项目工程师应该掌握的20个模拟电路(整编汇总)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程师应该掌握的20个模拟电路
对模拟电路的掌握分为三个层次。
初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。
中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。
高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业――电子产品和工业控制设备的开发设计工程师将是您的首选职业。
以下是20个基本模拟电路:
一、桥式整流电路
1.二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。
伏安特性曲线
理想开关模型和恒压降模型:
理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V
2.桥式整流电流流向过程:
当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2截止,负载R L上的电流仍
Uo=0.9U2,Io=0.9U 2/R L,U RM=√2 U 2
二、电源滤波器
1.电源滤波的过程分析:电源滤波是在负载R L两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。
波形形成过程:输出端接负载R L时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥R L C)≈RiC,一般Ri〈〈R L,忽略Ri压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过R L放电,放电时间常数为R L C,放电时间慢,u 0变化平缓。当ωt=ωt2时,u 2=u 0,ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。ωt=ωt3时有u 2=u 0,ωt3后,电容通过R L放电。如此反复,周期性充放电。由于电容C的储能作用,R L上的电压波动大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。
2.计算:滤波电容的容量和耐压值选择
电容滤波整流电路输出电压Uo在√2U 2~0.9U 2之间,输出电压的平均值取决于放电时间常数的大小。
电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步近似为Uo≈1.2U2整流管的最大反向峰值电压U RM=√2U 2,每个二极管的平均电流是负载电流的一半。
三、信号滤波器
有用信号顺利通过。
与电源滤波器的区别和相同点:两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。
相同点:都是用电路的幅频特性来工作。
2.LC串联和并联电路的阻抗计算:串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC) 并联时电路阻抗为Z=1/jωC∥(R+jωL)= 考滤到实际中,常有R<<ωL,所以有Z≈
幅频关系和相频关系曲线:
3画出通频带曲线:
计算谐振频率:fo=1/2π√LC
四、微分电路和积分电路
1.电路的作用:
A.积分电路:
a.延迟、定时、时钟
b.低通滤波
c.改变相角(减)
积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。
B.微分电路:
a.提取脉冲前沿
b.高通滤波
c.改变相角(加)
微分电路是积分电路的逆运算,波形变换。微分电路可把矩形波转换为尖脉冲波。
与滤波器的区别和相同点:原理相同,应用场合不同。
响应是从电阻两端取出的电压,即,电路时间常数小于脉冲信号的脉宽,通常取。
图4-17 微分电路图
因为t<0时,,而在t = 0 时,突变到,且在0< t < t1期间有:,相当于在RC串联电路上接了一个恒压源,这实际上就是RC串联电路的零状态响应:。由于,则由图4-17电路可知。所以,即:输出电压产生了突变,从0 V突跳到。
因为,所以电容充电极快。当时,有,则。故在期间内,电阻两端就输出一个正的尖脉冲信号,如图4-18所示。
在时刻,又突变到0 V,且在期间有:= 0 V,相当于将RC串联电路短接,
这实际上就是RC串联电路的零输入响应状态:。
由于时,,故。
因为,所以电容的放电过程极快。当时,有,使,故在
期间,电阻两端就输出一个负的尖脉冲信号,如图4-18所示。
图4-18 微分电路的u i与u O波形
由于为一周期性的矩形脉冲波信号,则也就为同一周期正负尖脉冲波信号,如图
4-18所示。
尖脉冲信号的用途十分广泛,在数字电路中常用作触发器的触发信号;在变流技术中常用作可控硅的触发信号。
这种输出的尖脉冲波反映了输入矩形脉冲微分的结果,故称这种电路为微分电路。
微分电路应满足三个条件:①激励必须为一周期性的矩形脉冲;②响应必须是从电阻两端取出的电压;③电路时间常数远小于脉冲宽度,即。
在图4-19所示电路中,激励源为一矩形脉冲信号,响应是从电容两端取出的电压,即,且电路时间常数大于脉冲信号的脉宽,通常取。