黑龙江省哈尔滨市平房区2023年中考数学模拟试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设x1,x2是方程x2-2x-1=0的两个实数根,则
21
12
x x
x x
+
的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②. B.只有①③. C.只有②③. D.①②③.
3.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短
B.经过两点有一条直线,并且只有一条直线
C.直线外一点与直线上各点连接的所有线段中,垂线段最短
D.经过一点有且只有一条直线与已知直线垂直
4.在实数π,0,17,﹣4中,最大的是()
A.πB.0 C.17D.﹣4
5.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )
A.
13
12
4
π
-
B.

1?2
4
-
C.
13
6
4
π
+
D.6
6.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是()
A.x>2 B.x<﹣2
C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2
7.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
A.B.C.D.
8.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且(3,0)
A ,(2,)
B b,则正方形ABCD的面
积是()
A.13B.20C.25D.34
9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()
A .(3,2) B.(4,1) C.(4,3) D.(4,23)
10.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()
A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大
11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()
A.4
9B.
1
3C.
2
9D.
1
9
12.下列计算正确的是()
A.x4•x4=x16 B.(a+b)2=a2+b2
C.=±4 D.(a6)2÷(a4)3=1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.化简:4= .
14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.
15.分解因式:2m2-8=_______________.
16.不等式5x﹣3<3x+5的非负整数解是_____.
17.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.
18.分解因式:3a2﹣12=___.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:
(1)甲选择座位W的概率是多少;
(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.
20.(6分)如图,四边形AOBC是正方形,点C的坐标是(20).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运
动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
21.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
22.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度百分比
A非常了解10%
B比较了解15%
C基本了解35%
D不了解n%
(1)n=;
(2)扇形统计图中,D部分扇形所对应的圆心角是;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
23.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
24.(10分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点D 重合时,x 的值为0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:
x0123456
y 5.2 4.2 4.6 5.97.69.5
说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)
(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数y 的最小值(保留一位小数),此时点P 在图1 中的什么位置.
y(升)关于加满油后已行驶的路程x(千25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量
米)的函数图象.
根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求
y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
26.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
(3)请估计全校共征集作品的件数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
27.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C 出发,沿斜面坡度1:3
i
的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知
A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈3
5,cos37°≈
4
5,tan37°≈
3
4.
计算结果保留根号)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1

21
12
x x
x x
+
=
222
121212
1212
()242
6
1
x x x x x x
x x x x
++-+
===-
-
.
故选A.
2、D
【解析】
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=1
2CG,CM=
3
2CG,
∴S四边形CMGN=1S△CMG=1×1

1
2CG×
3
2CG=CG1.
③过点F作FP∥AE于P点.
∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即BG=6GF.
故选D.
3、B
【解析】
本题要根据过平面上的两点有且只有一条直线的性质解答.
【详解】
根据两点确定一条直线.
故选:B.
【点睛】
本题考查了“两点确定一条直线”的公理,难度适中.
4、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4
17517π>0>-417,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
5、A
【解析】
根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.
【详解】
∵在矩形ABCD中,AB=4,BC=3,F是AB中点,
∴BF=BG=2,
∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,
∴S1-S2=4×3-
22
903902
360360
ππ
⨯⨯⨯⨯
-
=
13
12
4
π
-

故选A.
【点睛】
本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
6、D
【解析】
试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值
大于的函数值.故选D.
考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.
7、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=1
2BP•BQ,解y=
1
2•3x•x=
2
3
2
x
;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=1
2BQ•BC,解y=
1
2•x•3=
3
2
x
;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=1
2AP•BQ,解y=
1
2•(9﹣3x)•x=
2
93
22
x x
-
;故D选
项错误.
故选C.
考点:动点问题的函数图象.
8、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,
2222
3534
AD AO OD
∴+=+=,
∴正方形ABCD的面积是343434
=,故选D.
9、D
【解析】
由已知条件得到AD′=AD=4,AO=1
2AB=2,根据勾股定理得到22
AD OA
'-3
【详解】
解:∵AD′=AD=4,
AO=1
2AB=1,
∴OD′=
22
AD OA
'-=23,
∵C′D′=4,C′D′∥AB,
∴C′(4,23),
故选:D.
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
10、D
【解析】
分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
【详解】
A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
∴两组数据的中位数不相等,平均数相等,B组方差更大.
故选D.
【点睛】
本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
11、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为4 9,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回
实验.
12、D
【解析】
试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表
示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
考点:1、幂的运算;2、完全平方公式;3、算术平方根.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴4=2.
【点睛】
本题考查求算术平方根,熟记定义是关键.
14、25°.
【解析】
∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,
∴∠2=45°-∠3=45°-20°=25°.
15、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
16、0,1,2,1
【解析】
5x﹣1<1x+5,
移项得,5x﹣1x<5+1,
合并同类项得,2x<8,
系数化为1得,x<4
所以不等式的非负整数解为0,1,2,1;
故答案为0,1,2,1.
【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键. 17、1:3 【解析】
根据相似三角形的判定,由DE ∥AC ,可知△DOE ∽△COA ,△BDE ∽△BCA ,然后根据相似三角形的面积比等于相似比的平方,可由
:1:16
DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知
BDE
S ∆与
CDE
S ∆的比是1:3.
故答案为1:3. 18、3(a+2)(a ﹣2) 【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此, 3a2﹣12=3(a2﹣4)=3(a+2)(a ﹣2).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)13;(2)13
【解析】
(1)根据概率公式计算可得;
(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得. 【详解】 解:(1)由于共有A 、B 、W 三个座位,
∴甲选择座位W 的概率为13, 故答案为:1
3;
(2)画树状图如下:
由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,
所以P (甲乙相邻)=26=1
3.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)4,
()22,22

(2)旋转后的正方形与原正方形的重叠部分的面积为16
216-;(3)
8
3t =
.
【解析】
(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积; (2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;
(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t . 【详解】 解:(1)连接AB ,与OC 交于点D , 四边形AOBC 是正方形, ∴△OCA 为等腰Rt △,
∴AD=OD=1
2OC=22,
∴点A 的坐标为
()2
2,22
.
4,
(22,22
.
(2)如图
∵ 四边形AOBC 是正方形,

AOB 90∠=,AOC 45∠=. ∵ 将正方形AOBC 绕点O 顺时针旋转45, ∴ 点A '落在x 轴上. ∴OA OA 4'==. ∴ 点A '的坐标为
()4,0.

OC 42= ∴
A C OC OA 424=-=''.
∵ 四边形OACB ,OA C B '''是正方形,

OA C 90∠''=,ACB 90∠=. ∴
CA E 90∠'=,OCB 45∠=. ∴
A EC OC
B 45∠∠=='. ∴
A E A C 424=='-'. ∵2ΔOBC AOBC 11 S S 48
22==⨯=正方形, ()
2
ΔA EC 11
S A C A E 42424162
22
'=
⋅=-=-'',

ΔOBC ΔA EC OA EB S S S ''=-=四边形
()
82416216216
--=-.
∴旋转后的正方形与原正方形的重叠部分的面积为16216-.
(3)设t 秒后两点相遇,3t=16,∴t=16
3
①当点P 、Q 分别在OA 、OB 时, ∵POQ 90∠=,OP=t ,OQ=2t ∴ΔOPQ 不能为等腰三角形
②当点P 在OA 上,点Q 在BC 上时如图2,
当OQ=QP ,QM 为OP 的垂直平分线, OP=2OM=2BQ ,OP=t ,BQ=2t-4, t=2(2t-4),
解得:t=83.
③当点P 、Q 在AC 上时,
ΔOPQ 不能为等腰三角形
综上所述,当
8
t
3
=

ΔOPQ是等腰三角形
【点睛】
此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.21、骑共享单车从家到单位上班花费的时间是1分钟.
【解析】
试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.
试题解析:设骑共享单车从家到单位上班花费x分钟,
依题意得:88
1.5,
20 x x
⨯=
-
解得x=1.
经检验,x=1是原方程的解,且符合题意.
答:骑共享单车从家到单位上班花费的时间是1分钟.
22、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.
【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.
【详解】
解:(1)n%=1﹣10%﹣15%﹣35%=40%,
故答案为40;
(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,
故答案为144°;
(3)调查的结果为D等级的人数为:400×40%=160,
故补全的条形统计图如右图所示,
(4)由题意可得,树状图如右图所示,
P(奇数)
82
, 123 ==
P(偶数)
41
, 123 ==
故游戏规则不公平.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、(1)60,90°;(2)补图见解析;(3)300;(4)2 3.
【解析】
分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.
详解:(1)60;90°.
(2)补全的条形统计图如图所示.
(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551
603
+
=
,由样本估计总体,该中学学生中对食品
安全知识达到“了解”和“基本了解”程度的总人数为
1 900300
3
⨯=
.
(4)列表法如表所示,
男生男生女生女生
男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生
所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率

82
123 P==
.
点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.
24、(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处.
【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图1 中的位置为.线段AD 上靠近D 点三等分点处.
【详解】
(1)根据题意,作图得,y=4.5故答案为:4.5
(2)根据数据画图得
(3)根据图象,函数y 的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.
【点睛】
本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
25、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
【解析】
(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
()2
用待定系数法求出一次函数解析式,再代入进行运算即可.
【详解】
(1)汽车行驶400千米,剩余油量30升,
304000.170.
+⨯=
即加满油时,油量为70升.
(2)设
()0
y kx b k
=+≠
,把点
()
0,70

()
400,30
坐标分别代入得70
b=,0.1
k=-,

0.170
y x
=-+,当5
y=时,650
x=,即已行驶的路程为650千米.
【点睛】
本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.
26、(1)抽样调查(2)150°(3)180件(4)2
5
【解析】 分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
(2)由题意得:所调查的4个班征集到的作品数为:6÷90
360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而
可补全条形统计图;
(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案. 详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查.
(2)所调查的4个班征集到的作品数为:6÷90
360=24件,
C 班有24﹣(4+6+4)=10件, 补全条形图如图所示,
扇形统计图中C 班作品数量所对应的圆心角度数360°×10
24=150°;
故答案为150°;
(3)∵平均每个班24
4=6件,
∴估计全校共征集作品6×30=180件. (4)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好选取的两名学生性别相同的概率为
82=205. 点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问
题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概
型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m
n ,求出
P(A)..
27、33+3.5
【解析】
延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,
可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.
【详解】
如图,延长ED交BC延长线于点F,则∠CFD=90°,
∵tan∠DCF=i=
3
3
3,
∴∠DCF=30°,∵CD=4,
∴DF=1
2CD=2,CF=CDcos∠DCF=4×
3
23

333
过点E作EG⊥AB于点G,

3,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠
3,

33+3.5,
故旗杆AB的高度为(
3+3.5)米.
考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题。

相关文档
最新文档