1%, 100ppm/°C LM4040BIM3-2.5 2.500V ±0.2%, 100ppm/°C LM4040CIM3-2.5 2.500V ±0.5%, 100ppm/°C LM4040DIM3-2.5 2.500V ±1.0%, 150ppm/°C LM4040AIM3-4.1 4.096V ±0.1%, 100ppm/°C LM4040BIM3-4.1 4.096V ±0.2%, 100ppm/°C LM4040CIM3-4.1 4.096V ±0.5%, 100ppm/°C LM4040DIM3-4.1 4.096V ±1.0%, 150ppm/°C LM4040AIM3-5.0 5.000V ±0.1%, 100ppm/°C LM4040BIM3-5.0 5.000V ±0.2%, 100ppm/°C LM4040CIM3-5.0 5.000V ±0.5%, 100ppm/°C LM4040DIM3-5.05.000V±1.0%, 150ppm/°CExample Field Code _ _ A3rd CharacterA = ±0.1%B = ±0.2%C = ±0.5%D = ±1.0%Example FieldCode_ 2 _2nd Character 1 = 1.225V2 = 2.500V 4 = 4.096V 5 = 5.000V A = AdjustableExample: R2C represents Reference, 2.500V,±0.5% (LM4040CIM3-2.5)Note: If 3rd character is omitted, container will indicate tolerance.SOT -23 Package MarkingsExample Field Code R _ _1st CharacterR = ReferenceOrdering InformationAbsolute Maximum RatingsReverse Current.........................................................20mA Forward Current.........................................................10mA Maximum Output VoltageLM4041-Adjustable ...................................................15V Power Dissipation at T A = 25°C (Note 2)................306mW Storage Temperature...............................–65°C to +150°C Lead TemperatureVapor phase (60 seconds)..............................+215°C Infrared (15 seconds)......................................+220°C ESD SusceptibilityHuman Body Model (Note 3).................................2kV Machine Model (Note 3).. (200V)Operating Ratings (Notes 1 and 2)Temperature Range(T MIN ≤ T A ≤ T MAX )..........................–40°C ≤ T A ≤ +85°C Reverse CurrentLM4040-2.5..........................................60µA to 15mA LM4040-4.1..........................................68µA to 15mA LM4040-5.0..........................................74µA to 15mA LM4041-1.2..........................................60µA to 12mA LM4041-ADJ ........................................60µA to 12mA Output Voltage RangeLM4041-ADJ ..........................................1.24V to 10V+Functional DiagramLM4040, LM4041 FixedFunctional Diagram LM4041 Adjustable+LM4040-2.5 Electrical CharacteristicsBoldface limits apply for T A = T J = T MIN to T MAX; all other limits T A = T J = 25°C. The grades A, B, C, and D designate initial Reverse Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ±1.0 respectively.LM4040AIM3LM4040BIM3LM4040CIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits Limits(Limit)(Note 5)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 2.500VReverse Breakdown Voltage I R = 100µA±2.5±5.0±12mV (max) Tolerance±19±21±29mV (max) I RMIN Minimum Operating Current45µA606060µA (max)656565µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA20ppm/°C Voltage Temperature I R = 1mA151********ppm/°C (max) Coefficient I R = 100µA15ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.3mV Change with Operating0.80.80.8mV (max) Current Change 1.0 1.0 1.0mV (max)1mA ≤ I R 15mA 2.5mV0.60.60.6mV (max)8.08.08.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.3ΩI AC = 0.1 I R0.80.80.9Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz35µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040DIM3Symbol Parameter Conditions Typical Units(Note 4)Limits(Limit)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 2.500VReverse Breakdown Voltage I R = 100µA±25mV (max) Tolerance±49mV (max) I RMIN Minimum Operating Current45µA65µA (max)70µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA20ppm/°C Voltage Temperature I R = 1mA15150ppm/°C (max) Coefficient I R = 100µA15ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.3mV Change with Operating 1.0mV (max) Current Change 1.2mV (max)1mA ≤ I R 15mA 2.5mV8.0mV (max)10.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.3ΩI AC = 0.1 I R 1.1Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz35µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040-4.1 Electrical CharacteristicsBoldface limits apply for T A = T J = T MIN to T MAX; all other limits T A = T J = 25°C. The grades A, B, C, and D designate initial Reverse Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0% respectively.LM4040AIM3LM4040BIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limit)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 4.096VReverse Breakdown Voltage I R = 100µA±4.1±8.2mV (max) Tolerance±31±35mV (max) I RMIN Minimum Operating Current50µA6868µA (max)7373µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA30ppm/°C Voltage Temperature I R = 1mA20100100ppm/°C (max) Coefficient I R = 100µA20ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.5mV Change with Operating0.90.9mV (max) Current Change 1.2 1.2mV (max)1mA ≤ I R 15mA 3.5mV7.07.0mV (max)10.010.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.5ΩI AC = 0.1 I R 1.0 1.0Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz80µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040CIM3LM4040DIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limits)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 4.096VReverse Breakdown Voltage I R = 100µA±20±41mV (max) Tolerance±47±81mV (max) I RMIN Minimum Operating Current50µA6873µA (max)7378µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA30ppm/°C Voltage Temperature I R = 1mA20100150ppm/°C (max) Coefficient I R = 100µA20ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.5mV Change with Operating0.9 1.2mV (max) Current Change 1.2 1.5mV (max)1mA ≤ I R 15mA 3.0mV7.09.0mV (max)10.013.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.5ΩI AC = 0.1 I R 1.0 1.3Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz80µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040-5.0 Electrical CharacteristicsBoldface limits apply for T A = T J = T MIN to T MAX; all other limits T A = T J = 25°C. The grades A, B, C, and D designate initial Reverse Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0% respectively.LM4040AIM3LM4040BIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limit)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 5.000VReverse Breakdown Voltage I R = 100µA±5.0±10mV (max) Tolerance±38±43mV (max) I RMIN Minimum Operating Current54µA7474µA (max)8080µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA30ppm/°C Voltage Temperature I R = 1mA20100100ppm/°C (max) Coefficient I R = 100µA20ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.5mV Change with Operating 1.0 1.0mV (max) Current Change 1.4 1.4mV (max)1mA ≤ I R 15mA 3.5mV8.08.0mV (max)12.012.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.5ΩI AC = 0.1 I R 1.1 1.1Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz80µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040CIM3LM4040DIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limits)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 5.000VReverse Breakdown Voltage I R = 100µA±25±50mV (max) Tolerance±58±99mV (max) I RMIN Minimum Operating Current54µA7479µA (max)8085µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA30ppm/°C Voltage Temperature I R = 1mA20100150ppm/°C (max) Coefficient I R = 100µA20ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.5mV Change with Operating 1.0 1.3mV (max) Current Change 1.3 1.8mV (max)1mA ≤ I R 15mA 3.5mV8.010.0mV (max)12.015.0mV (max)Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.5ΩI AC = 0.1 I R 1.1 1.5Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz80µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4040 Typical CharacteristicsTest CircuitVLM4041-1.2 Electrical CharacteristicsBoldface limits apply for T A = T J = T MIN to T MAX; all other limits T A = T J = 25°C. The grades A, B, C, and D designate initial Reverse Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0%, respectively.LM4041AIM3LM4041BIM3LM4041CIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits Limits(Limit)(Note 5)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 1.225V Reverse Breakdown Voltage I R = 100µA±1.2±2.4±6mV (max) Tolerance±9.2±10.4±14mV (max) I RMIN Minimum Operating Current45µA606060µA (max)656565µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA20ppm/°C Voltage Temperature I R = 1mA15±100±100±100ppm/°C (max)Coefficient I R = 100µA15ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.7mV Change with Operating 1.5 1.5 1.5mV (max) Current Change 2.0 2.0 2.0mV (max)1mA ≤ I R 15mA 4.0mV6.0 6.0 6.0mV (max)8.08.08.0mV (max) Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.5ΩI AC = 0.1 I R 1.5 1.5 1.5Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz20µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4041DIM3LM4041EIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limit)(Note 5)(Note 5)V R Reverse Breakdown Voltage I R = 100µA 1.225V Reverse Breakdown Voltage I R = 100µA±12±25mV (max) Tolerance±24±36mV (max) I RMIN Minimum Operating Current45µA6565µA (max)7070µA (max)∆V R/∆T Average Reverse Breakdown I R = 10mA20ppm/°C Voltage Temperature I R = 1mA15±150±150ppm/°C (max) Coefficient I R = 100µA15ppm/°C (max)∆V R/∆I R Reverse Breakdown Voltage I RMIN≤ I R 1mA0.3mV Change with Operating 2.0 2.0mV (max) Current Change 2.5 2.5mV (max)1mA ≤ I R 15mA 2.5mV8.08.0mV (max)10.010.0mV (max) Z R Reverse Dynamic Impedance I R = 1mA, f = 120Hz0.3ΩI AC = 0.1 I R 2.0 2.0Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz35µV RMS∆V R Reverse Breakdown Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µALM4041-Adjustable Electrical CharacteristicsBoldface limits apply for T A = T J = T MIN to T MAX; all other limits T J = 25°C unless otherwise specified (SOT-23, see Note 7),I RMIN≤ I R < 12mA, V REF≤ V OUT≤ 10V. The grades C and D designate initial Reverse Breakdown Voltage tolerance of ±0.5% and±1%, respectively for V OUT = 5V.LM4041CIM3LM4041DIM3Symbol Parameter Conditions Typical Units(Note 4)Limits Limits(Limit)(Note 5)(Note 5)V REF Reference Breakdown Voltage I R = 100µA 1.233VV OUT = 5VReference Breakdown Voltage I R = 100µA±6.2±12mV (max) Tolerance (Note 8)±14±24mV (max) I RMIN Minimum Operating Current45µA6065µA (max)6570µA (max)∆V REF Reference Voltage I RMIN≤ I R 1mA0.7mV/∆I R Change with Operating SOT-23: 1.5 2.0mV (max) Current Change V OUT≥ 1.6V 2.0 2.5mV (max)(Note 7)1mA ≤ I R 15mA2mVSOT-23:46mV (max)V OUT≥ 1.6V68mV (max)(Note 7)∆V REF Reference Voltage Change I R = 1mA–1.3mV/V/∆V O with Output Voltage Change–2.0–2.5mV/V (max)–2.5–3.0mV/V (max)I FB Feedback Current60nA100150nA (max)120200nA (max)∆V REF Average Reference V OUT = 5V/∆T Voltage Temperature I R = 10mA20ppm/°C Coefficient I R = 1mA15±100±150ppm/°C (max) (Note 8)I R = 100µA15ppm/°C (max)Z OUT Dynamic Output Impedance I R = 1mA, f = 120HzI AC = 0.1 I RV OUT = V REF0.3ΩV OUT = 10V2Ω (max)e N Wideband Noise I R = 100µA10Hz ≤ f ≤ 10kHz20µV RMS∆V REF Reference Voltage t = 1000hrsLong Term Stability T = 25°C ±0.1°C120ppmI R = 100µAR S 30kV IN1Hz rateTest CircuitNote 1.Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which thedevice is functional, but do not guarantee specific performance limits. For guaranteed specification and test conditions, see the ElectricalCharacteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.Note 2.The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX (maximum junction temperature), θJA (junction to ambient thermal resistance), and T A (ambient temperature). The maximum allowable power dissipation at any temperature is PD MAX = (T JMAX – T A )/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040 and LM4041,T JMAX = 125°C, and the typical thermal resistance (θJA ), when board mounted, is 326°C/W for the SOT-23 package.Note 3.The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.Note 4.Typicals are at T J = 25°C and represent most likely parametric norm.Note 5.Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)methods.Note 6.The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(∆V R /∆T)(65°C)(V R )]. ∆V R /∆T is the V R temperature coefficient, 65°C is the temperature range from –40°C to the reference point of 25°C, and V R is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:A-grade: ±0.75% = ±0.1% ±100ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°CExample: The A-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 0.75% = ±19mV.Note 7.When V OUT ≤ 1.6V, the LM4041-ADJ must operate at reduced I R . This is caused by the series resistance of the die attach between the die (–)output and the package (–) output pin. See the Output Saturation curve in the Typical Performance Characteristics section.Note 8.Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.LM4040 and LM4041 Electrical Characteristic NotesLM4041 Typical CharacteristicsLM4041 Typical Characteristics* Output Impedance vs. Freq.Test Circuit‡ Large Signal ResponseTest Circuit† Reverse CharacteristicsTest CircuitApplications InformationThe LM4040 and LM4041 have been designed for stableoperation without the need of an external capacitor con-nected between the (+) and (–) pins. If a bypass capacitor is used, the references remain stable.Schottky DiodeLM4040-x.x and LM4041-1.2 in the SOT-23 package have a parasitic Schottky diode between pin 2 (–) and pin 3 (die attach interface connect). Pin 3 of the SOT-23 package must float or be connected to pin 1. LM4041-ADJs use pin 3 as the (–) output.Conventional Shunt RegulatorIn a conventional shunt regulator application (see Figure 1),an external series resistor (R S ) is connected between the supply voltage and the LM4040-x.x or LM4041-1.2 reference.R S determines the current that flows through the load (I L ) and the reference (I Q ). Since load current and supply voltage may vary, R S should be small enough to supply at least the minimum acceptable I Q to the reference even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I L is at its minimum, R S should be large enough so that the current flowing through the LM4040-x.x is less than 15mA, and the current flowing through the LM4041-1.2 or LM4041-ADJ is less than 12mA.R S is determined by the supply voltage (V S ), the load and operating current, (I L and I Q ), and the reference ’s reverse breakdown voltage (V R ).R s = (V s – V R ) / (I L + I Q )Adjustable RegulatorThe LM4041-ADJ ’s output voltage can be adjusted to any value in the range of 1.24V through 10V. It is a function of the internal reference voltage (V REF ) and the ratio of the external feedback resistors as shown in Figure 2. The output is found using the equation (1)V O = V REF ´ [ (R2/R1) + 1 ]where V O is the desired output voltage. The actual value of the internal V REF is a function of V O . The “corrected ” V REF is determined by (2)V REF ´ = V O (∆V REF / ∆V O ) + V Ywhere V O is the desired output voltage. ∆V REF / ∆V O is found in the Electrical Characteristics and is typically –1.3mV/V and V Y is equal to 1.233V. Replace the value of V REF ´ in equation (1) with the value found using equation (2).Note that actual output voltage can deviate from that pre-dicted using the typical ∆V REF / ∆V O in equation (2); for C-grade parts, the worst-case ∆V REF / ∆V O is –2.5mV/V and V Y = 1.248V.The following example shows the difference in output voltage resulting from the typical and worst case values of ∆V REF / ∆V O :Let V O = +9V. Using the typical values of ∆V REF /∆V O , V REF is 1.223V. Choosing a value of R1 = 10k Ω, R2 = 63.272k Ω.Using the worst case ∆V REF / ∆V O for the C-grade and D-grade parts, the output voltage is actually 8.965V and 8.946V respectively. This results in possible errors as large as 0.39%for the C-grade parts and 0.59% for the D-grade parts. Once again, resistor values found using the typical value of ∆V REF / ∆V O will work in most cases, requiring no further adjustment.Figure 4. Voltage Level DetectorR1120kR21MR1120k R21M12V Figure 3. Voltage Level DetectorFigure 8. Bidirectional Adjustable Clamp±2.4 to ±6VLM4041-ADJV OUTLM4041-ADJV OUTFigure 7. Bidirectional Adjustable Clamp±18V to ±2.4VIFigure 9. Floating Current DetectorV OUTLM4041-ADJFigure 6. Bidirectional Clamp±2.4VFigure 5. Fast Positive Clamp2.4V + ∆VD1D21N914R3240k R4240kR1LM4041-ADJ1.24V R1I OUT =1µA < I OUT = 100mAI Figure 10. Current SourceFigure 11. Precision Floating Current Detector* D1 can be any LED, V F = 1.5V to 2.2V at 3mA. D1 may act as an indicator. D1 willbe on if I THRESHOLD falls below the threshold current, except with I = O.Package InformationSOT-23 (M3)MICREL INC.1849 FORTUNE DRIVE SAN JOSE, CA95131USATEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.© 2000 Micrel Incorporated。
AD9954芯片资料中文版
AD9954- Direct Digital Synthesizer400 MSPS 14-Bit, 1.8 V CMOS功能: (2)应用 (2)概述 (2)AD9954电气特性 (3)最大操作范围 (4)Table 2. (4)管脚定义 (4)管脚功能描述 (4)典型的性能特性 (6)原理 (7)器件块 (7)控制寄存器位描述 (10)Other Register Descriptions 其他寄存器描述 (14)Programming AD9954 Features-- AD9954编程特性 (18)SERIAL PORT OPERATION串口操作 (19)INSTRUCTION BYTE指令字节 (20)SERIAL INTERFACE PORT PIN DESCRIPTION串行接口管脚描述 (20)MSB/LSB TRANSFERS (20)RAM I/O VIA SERIAL PORT (21)Power-Down Functions of the AD9954 AD9954省电功能 (21)功能:400MSPS 内部时钟 集成14位DAC可编程相位/幅度抖动 32位控制字相位噪声小于等于-120dbc/Hz@1kHz(DAC 输出)出色的动态性能>80db SFDR@160MHz (偏离100KHz ) 串行I/O 口控制 超高速模拟比较器 自动线性和非线性扫频能力 4种频率/相位偏移坡面 1.8v 电压供电软件或者硬件控制休眠内部集成1024字节*32位RAM 大多数输入口支持5v 电平PLL REFCLK 乘法器(4倍-20倍) 单晶振驱动内部时钟 相位调制能力 多芯片同步 应用敏捷LO 频率输出 可编程的时钟发生器雷达和扫频系统中的FM 啁啾源自动雷达测试和测量设备 声光设备驱动概述AD9954具有一个14位DAC 最高达400 MSPS 的DDS 。
AD9954使用了先进的DDS 技术,内部集成高速,高性能的DAC 形成数字可编程,完整的高频合成器,能产生高达200MHz 模拟正弦波的能力。
AD元件库中英对照表
英文名中文释义2N3904 NPN型通用放大器2N3906 PNP型通用放大器ADC- -8 通用的8位AD转换器Antenna 天线Battery 电池组Bell 铃Bridgel 整流桥堆Buzzer 蜂鸣器Cap 电容Cap Feed 穿心电容器Cap Semi 半导体电容Cap Var 可调电容Cap Pol 极性电容Circuit Breaker 熔断器D Schottky 肖特基二极管D Varactor 变容二极管D Zener 稳压二极管DAC-8 通用的8位DA转换器. Diac-NPN 双向触发二极管Diac -PNP 双向触发二极管Diode 二极管DiodeIN914 高电导快速二极管Diode 1N4001 1A通用整流器Diode 1N4002 1A通用整流器Diode 1N4003 1A通用整流器Diode 1N4004 1A通用整流器Diode 1N4005 1A通用整流器Diode 1N4006 1A通用整流器Diode 1N4007 1A通用整流器Diode 1N4149 电脑二极管Diode 1N4150 高电导超快速二极管Diode 1N4148 高电导快速二极管Diode 1N5400 3A通用整流器Diode 1N5401 3A通用整流器Diode 1N5402 3A通用整流器Diode 1N5403 3A通用整流器Diode 1N5404 3A通用整流器Diode 1N5406 3A通用整流器Diode 1N5407 3A通用整流器Diode 1N5408 3A通用整流器Diode 10TQ035 肖特基整流器Diode 10TQ040 肖特基整流器Diode 10TQ045 肖特基整流器Diode 11DQ03 肖特基整流器Diode 18TQ045 肖特基整流器Diode 1N914 高电导快速二极管Diode 1N4148 高电导快速二极管Diode 1N4150 高电导超快速二极管Diode 1N4448 高电导快速二极管Diode 1N4934 1A快速恢复整流Diode 1N5407 3A硅整流二极管Diode 1N5408 3A硅整流二极管Diode BAS16 硅对高速交换开关二极管Diode BAS21 硅对高速开关二极管,高压开关Diode BAS7O 肖特基二极管为高速切换Diode BAS1 16 硅低泄漏二极管Diode BAT17 射频硅肖特基二极管混合器应用在甚高频/超Diode BAT18 低损耗射频开关二极管Diode BBY31 S0T23硅平面变容二极管Diode BBY41 S0T23硅平面变容二极管Dpy 16-Seg 13.7 毫米灰色表面红色共阴数码管: 2位D Tunnel 遂道_二极管Dpy Amber CA 7.62毫米黑色表面橙色共阳数码管Dpy Amber CA 7.62毫米黑色表面橙色共阴数码管Dpy Blue-CA 14.2毫米面蓝色共阴数码管Dpy Greenc 7. 62毫米黑色表面绿色共阳数码食Dpy Greenc -CC 7. 62毫米黑色表面绿色共阴数码管Dpy 0verflow 7.62毫米+1数码管DPy Red-CA 7.62豪米黑色表面红色共阳数码管DPy Red-CC 7.62豪米黑色表面红色共阴数码管Dpy Yellow-CA 7.6毫米,微亮黄色共阳数码管Dpy Yellow-CC 7.6毫米微亮黄色共阴极数码管Fuse 保险丝Fuse Thermal 热熔丝IGBT-N 绝缘栅双极型晶体管(n沟道)IGBT-P PNP双极结型晶体管Inductor 电感器Inductor Adj 可调电感Inductor Iron 磁心电感Inductor Iron Adj 可调磁心电感Inductor Iron Dot 磁心电感绕组极性标记Inductor Iso lated 孤立的电感JFET-N N沟道结型场效应晶体管JFET-P P沟造结型长效应晶体管Jumper 跳线.Lamp . 白炽灯泡Lamp Neon 霓虹灯LED 发光二极管.MESFET-N N沟道场效应晶体管MESFET-P P沟道场效应晶体管Meter 指示式仪表Mic 麦克风MOSFET-2GN 双开门式N沟道,金属-氧化物半导体场效应晶体管MOSFET-2GP 双开门式,P沟道,金属-氧化物半导体场效应晶体管MOSFET-N N沟道,金属-氧化物半导体场效应晶体管MOSFET-P P沟道,金属-氧化物半导体场效应晶体管Motor . 电动机Motor Servo 伺服电机Motor Step 步进电机Neon 氖泡NMOS-2 N沟道功率MOSFETPMOS-2 P沟道功率MOSFETNPN NPN双极型晶体管Op Amp 场效应晶体管运算放大器Opto TRIAC 光电双向可控硅Optoisolator 光电耦合器.Photo NPN NPN型光敏三极管Photo PNP PNP型光敏三极管Photo Sen 光敏二极管PLL 通用锁相器PNP PNP型双极型晶体管PUT 可控硅晶体管QNPN NPN双极型晶体管Relay 单刀双掷继电器Relay-DPDT 双刀双掷继电器Relay-DPST 双极单掷继电器Relay-SPDT 单极双掷继电器Relay-SPST 单极单掷继电器Res Bridge 电阻桥Res 电阻Res Adj 可调电阻Res Pack 排阻Res Semi 半导体电阻Res Tap 带抽头的电阻器Res Thermal 热敏电阻Res Varistor 压敏电阻RPot SM 微调电位器SCR 可控硅Speaker 扬声器SW DPDT 开关SW-6WAY 6 路开关.SW-12WAY 12路开关.SW-DIP4 变光开关SW-DIP8 4009系列变光开关SW DIP-2 2位拨码开关SW DIP-3 3位拨码开关SW DIP-4 4位拨码开关SW DIP-5 5位拨码开关SW DIP-6 6位拨码开关SWDIP-7 7位拨码开关SW DIP-8 8位拨码开关SW DIP-9 9位拨码开关SW-DPDT 双极双掷开关SW-DPST 双极单掷开关SW-PB 按键SW-SPDT SPDT 微型拨动开关,直角安装,垂直驱动SW-SPST 单刀单掷开关Trans Adj 调压变压器Trans BB 降压升压变压器(理想)Trans CT 中心抽头变压器Trans CT Ideal 中心抽头变压器(理想)Trans Cupl 变压器(耦合电感模型)Trans Eq 变压器(等效电路模型)Trans Ideal 变压器(理想)Trans3 三绕组变压器Trans3 Ideal 三绕组变压器(理想)Trans4 四绕组变压器Trans4Ideal 四绕组变压器(理想)Tranzorb 瞬态电压抑制(电视)二极管Triac 硅双向晶闸管Tube 6L6GC 电子束功率五极管Tube 6SN7 旁热式双三极电子管Tube 12AU7 旁热式双三极电子管Tube 12AX7 高放大系列双三级电子管Tube 5879 Tube 7199Tube Triode 电子管UJT-N 单结晶体管N型UJT-P 单结晶体管P型XTAL 晶体振荡器连接器BNC BNC弯头连接器COAX-F 同轴射频PCB连接器,MCX; 通孔,直角安装插座,冲柱,50欧姆阻抗COAX-M 射频同轴连接器MMCX; PCB板,通孔,垂直安装插头,50欧姆阻抗CON EISAE EISA 连接器,188位置,垂直,间距1. 27mm Connector 插座头组件D Connector 插座总成,直角Edge Con 边缘连接器Header 头MHDR 插槽Phonejack 杰克插座Plug 插头Plug AC Female 电源插座Plug AC Male 电源插头PS2-6PIN 6针通孔PS2插座PWR2.5 低电压电源连接器SMB SMB直连接器Socket 插座。
SPX4041AM资料
The SPX4041 is a 2-terminal, temperature compensated, band-gap voltage reference which provides a fixed 1.24V output for input currents between 160µA and 15mA. The bandgap voltage (1.24V) is independently laser trimmed from the output voltage to achieve a very low temperature coefficient, then the output voltage is trimmed to 1.24V. This trimming technique and the low temperature coefficient (A grade: 50 ppm/°C) thin film resistor process gives a very stable device over the full temperature range. The SPX4041 is available in the sub miniature 3 pin SOT-23,3 pin TO-92 or 8 pin NSOIC packages. The operating temperature is -40°C to 85°C. The SPX4041 advanced design eliminates the need for an external stabilized capacitor while insuring stability with any capacitive load, making it easy to use.Figure 1: Block DiagramAPPLICATIONS■ Constant Current Source ■ Digital Voltmeter ■ Power Management ■ Precision RegulatorsDESCRIPTIONTYPICAL APPLICATIONS CIRCUIT■ Battery Powered Equipment ■ Instrumentation■ Automotive Electronics ■ Data Acquisition SystemsABSOLUTE MAXIMUM RATINGSStresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maxi-mum rating conditions for extended periods may affect reliability.ELECTRICAL CHARACTERISTICS IIN= 1000µA, T A = 25°C, unless otherwise specified.Reverse Current (I KA ))......................................20mA Forward Current (I AK ).......................................10mA Operating Temperature Range (T A )......-40 to +85°C Junction Temperature (T J )..............................150°C Storage Temperature (T STG )................- 65 to 150°C Lead Temperature (Soldering 10 sec.), T L .........300°C*CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC)Figure 2. V REF vs. TemperaturePARAMETERCONDITIONS MIN.TYP.MAXMIN.TYP.MAX.UNIT Reverse Breakdown Voltage I R =500µA 1.241.24V Reverse Breakdown I R =500µA±12±25mV Tolerance-40°C ≤T A ≤85°C±29±49Dynamic Output Impedance 0.602.000.60 2.00ΩNoise Voltage0.1kHz ≤f ≤10Hz 1515µV PP Temperature Coefficient Note 1100100ppm/°c Turn-on Setting0.1% of V OUT3030µs Temperature Range (T A )-4085-4085°C Operating Current Range 0.55.00.55.0mA 15.015.0Thermal ResistanceTO-92 ΘJA 160160°C/WTO-92 ΘJC 8080 SOIC-8 ΘJA 175175 SOIC-8 ΘJC 4545 SOT-23 ΘJA 575575 SOT-23 ΘJC150150Note 1. Three-point measurement guarantees the error band over the specified temperature range.SPX4041ASPX4041Figure 5. Reference Voltage vs. Ambient TemperatureFigure 7. Noise Voltage vs FrequencyFigure 8. Low Frequency Dynamic Ouput Impedance vs T ATYPICAL PERFORMANCE CHARACTERISTICSFigure 10. Test Circuit for Pulse ResponseThis device is designed for stable opera-tion and has no need of an externalcapacitor. The reference remains stable if a bypass capacitor is used.SOT-23The SPX4041 in the SOT-23 package has a parasitic Schottky diode between pin 3and pin 1. Pin 1 of SOT-23 must float or be connected to pin 3.Conventional Shunt RegulatorIn a conventional shunt regulator applica-tion (see Figure 11), an external series resister (R S ) is connected between the supply voltage and the SPX4041. R Sdetermines the current that flows through the load (I L ) and the reference (I Q ). Sinceload current and supply voltage may vary,R S should be small enough to supply at least the minimum acceptable I Q to the reference even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I L is at its minimum, R S should be large enough so that the current flowing through the SPX4041 is less than 15mA.R S is determined by the supply voltage (V S ), the load and operating current (I L and I Q ), reference’s reverse breakdown voltage (V R ).R S = (V S - V R )/(I L +I Q )Figure 11. SPX4041 Fixed Shunt RegulatorFigure 12 1.24V Reference CircuitTYPICAL PERFORMANCE CHARACTERISTICSAPPLICATION INFORMATIONTO-92 (N)Top View8-Pin SOIC (S)N/CN/C N/C -SOT-23-3 (M)Figure 13. Low Battery DetectorFigure 14. Micropower 10V ReferencePACKAGE PINOUTSPACKAGE: 8 PIN NSOICSECTION B-BWITH PLATINGSYMBOLMIN NOM MAX A 1.35- 1.75A10.1-0.25A2 1.25- 1.65b 0.31-0.51c 0.17-0.24DEE1eL 0.4-1.27L1L2ø0º-8ºø15º-15ºNote: Dimensions in (mm)8 Pin NSOIC JEDEC MO-012 (AA) Variation4.90 BSC 6.00 BSC 3.90 BSC 1.27 BSC 1.04 REF 0.25 BSCVIEW CTOP VIEWPACKAGE: 3 PIN SOT-23VIEW A-ASYMBOLMIN NOM MAX A 0.89- 1.12A10.01-0.1A20.880.95 1.02b 0.3-0.5c 0.08-0.2D 2.8 2.9 3.04ee1E 0.95- 2.64E1 1.2 1.3 1.4L 0.40.50.6L1ø0º-8ºNote: Dimensions in (mm)3 Pin SOT-23 JEDEC TO-236 (AB) Variation0.95 BSC 1.90 BSC 0.54 REFPACKAGE: 3 PIN TO-92S1SYMBOLMIN NOM MAXA 0.17-0.195b 0.014-0.02E 0.13-0.155e 0.95-0.105e10.045-0.055L 0.5-0.61R 0.085-0.095S10.045-0.06W 0.016-0.022D 0.175-0.195a4º-6ºNote: Dimensions in (inches)3 Pin TO-92ANALOG EXCELLENCESipex CorporationHeadquarters and Sales Office:233 Hillview Dr Milpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600Part Number Accuracy Output VoltagePackage Type SPX4041AM 1.0% 1.24V 3-Pin SOT-23SPX4041AM/TR 1.0% 1.24V3-Pin SOT-23SPX4041AS 1.0% 1.24V 8-Pin NSOIC SPX4041AS/TR 1.0% 1.24V 8-Pin NSOIC SPX4041AN 1.0% 1.24V 3-Pin TO-92SPX4041AN/TR 1.0% 1.24V 3-Pin TO-92SPX4041M 2.0% 1.24V 3-Pin SOT-23SPX4041M/TR 2.0% 1.24V 3-Pin SOT-23SPX4041S 2.0% 1.24V 8-Pin NSOIC SPX4041S/TR 2.0% 1.24V 8-Pin NSOIC SPX4041N 2.0% 1.24V 3-Pin TO-92SPX4041N/TR2.0%1.24V3-Pin TO-92ORDERING INFORMATIONAvailable in lead free packaging. To order add "-L" suffix to part number.Example: SPX4041S/TR = standard; SPX4041S-L/TR = lead free /TR = Tape and ReelPack quantity is 2,000 for TO-92, 2,500 for NSOIC and SOT-23.。
CD4043中文资料
October 1987Revised January 1999CD4043BC • CD4044BC Quad 3-STATE NOR R/S Latches • Quad 3-STATE NAND R/S Latches © 1999 Fairchild Semiconductor Corporation DS005967.prf CD4043BC • CD4044BCQuad 3-STATE NOR R/S Latches •Quad 3-STATE NAND R/S LatchesGeneral DescriptionThe CD4043BC are quad cross-couple 3-STATE CMOSNOR latches, and the CD4044BC are quad cross-couple 3-STATE CMOS NAND latches. Each latch has a separate Qoutput and individual SET and RESET inputs. There is acommon 3-ST ATE ENABLE input for all four latches. Alogic “1” on the ENABLE input connects the latch states tothe Q outputs. A logic “0” on the ENABLE input discon-nects the latch states from the Q outputs resulting in anopen circuit condition on the Q output. The 3-ST ATE fea-ture allows common bussing of the outputs.Featuress Wide supply voltage range: 3V to 15Vs Low power:100 nW (typ.)s High noise immunity:0.45 V DD (typ.)s Separate SET and RESET inputs for each latchs NOR and NAND configurations3-STATE output with common output enableApplications•Multiple bus storage•Strobed register•Four bits of independent storage with output enable•General digital logicOrdering Code:Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.Connection DiagramsPin Assignments for DIP, SOIC and SOPCD4043BCTop ViewPin Assignments for DIP and SOICCD4044BCTop ViewOrder Number Package Number Package DescriptionCD4043BCM M16A16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow BodyCD4043BCN N16E16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” WideCD4044BCM M16A16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow BodyCD4044BCSJ M16D16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WideCD4044BCN N16E16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” Wide 2C D 4043B C • C D 4044B CBlock DiagramsCD4043BCCD4044BCTruth TablesCD4043BCCD4044BC OC = 3-ST ATE NC = No change X = Don’t care∆ = Dominated by S = 1 input ∆∆ = Dominated by R = 0 inputS R E Q X X 0OC 001NC 10110110111∆S R E Q X X 0OC 111NC 0111101001∆∆CD4043BC • CD4044BCAbsolute Maximum Ratings (Note 1)(Note 2)Recommended Operating Conditions (Note 2)Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of “Recom-mended Operating Conditions” and “Electrical Characteristics” provide con-ditions for actual device operation.Note 2: V SS = 0V unless otherwise specified.DC Electrical Characteristics (Note 2)Note 3: I OH and I OL are tested one output at a time.Supply Voltage (V DD )−0.5V to +18V Input Voltage (V IN )−0.5V to V DD +0.5V Storage Temperature Range (T S )−65°C to +150°CPower Dissipation (P D )Dual-In-Line 700 mW Small Outline 500 mW Lead Temperature (T L )(Soldering, 10 seconds)260°C Supply Voltage (V DD ) 3.0V to 15V Input Voltage (V IN )0 to V DD VOperating T emperature Range (T A )CD4043BC, CD4044BC−40°C to +85°CSymbol ParameterConditions−40°C +25°C +85°C Units MinMax MinTyp Max MinMax I DDQuiescent V DD = 5V , V IN = V DD or V SS 200.0120150µA Device CurrentV DD = 10V , V IN = V DD or V SS 400.0140300µA V DD = 15V , V IN = V DD or V SS 800.0280600µA V OLLOW Level |I O | ≤ 1 µA, V IL = 0V , V IH = V DD Output VoltageV DD = 5.0V 0.0500.050.05V V DD = 10V 0.0500.050.05V V DD = 15V0.0500.050.05V V OHHIGH Level |I O | ≤ 1 µA, V IL = 0V , V IH = V DD Output VoltageV DD = 5.0V 4.95 4.95 5.0 4.95V V DD = 10V 9.959.95109.95V V DD = 15V14.9514.951514.95V V ILLOW Level |I O | ≤ 1 µAInput VoltageV DD = 5.0V , V O = 0.5V or 4.5V 1.5 2.25 1.5 1.5V V DD = 10V , V O = 1.0V or 9.0V 3.0 4.5 3.0 3.0V V DD = 15V , V O = 1.5V or 13.5V4.06.754.0 4.0V V IHHIGH Level |I O | ≤ 1 µAInput VoltageV DD = 5.0V , V O = 0.5V or 4.5V 3.5 3.5 3.5V V DD = 5.0V , V O = 1.0V or 9.0V 7.07.07.0V V DD = 15V , V O = 1.5V or 13.5V111111V I OLLOW Level V IL = 0V , V IH = V DD Output Current V DD = 5.0V , V O = 0.4V 0.520.440.880.36mA (Note 3)V DD = 10V , V O = 0.5V 1.3 1.1 2.20.9mA V DD = 15V , V O = 1.5V 3.6 3.0 6.0 2.4mA I OHHIGH Level V IL = 0V , V IH = V DD Output Current V DD = 5.0V , V O = 4.6V −0.52−0.44−0.32−0.36mA (Note 3)V DD = 10V , V O = 9.5V −1.3−1.1−0.8−0.9mA V DD = 15V , V O = 13.5V −3.6−3.0−2.4−2.4mAI INInput CurrentV DD = 15V , V IN = 0V −0.3−0.3−1.0µA V DD = 15V , V IN = 15V0.30.31.0µA 4C D 4043B C • C D 4044B CAC Electrical Characteristics (Note 4)T A = 25°C, C L = 50 pF , R L = 200k, input t r = t f = 20 ns, unless otherwise notedNote 4: AC Parameters are guaranteed by DC correlated testing.Timing WaveformsCD4043BCD4044BEnable TimingSymbol ParameterConditions Min Typ Max Units t PLH , t PHLPropagation Delay S or R to QV DD = 5.0V 175350ns V DD = 10V 75175ns V DD = 15V60120ns t PZH , t PHZPropagation Delay Enable to Q (HIGH)V DD = 5.0V 115230ns V DD = 10V 55110ns V DD = 15V4080ns t PZL , t PLZPropagation Delay Enable to Q (LOW)V DD = 5.0V 100200ns V DD = 10V 50100ns V DD = 15V4080ns t THL , t TLHTransition TimeV DD = 5.0V 100200ns V DD = 10V 50100ns V DD = 15V4080ns t WOMinimum SET or RESET Pulse WidthV DD = 5.0V 80160ns V DD = 10V 4080ns V DD = 15V2040ns C INInput Capacitance5.07.5pFCD4043BC • CD4044BCPhysical Dimensions inches (millimeters) unless otherwise noted16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150” Narrow BodyPackage Number M16A16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WidePackage Number M16DF a irch ild d o e s n o t a ssu m e a n y re spo n sib ility fo r u se o f a n y circu itry de scrib e d , n o circu it pa ten t lice nse s a re im p lie d a nd F a irch ild re se rv e s the rig h t a t a n y tim e w ith ou t n o tice to cha n g e sa id circu itry an d sp e cifica tio n s.C D 4043B C • C D 4044B C Q u a d 3-S T A T E N O R R /S L a t c h e s • Q u a d 3-S T A T E N A N D R /S L a t c h e sLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to the user.2. A critical component in any component of a life support device or system whose failure to perform can be rea-sonably expected to cause the failure of the life support device or system, or to affect its safety or Physical Dimensions inches (millimeters) unless otherwise noted (Continued)16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300” WidePackage Number N16E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ASCEND Semiconductor 4Mx4 EDO Data sheetDescriptionThe device CMOS Dynamic RAM organized as 4,194,304 words x 4 bits with extended data out access mode. It is fabricated with an advanced submicron CMOS technology and designed to operate from a single 3.3V oniy power supply. Low voltage operation is more suitable to be used on battery backup, portable elec-tronic application. lt is packaged in JEDEC standard 26/24-pin plastic SOJ or TSOP(II).Features• Single 3.3V(%) only power supply • High speed t RAC acess time: 50/60ns • Low power dissipation- Active mode : 432/396 mW (Mas) - Standby mode: 0.54 mW (Mas)• Extended - data - out(EDO) page mode access • I/O level: CMOS level (Vcc = 3.3V)• 2048 refresh cycle in 32 ms(Std.) or 128 ms(S-version)• 4 refresh modesh: - RAS only refresh- CAS - before - RAS refresh - Hidden refresh - Self-refresh(S-version)10±Pin Name FunctionA0-A10Address inputs- Row address - Column address - Refresh address DQ1~DQ4Data-in / data-out RAS Row address strobe CAS Column address strobe WE Write enable OE Output enable Vcc Power (+ 3.3V)VssGroundVCC 1DQ12DQ23DQ34DQ45VCC6891011 NC 12 WE 13A0 A117 A218 A319VSS RAS CAS OE A8A7A6A5A4VSSAD404M42VSPin Description Pin Configuration21222324 2526151416 A1026/24-PIN 300mil Plastic SOJA9VCC 1DQ12DQ23DQ34DQ45VCC6891011 NC 12 WE 13A0 A117 A218 A319VSS RAS CAS OE A8A7 A6A5 A4VSSAD404M42VT212223242526151416 A1026/24-PIN 300mil Plastic TSOP (ll)A9A0-A10A0-A10A0-A10WECASNO. 2 CLOCK GENERATORCOLUMN ADDRESS BUFFERS (11)REFRESH CONTROLLERREFRESH COUNTERBUFFERS (11)ADDRESS ROW NO. 1 CLOCK GENERATORA0RASA1A2A3A4A5A6A7A8CONTROLLOGICDATA-IN BUFFERDATA-OUT BUFFEROEDQ1.DQ4.COLUMN DECODER2048SENSE AMPLIFIERSI/O GATING2048x42048x2048x4MEMORY ARRAY2048R O W D E C O D E RVcc VssBlock DiagramA9A10TRUTH TABLENotes: 1. EARLY WRITE only.FUNCTIONRASCAS WE OE ADDRESSESDQ SNotesROW COL STANDBY H X X X X High-Z READL L H L ROW COL Data-Out WRITE: (EARLY WRITE )L L L X ROW COL Data-lnREAD WRITE L L ROW COL Data-Out,Data-ln EDO-PAGE-MODE READ1st Cycle L H L ROW COL Data-Out 2nd CycleL H L n/a COL Data-Out EDO-PAGE MODE WRITE1st CycleL L X ROW COL Data-In 2nd Cycle L L Xn/a COL Data-InEDO-PAGE-MODEREAD-WRITE 1st Cycle L ROW COL Data-Out, Data-In 2nd Cycle L n/a COL Data-Out, Data-In HIDDEN REFRESHREAD L H L ROW COL Data-Out WRITEL L X ROW COL Data-In 1RAS-ONLY REFRESH L H X X ROW n/a High-Z CBR REFRESHLHXXXHigh-ZH X →H L →L H →H L →H L →H L →H L →H L →H L →L H →H L →H L →L H→L H L →→L H L→→H L→Absolute Maximum RatingsRecommended DC Operating ConditionsCapacitanceTa = 25°C, V CC = 3.3V%, f = 1MHz Note: 1. Capacitance measured with effective capacitance measuring method. 2. RAS, CAS = V IH to disable Dout.ParameterSymbol Value Unit Voltage on any pin relative to Vss V T -0.5 to + 4.6V Supply voltage relative to Vss V CC -0.5 to + 4.6V Short circuit output current I OUT 50mA Power dissipation P D 1.0WOperating temperature T OPT 0 to + 70°C Storage temperatureT STG-55 to + 125°CParameter/Condition Symbol3.3 Volt VersionUnitMinTyp MaxSupply VoltageV CC 3.0 3.33.6V Input High Voltage, all inputs V IH 2.0-V CC + 0.3V Input Low Voltage, all inputsV IL-0.3-0.8VParameterSymbol Typ Max Unit Note Input capacitance (Address)C I1 -5pF 1Input capacitance (RAS, CAS, OE, WE)C I2-7pF 1Output capacitance(Data-in, Data-out)C I/O-7pF1, 210±DC Characteristics :(T a = 0 to 70°C, V CC = + 3.3V%, V SS = 0V)Parameter Symbol Test Conditions AD404M42V Unit Notes-5-6Min Max Min MaxOperating current I CC1RAS cyclingCAS, cyclingt RC = min-120-110mA1, 2Standby Current LowpowerS-versionI CC2LVTTL interfaceRAS, CAS = V IHDout = High-Z-0.5-0.5mACMOS interfaceRAS, -0.2VDout = High-Z-0.15-0.15mAStandardpowerversionLVTTL interfaceRAS, CAS = V IHDout = High-Z-2-2mACMOS interfaceRAS,-0.2VDout = High-Z-0.5-0.5mARAS- only refresh current I CC3RAS cycling, CAS = V IHt RC = min-120-110mA1, 2 EDO page mode current I CC4t PC = min-90-80mA1, 3CAS- before- RAS refresh current I CC5t RC = minRAS, CAS cycling-120-110mA1, 2Self- refresh current (S-Version)I CC8 - 550 - 55010±CAS V CC≥CAS V CC≥t RASS100µs≥µADC Characteristics :(T a = 0 to 70°C , V CC = +3.3V %, V SS = 0V)Notes:1. I CC is specified as an average current. It depends on output loading condition and cycle rate when the device is selected. I CC max is specified at the output open condition.2. Address can be changed once or less while RAS = V IL .3. For I CC4, address can be changed once or less within one EDO page mode cycle time.Parameter Symbol Test Conditions AD404M42VUnitNotes-5-6Min MaxMin MaxInput leakage current I LI + 0.3V -55-55Output leakage current I LO + 0.3V Dout = Disable -55-55Output high Voltage V OH I OH = -2mA 2.4- 2.4-V Output low voltage V OLI OL = +2mA-0.4-0.4V10±0V Vin V CC ≤≤µA 0V Vout V CC ≤≤µAAC Characteristics(T a = 0 to + 70°C , V cc = 3.3V %, V ss = 0V) *1, *2, *3, *4Test conditions• Output load: one TTL Load and 100pF (V CC = 3.3V %)• Input timing reference levels:V IH = 2.0V, V IL = 0.8V (V CC = 3.3V %)• Output timing reference levels:V OH = 2.0V, V OL = 0.8V10±10±10±Read, Write, Read- Modify- Write and Refresh Cycles (Common Parameters)ParameterSymbol AD404M42V UnitNotes-5-6Min MaxMin MaxRandom read or write cycle time t RC 84-104-ns RAS precharge timet RP 30-40-ns CAS precharge time in normal mode t CPN 10-10-ns RAS pulse width t RAS 50100006010000ns 5CAS pulse width t CAS 8100001010000ns 6Row address setup time t ASR 0-0-ns Row address hold time t RAH 8-10-ns Column address setup time t ASC 0-0-ns 7Column address hold time t CAH 8-10-ns RAS to CAS delay timet RCD 12371445ns 8RAS to column address delay time t RAD 10251230ns 9Column address to RAS lead time t RAL 25-30-ns RAS hold time t RSH 8-10-ns CAS hold timet CSH 38-40-ns CAS to RAS precharge time t CRP 5-5-ns 10OE to Din delay time t OED 12-15-ns Transition time (rise and fall)t T 150150ns 11Refresh periodt REF -32-32ms Refresh period (S- Version)t REF -128-128ms CAS to output in Low- Z t CLZ 0-0-ns CAS delay time from Din t DZC 0-0-ns OE delay time from Dint DZO-0-nsRead CycleWrite Cycle Parameter SymbolAD404M42V Unit Notes-5-6Min Max Min MaxAccess time from RAS t RAC-50-60ns12 Access time from CAS t CAC-14-15ns13, 14 Access time from column address t AA-25-30ns14, 15 Access time from OE t OEA-12-15nsRead command setup time t RCS0-0-ns7 Read command hold time to CAS t RCH0-0-ns10, 16 Read command hold time to RAS t RRH0-0-ns16 Output buffer turn-off time t OFF012015ns17 Output buffer turn-off time from OE t OEZ012015ns17Parameter SymbolAD404M42V Unit Notes -5-6Min Max Min MaxWrite command setup time t WCS0-0-ns7, 18 Write command hold time t WCH8-10-nsWrite command pulse width t WP8-10-nsWrite command to RAS lead time t RWL13-15-nsWrite command to CAS lead time t CWL8-10-nsData-in setup time t DS0-0-ns19 Data-in hold time t DH8-10-ns19 WE to Data-in delay t WED10-10-nsRead- Modify- Write CycleRefresh Cycle Parameter SymbolAD404M42V Unit Notes-5-6Min Max Min MaxRead-modify- write cycle time t RWC108-133-nsRAS to WE delay time t RWD64-77-ns18 CAS to WE dealy time t CWD26-32-ns18 Column address to WE delay time t AWD39-47-ns18 OE hold time from WE t OEH8-10-nsParameter SymbolAD404M42VUnit Notes -5-6Min Max Min MaxCAS setup time (CBR refresh) t CSR5-5-nsCAS hold time (CBR refresh)t CHR8-10-ns10 RAS precharge to CAS hold time t RPC5-5-ns7 RAS pulse width (self refresh)t RASS100-100-RAS precharge time (self refresh)t RPS90-110-nsCAS hold time (CBR self refresh)t CHS-50--50-nsWE setup time t WSR0-0-nsWE hold time t WHR10-10-nsµsEDO Page Mode CycleEDO Page Mode Read Modify Write CycleParameterSymbol AD404M42VUnit Notes-5-6Min MaxMin MaxEDO page mode cycle timet PC 20-25-ns EDO page mode CAS precharge time t CP 10-10-ns EDO page mode RAS pulse width t RASP 5010560105ns 20Access time from CAS precharge t CPA -30-35ns 10, 14RAS hold time from CAS precharge t CPRH 30-35-ns OE high hold time from CAS high t OEHC 5-5-ns OE high pulse widtht OEP 10-10-ns Data output hold time after CAS low t COH 5-5-ns Output disable delay from WEt WHZ 310310ns WE pulse width for output disable whenCAS hight WPZ7-7-nsParameterSymbol AD404M42V Unit Notes -5-6Min MaxMin MaxEDO page mode read- modify- write cycle CAS precharge to WE delay timet CPW 45-55-ns 10EDO page mode read- modify- write cycle timet PRWC56-68-nsNotes :1. AC measurements assume t T = 2ns.2. An initial pause of 100 is required after power up, and it followed by a minimum of eightinitialization cycles (RAS - only refresh cycle or CAS - before - RAS refresh cycle). If the internal refresh counter is used, a minimun of eight CAS - before - RAS refresh cycles are required.3. In delayed write or read-modify-write cycles, OE must disable output buffer prior to applying data to the device.4. All the V CC and V SS pins shall be supplied with the same voltages.5. t RAS (min) = t RWD (min)+t RWL (min)+t T in read-modify-write cycle.6. t CAS (min) = t CWD (min)+t CWL (min)+t T in read-modify-write cycle.7. t ASC (min), t RCS (min), t WCS (min), and t RPC are determined by the falling edge of CAS .8. t RCD (max) is specified as a reference point only, and t RAC (max) can be met with the t RCD (max) limit.Otherwise, t RAC is controlled exclusively by t CAC if t RCD is greater than the specified t RCD (max) limit. 9. t RAD (max) is specified as a reference point only, and t RAC (max) can be met with the t RAD (max) limit.Otherwise, t RAC is controlled exclusively by t AA if t RAD is greater than the specified t RAD (max) limit. 10. t CRP , t CHR , t RCH , t CPA and t CPW are determined by the rising edge of CAS .11. V IH (min) and V IL (max) are reference levels for measuring timing or input signals. Therefore, transitiontime is measured between V IH and V IL .12. Assumes that t RCD tRCD (max) and t RAD t RAD (max). If t RCD or t RAD is greater than the maximum recommended value shown in this table, t RAC exceeds the value shown. 13. Assumes that (max) and (max).14. Access time is determined by the maximum of t AA , t CAC , t CPA . 15. Assumes that (max) and (max). 16. Either t RCH or t RRH must be satisfied for a read cycle.17. t OFF (max) and t OEZ (max) define the time at which the output achieves the open circuit condition (highimpedance). t OFF is determined by the later rising edge of RAS or CAS.18. t WCS , t RWD , t CWD , and t AWD are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If (min), the cycle is an early write cycle and the data out will remain open circuit (high impedance) throughout the entire cycle. If (min),(min), (min) and (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data output (at access time) is indeterminate.19. These parameters are referenced to CAS separately in an early write cycle and to WE edge in adelayed write or a read-modify-write cycle.20. t RASP defines RAS pulse width in EDO page mode cycles.µs ≤≤t RCD t RCD ≥t RADt RAD ≤t RCD t RCD ≤t RAD t RAD ≥t WCS t WCS ≥t RWD t RWD ≥t CWDt CWD ≥t AWD t AWD ≥t CPW t CPW≥Timing Waveforms• Read Cyclet RC t RASt RPtCRPtCPNtRRHtRCHt OEZ t OFF tOEA tCACt AAtRACt CLZD OUTtRCS t ASR tRAH tASC tCAH tRAD t RALtCAStRSH tRCDt TtCSHRASCASADDRESSWEDQ1~DQ4Note : = don’t care OEt OFFRowColumn= Invalid Dout•Early Write CycletRC t RASt RPt WCHt DSt DHt WCS t RALtCAStRSH tRCDt TtCSHRASCASWEDQ1~DQ4tCRPtASRtRAH tASCtCAH ADDRESSColumnRowtCPND INtRADt RAL• Delayed Write CycletRC t RASt RPt RWL t RCSt CAStRSH tRCDt TtCSHRASCAStASR tRAH tCAHADDRESSColumnRow tASC D INDQ1~DQ4WEtCRPtCPNt DHt DSt OEHt OEDOEt DSOPENt WPt CWL• Read - Modify - Write CycletRWC t RASt RPtRWDt WPtRADtRWL tCAStCWL tRCDt TtCPNRASCASWEtCRP t ASRtRAHtASCtCAHADDRESS Column RowDQ1~DQ4t DHt DSOEtRCStAWD tCWD D INt OEDt OEHt OEZt OEA t CAC t RACt AADQ1~DQ4D OUTOPENtDZCtDZO• EDO Page Mode Read CycletRASPtCPRHt RCStCAStRSH tRCDt OEAtCSHRASCAStASRtRAHtCAHADDRESStCASWEtCRPt CPOEDQ1~DQ4OPENtOEPD OUT 1t PCt CPtCAStCPNtCRPtRADtCAHtASCt ASCtCAHt ASCt RAL Row Column 1t OEAt OEHCtRRH tRCHt RACt AAt AAt AA t CPA t CPA t OEZt OFFt OFFt CACt OEZt CAC t CACt COHD OUT NWE OE Column 2Column N Rowt RPD OUT 2• EDO Page Mode Early Write CycletRASPtRPt WCSt CAStRSH tRCDRASCAStASRtRAHtCAHADDRESStCASWEt CPDQ1~DQ4t PCt CPt CAStCPNtCRP tCAH tASCtASC tCAH tASC Row Column 1t DS WE Column 2Column Nt WCH t WCS t WCH t WCS t WCHt DH t DS t DH t DS t DHD IN 1D IN 2D IN Nt TtCSH• EDO Page Mode Read-Early-Write Cyclet RASPtCPRHt RCStCAStRSH tRCDt OEAtCSHRASCAStASRtRAHtCAHADDRESStCASWEtCRPt CPOEDQ1~DQ4OPENtWEDt PCt CPtCAStCPNtCRPtRADtRAHtASCt ASCtCAHt ASCt RAL Row Column 1tWCStRCHt RACt AAt AAt CPA t DHt WHZt CACt CACt COHWE OE Column 2Column N Rowt RPt CAL tWCHDataDoutput 2Data Input NDataDoutput 1t DStCSH• EDO Page Mode Read-Modify-Write Cyclet RASPt CPRHt RCStCASt WP RASCASt ASRtRAHtCAHADDRESSt CASWEtRCDCPDQ1~DQ4tPRWCt CPtCAStCRPtRADtCAHtASCt ASCtCAH tASC Row Column 1tRWLtRCSt OEDt DZOt CAC WE OEt RPt RAL D OUT 2D OUT ND OUT 1tTt Column NColumn 2Column 1tRWD tAWD tCWDtCWLtRCStCWDtAWD tCPW tCWL tCPW tAWD tCWDtCWL t OEDt OEDt OEHt OEHt OEHt CAC t CAC t OEA t AAt RACt OEZt OEAt AA t CPAt OEZt OEAt AA t CPAt OEZ t DSt DHt WP t DSt DHt WP t DSt DHOPENOPENOPEN D IN 1D IN ND IN 2DQ1~DQ4t DZCt DZOt DZCt DZCt DZO• Read Cycle with WE Controlled Disablet WPZt RCStCAStRCDt TtCSHRASCASt ASRtRAHtCAHADDRESSColumnRow tASCD DQ1~DQ4WEt OEZt DSt WHZOEt RCH t OEA t CACt AAt RACt CLZOUTtRADRASADDRESSt RC t CRPt ASRt RAHt Tt RPCROWt OFFCAS t RASt RPOPENt CRPDQ1~DQ4RASt CSRt WSRt RPt T t RPCt OFFCAS t RASt RPOPENt CRPDQ1~DQ4t RPCt CHRt RASt RPt RCt RCt CHRt CSRt WHRt WSRt WHRWECAS-Before-RAS Refresh CycleRASWEt RPCt OFFt CSRt CHSt WSRCASt RASS t RPSOPENDQ1~DQ4t WHRHigh lmpedance• Hidden Refresh Cyclet RPt RASRASt RCDt CRPADDRESSWEt CHRt CASt RSHt RAHt ASRt ASCt CAHt RAL ROW t RCHt OEZCASDQ1~DQ4t Tt RCSD t RASt RASt RPt RPt RC t RCt RCt RADt RRHt OFF t OFFt OEA t CACt AAt RACCOlumnOUTOE(READ)(REFRESH)(REFRESH)Ordering informationAD404M42VSA-5• AD• Ascend Memory Product • 40 • Device Type• 4M4 • Density and Organization • 2• Refresh Rate, 2: 2K Refresh • V• T: 5V, V: 3.3V• S • Package Type (S : SOJ, T : TSOP II)• A• Version• 5• Speed (5: 50 ns, 6: 60 ns)Part Number Access time PackageAD404M42VSA-5AD404M42VSA-6AD404M42VTA-5AD404M42VTA-650 ns 60 ns 50 ns 60 ns300mil 26/24-Pin Plastic SOJTSOP IIPackaging information • 300 mil, 26/24-Pin Plastic SOJ• 300 mil, 26/24-Pin TSOP II。