A Fast Block Matching Algorithm for Video Motion Estimation Based on Particle Swarm Optimiz

合集下载

视频图像运动估计中的一维块匹配算法

视频图像运动估计中的一维块匹配算法

第33卷第3期计算机辅助设计与图形学学报Vol.33No.3 2021年3月Journal of Computer-Aided Design & Computer Graphics Mar. 2021视频图像运动估计中的一维块匹配算法刘泉洋, 刘云清*, 史俊, 颜飞, 张琼(长春理工大学电子与信息工程学院长春 130022)(**************.cn)摘要: 运动估计是视频图像压缩和视频图像修复等领域的基础问题, 传统的块匹配法搜索质量较好, 但搜索速度不够快. 针对传统块匹配法搜索速度上的不足, 提出一种快速的一维块匹配运动估计算法. 首先对运动矢量正交分解, 使用特殊权重系数矩阵对二维匹配块做降维处理, 得到2组一维特征矩阵; 然后选择一维三步搜索法作为搜索策略, 最小绝对误差和准则作为匹配准则, 使用2组一维特征矩阵搜索匹配运动矢量的2个分量; 最后将分量组成完整的运动矢量. 通过多组对比实验的结果表明, 该算法在保证定量评价PSNR的前提下, 显著提升运动估计的搜索速度, 视频清晰度越高、匹配块像素尺寸越大, 运动估计搜索速度提升越明显.关键词: 运动估计; 块匹配算法; 正交分解; 特征矩阵; 三步搜索法中图法分类号: TP391.41 DOI: 10.3724/SP.J.1089.2021.18343One-dimensional Block Matching Algorithm in Video Image Motion EstimationLiu Quanyang, Liu Yunqing*, Shi Jun, Yan Fei, and Zhang Qiong(School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022)Abstract: Motion estimation is a basic problem in the fields of video image compression and video image restoration. The traditional block matching methods have good search quality, but the search speed is not fast enough. Aiming at the shortcomings of the search speed in the traditional block matching methods, we pro-posed a fast one-dimensional block matching motion estimation algorithm. Firstly, the motion vector is or-thogonally decomposed, and the two-dimensional matching block is reduced by a special weight coefficient matrix to obtain two sets of one-dimensional feature matrices. Then the one-dimensional three step search method is selected as the search strategy. The sum of absolute differences criterion is used as the matching criterion. The two sets of one-dimensional feature matrices are used to search for the two components of the matching motion vector. Finally the two components are formed into a complete motion vector. The results of multiple sets of comparative experiments show that the search speed of motion estimation is significantly improved while the algorithm is guaranteed to quantitatively evaluate the PSNR. The higher the video defi-nition and the larger the pixel size of the matching block, the better the algorithm can improve the search speed of motion estimation.Key words: motion estimation; block matching algorithm; orthogonal decomposition; feature matrix; three-step search收稿日期: 2020-05-04; 修回日期: 2021-01-08. 基金项目: 吉林省科技厅重点项目(20190303080SF, 20190303034SF).刘泉洋(1995—), 男, 硕士研究生, 主要研究方向为传感与信号处理; 刘云清(1970—), 男, 博士, 博士生导师, 论文通讯作者, 主要研究方向为智能信息处理、自动控制; 史俊(1996—), 男, 硕士研究生, 主要研究方向为模式识别与智能系统; 颜飞(1987—), 男, 博士, 硕士生导师, 主要研究方向为智能信息处理; 张琼(1991—), 女, 博士, 讲师, 主要研究方向为数据处理.第3期刘泉洋, 等: 视频图像运动估计中的一维块匹配算法 425运动估计是视频修复和视频压缩的关键技术, 其主要目的是利用图像帧间信息修复视频并减少图像帧间的信息冗余[1-2]. 目前, 已有很多运动估计算法, 其中, 由于块匹配算法(block matching algorithm, BMA)在计算处理和硬件实现上较为容易[3], 因此被许多视频压缩编码标准所采用, 如H.261/3/4[4]和MPEG-2/4[5].BMA计算量较大, 给实时处理带来较大压力. 为了减少运动估计的计算量, 近些年有很多学者对块匹配法进行改进. 改进方式主要有2种: 一种是改变匹配块的形状和位置, 但依然使用二维匹配块进行搜索, 如局部区域匹配法[6]将中间的匹配块变为4个等大小的小方块, 其准确性和实时性比BMA略有提高. 还有许多学者针对搜索策略进行优化并提出许多不同的搜索方式, 其速度较三步搜索法(three step search, TSS)有一定的提高, 如文献[7]通过运动矢量概率分布分析, 发现了运动矢量概率分布具有除中心十字偏置特性以外的方向性特性, 提出了一种快速的双十字搜索运动估计算法, 在保持相当搜索质量的前提下, 与菱形搜索算法和十字菱形搜索算法相比, 其搜索速度均有提高. 切换的快速运动估计算法[8]采用了提前停止和选择性搜索技术来提高编码速度, 以小菱形作为起始搜索模式, 然后过渡到六边形模式, 最后使用正方形搜索模式进行细化; 该算法对于各种运动情况的视频序列具有强普适性, 速度也有所提高. 还有从其他角度优化运动估计算法, 如文献[9]以像素块为单位, 利用块内外点的比例判定前景区域, 同时引入马尔可夫聚类方法进行后处理, 有效地提高了运动对象的定位精度; 通过对目标函数引入权重系数增强对残差的鲁棒性, 以进一步提高算法的估计精度. 此外, 文献[9]基于像素掩模的3层金字塔构建序列图像, 并将改进的梯度方法引入到优化过程中, 提高了算法的实时性. 文献[10]基于运动分解估算的运动估计算法, 利用矩阵分解原理将全局运动分解成帧间运动和前帧运动, 保证了场景快速变化条件下运动估计的准确性和时效性.这些算法均采用为二维匹配块搜索匹配运动矢量的最优值, 而完整二维匹配块存在大量的信息冗余, 会增大搜索匹配过程中的计算量, 很难通过优化搜索策略和匹配块位置大幅度提升算法运算速度. 文献[11]提出基于边界灰度投影匹配的全局运动估计算法, 将图像边界水平投影和垂直投影值作为匹配特征, 较好地估计了全局运动参数; 但是其特征提取模型和搜索策略存在缺陷, 不能有效地提高搜索速度. 为了进一步提高算法的速度, 降低算法实现的复杂度, 本文提出了一维块匹配运动估计算法(one-dimensional BMA, OBMA).1 一维特征矩阵和一维TSS1.1一维特征矩阵通过对运动矢量的特点进行分析, 运动矢量精度是单位像素, 方向和大小均不确定. 因此, 本文采用将运动矢量MV分解为水平方向分量x和垂直方向分量y, 如图1所示.图1 运动矢量正交分解求解x和y需要使用一维特征矩阵X和一维特征矩阵Y, 一维特征矩阵求解过程为[]1nλ=A(1)[]1mμ=B(2)=X AP(3)T=Y BP(4) 其中, A为权重系数矩阵, λ为A的权重系数; B 为权重系数矩阵, μ为B的权重系数; P为匹配块矩阵, 形状为(),n m; X的形状为()1,m; TP 形状为(),m n; Y的形状为()1,n.为了更直观地表示一维特征矩阵的特点, 选取连续3帧1 080P测试图像, 从测试图像中提取P. λ和μ设置为1256. A的形状为()1,540, B 的形状为()1,960; 得到3幅连续测试图像的一维特征矩阵如图2所示. 其中, X的形状为()1,960, Y的形状为()1,540, 纵坐标表示一维矩阵中每个元素的数值.分析图2的发现, 连续视频图像匹配块的一维特征矩阵具有整体趋势相似的特点, 利用此特点进行运动估计, 可以有效地减少信息冗余, 提高后续搜索匹配的速度.1.2一维TSS相比于全搜索法(full search, FS)要遍历匹配块426计算机辅助设计与图形学学报 第33卷图2 连续3帧视频图像特征矩阵折线图的所有像素点, TSS 搜索点数大幅减少[12]. 有别于逐一遍历所有像素点, 如图3所示, TSS 每步搜索对搜索边界上的8个点以及正方形的中心点共9个搜索点进行比较, 搜索步长等于或者略大于最大搜索范围的一半; 上一步比较得到的最佳匹配点作为下一个新的搜索步的搜索中心. 搜索范围大于7时, 搜索步骤不止3步.图3 二维TSS本文的特征矩阵X 和特征矩阵Y 是一维矩阵, 因此需要将二维TSS 改为一维TSS. 一维TSS 的搜索步骤与二维TSS 类似, 每一搜索步对搜索边界上的2个点以及中心点共3个搜索点进行比较, 搜索步长等于或者略大于最大搜索范围的一半; 上一步比较后得到的最优匹配点作为下一步的搜索中心. 一维TSS 如图4所示.图4 一维TSS一维TSS 实际使用时需要确定搜索步数, 确定一维TSS 搜索步数就是确定搜索半径. 搜索半径r 与搜索步数steps 的关系为steps 21r =-(5) 本文算法将()M ,x y V 分解为x 和y , 因此x 和y 可以针对不同r 设置不同的steps . 测试数据使用400帧清晰度为1 080P 的连续视频图像序列, 求出运动矢量, 制作散点图如图5所示.图5 M V 散点图通过图5散点图的分析, 散点图中点的整体分布呈菱形, 水平方向的范围大于垂直方向的范围, 在实际的运动估计计算中, 可以针对不同的范围设置不同的r , 减少不必要的steps , 提高搜索速度. 以图5为例, 设水平方向的r 为I , 垂直方向的r 为J , 则应设I =31, J =15; 将其分别代入式(5)求出搜索步数分别为5步和4步.2 OBMA2.1 算法概述本文提出的OBMA 整体流程图如图6所示. 2.2 匹配块匹配块选择当前帧图像S 的中心区域, 图像S 的形状为(),N M , P 的形状为(),n m , 在S 的位置如图7所示.第3期刘泉洋, 等: 视频图像运动估计中的一维块匹配算法 427图6 算法流程图图7 匹配块前一帧图像的匹配块记为1-P , 1-P 的最大可能出现区域用R 表示, 区域R 包括区域1-P 以及水平方向的搜索半径I 和垂直方向的搜索半径J 包含的区域, R 的形状为()2,2n I m J ++, 区域R 如图8所示.图8 区域R 示意图区域P 和区域R 的计算公式分别为:,:22222222N n N n M m M m ⎛⎫=-+-+ ⎪⎝⎭P S (6)1:,:22222222N n N n M m M m J J I I -⎛⎫=--++--++ ⎪⎝⎭R S (7)其中, 1-S 是图像S 的前一帧图像, R 是图像1-S 匹配块1-P 的最大可能出现区域.2.3 特征矩阵A 和B 的λ和μ设为灰度级的倒数. 8位深度的图像灰度级为256, 设λ=μ=1. 区域R 的特征矩阵为R 1(+2)1256n J ⎡⎤=⎢⎥⎣⎦X R (8)T R 1(+2)1256m I ⎡⎤=⎢⎥⎣⎦Y R (9)其中, R X 和R Y 为区域R 的特征矩阵; R X 形状为()1,2m I +,R Y 形状为()1,2n J +.特征矩阵组X 和i X 分别为1()1256n ⎡⎤=⎢⎥⎣⎦X P (10)()R :i I i m I i =+++X X(11)其中, i X 的形状为()1,m ; i 为水平方向的偏移量.特征矩阵组Y 和j Y 分别为T 1()1256m ⎡⎤=⎢⎥⎣⎦Y P (12)()R :j J j n J j =+++Y Y(13)其中, j Y 的形状为()1,n ; j 为垂直方向的偏移量.2.4 搜索最优值搜索策略使用一维TSS, 匹配准则使用SAD [13]. 以运动矢量分量x 的搜索步数等于3为例, 具体搜索步骤如下:输入. 特征矩阵X 与i X .输出. 运动矢量分量x .Step1. 以0中心搜索点, 加上中心点左右步长为4的2个搜索点, 计算3个搜索点X 与i X 的SAD.Step2. 将上一步的最佳匹配点设为中心搜索点, 计算中心点左右步长为2的2个搜索点X 与i X 的SAD, 与上一步最佳匹配点比较,更新最佳匹配点.Step3. 步长改为1, 同上一步, 最佳匹配点为x .运动矢量分量x 和运动矢量分量y 除了一维TSS 的搜索步数不同, 其他搜索步骤均相同, 这里不再赘述.428计算机辅助设计与图形学学报 第33卷3 实验结果为了验证本文提出OBMA, 选择主观评价与客观指标相结合的评价方式. 主观评价为不同算法运动补偿后的前后帧差值图像; 客观评价指标选择峰值信噪比(peak signal to noise ratio, PSNR)和搜索时间. PSNR 将未加入运动补偿的前后帧差值图像作为原图像, 加入运动补偿后的前后帧差值图像为处理后图像.3.1 实验平台本文进行实验的计算机配置为AMD Ryzen52600 CPU(3.40 GHz), 内存为16 GB; 操作系统为Windows 10; 编程环境为Python 3.6.3.2 主观评价为了直观地对比本文的OBMA 与BMA 的实际效果, 选取测试视频图像序列中5个不同场景, 将未加入运动补偿的前后帧差值图像与加入运动补偿后的前后帧差值图像进行对比. 考虑差值图像对比度较低, 为了提高差值图像的对比度, 对样本的结果进行直方图均衡化处理, 最后得到对比度增强后的差值图像如图9所示. 图9a 所示为与前一帧参考帧的差值图像; 图9b 所示为加入a. 无运动补偿b. BMA [3]c.OBMA图9 不同场景下前后帧差值图像第3期刘泉洋, 等: 视频图像运动估计中的一维块匹配算法 429BMA 运动补偿后与前一帧参考帧的差值图像; 图9c 所示为加入OBMA 运动补偿后与前一帧参考帧的差值图像.通过图9中5个不同场景下运动补偿后的差值图像对比分析发现, 本文提出的运动估计算法的实际补偿效果与传统块匹配法基本一致.3.3 客观评价客观评价使用1 080P 和720P 测试视频中的连续50帧视频图像序列作为测试样本. 对比实验分别为相同清晰度测试视频图像序列、不同匹配块比例; 相同匹配块、不同清晰度测试视频图像序列.为了验证匹配块大小对算法性能的影响, 测试实验选择1 080P 测试视频图像序列, 2种不同尺寸的匹配块作对比实验, 分别是测试图像尺寸的1/2(540像素×960像素)和1/4(270像素×480像素). 图10a 所示为匹配块尺寸为1/2(540像素×960像素)时, OBMA 与BMA 的PSNR 和运行时间对比图; 图10b 所示为匹配块尺寸为1/4(270像素×480像素)时, OBMA 与BMA 的PSNR 和运行时间对比图.为了验证视频清晰度对算法性能的影响, 本文选择720P 测试视频与上述1 080P 测试视频进行对比实验. 图10c 是匹配块尺寸为1/4(180像素×320像素)时, OBMA 与BMA 的PSNR 和运行时间对比图.图10 BMA 和OBMA 的PSNR 和运行时间对比对表1中的实验结果进行分析: 当匹配块尺寸和测试视频清晰度相同时, OBMA 与BMA 的PSNR 基本相同, 这说明它们具有同样搜索质量. 匹配块为测试图像尺寸的1/2(540像素×960像素),OBMA 的平均运行时间是BMA 的29.5%, 搜索速度提高238.6%; 匹配块为测试图像尺寸的1/4(270像素×480像素), OBMA 的平均运行时间是BMA 的59.6%, 搜索速度提高67.64%; 匹配块为测试图像尺寸的1/4(180像素×320像素), OBMA 的平均运行时间是BMA 的80.1%, 搜索速度提高24.72%.由上述数据分析可知, 与传统的BMA 相比,在搜索质量相同的情况下, OBMA 实时性优于BMA. 运动估计使用的匹配块尺寸越大, 搜索速度提高越明显; 视频清晰度越高, 搜索速度提高越表1 2种算法连续5帧视频图像序列关键指标横向对比 算法 分辨率匹配块平均PSNR/dB 平均搜索 时间/s 1 080P 1/2 28.87 0.143 05 1 080P 1/428.840.052 59720P 1/4 27.36 0.016 85 1 080P1/2 28.83 0.042 24 1 080P 1/429.160.031 37OBMA 720P1/4 27.42 0.013 51明显. 本文提出OBMA 更适用于清晰度较高的视频. 随着视频分辨率的不断提高, 2K, 4K 和8K 视频的普及, 运动估计需要的块尺寸也会随之增大, 传统BMA 庞大的数据量会占据更多的资源, 而使用本文提出OBMA 可以有效地解决此问题.BMA [3]430 计算机辅助设计与图形学学报第33卷4 结语目前主流运动估计算法依然停留在直接使用二维视频图像的二维信息直接计算运动矢量, 本文通过对视频帧间相关性的研究发现, 经过特定的权重系数矩阵对二维匹配块降维后, 一维特征矩阵具备二维矩阵的部分特征, 使用一维特征矩阵代替二维矩阵进行运动估计, 减少计算量. 通过对比实验表明, 本文提出的OBMA与BMA相比, 在搜索质量相当的前提下, 能有效地提高运动估计的计算速度, 具有一定实用价值.参考文献(References):[1] Yu Yinghuai, Wang Jinrong. High accuracy sub-pixel globalmotion estimation based on upsampled gradient cross-correla-tion algorithm[J]. Journal of Image and Graphics, 2012, 17(12):1492-1499(in Chinese)(余应淮, 王锦荣. 高精度亚像素全局运动估计的上采样梯度互相关算法[J]. 中国图象图形学报, 2012, 17(12): 1492-1499)[2] Li Ziyin, Zhu Shanan. A fast efficient partial distortion searchalgorithm for block motion estimation[J]. Journal of Image andGraphics, 2006, 11(4): 480-485(in Chinese)(李子印, 朱善安. 一种快速高效的部分失真块运动估计搜索算法[J]. 中国图象图形学报, 2006, 11(4): 480-485)[3] Zhao N N, O’Connor D, Basarab A, et al. Motion compensateddynamic MRI reconstruction with local affine optical flow es-timation[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3050-3059[4] Mukaddim R A, Meshram N H, Mitchell C C, et al. Hierarchi-cal motion estimation with Bayesian regularization in cardiacelastography: simulation and in-vivo validation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66(11): 1708-1722[5] Qin Rong, Ma Zhiqiang, Zhang Xiaoyan, et al. A fast and ro-bust global motion estimation algorithm[J]. Journal of Air Force Engineering University: Natural Science Edition, 2012,13(6): 55-59(in Chinese)(秦荣, 马志强, 张晓燕, 等. 一种快速鲁棒的全局运动估计算法[J]. 空军工程大学学报: 自然科学版, 2012, 13(6): 55-59)[6] Tang Jialin, Zheng Jiefeng, Li Xiying, et al. Video stabilizationalgorithm based on feature matching and motion compensa-tion[J]. Application Research of Computers, 2018, 35(2): 608- 610(in Chinese)(唐佳林, 郑杰锋, 李熙莹, 等. 基于特征匹配与运动补偿的视频稳像算法[J]. 计算机应用研究, 2018, 35(2): 608-610) [7] Liu Haihua, Lei Yi, Xie Changsheng. Fast block-matching mo-tion estimation based on a dual-cross search algorithm[J]. Comp-uter Research and Development, 2006, 43(9): 1666-1673(in Chinese)(刘海华, 雷奕, 谢长生. 双十字搜索算法的快速块匹配运动估计[J]. 计算机研究与发展, 2006, 43(9): 1666-1673) [8] Li Hejun, Li Heping, Li Jianxiong. A multi-pattern switchingalgorithm for fast motion estimation[J]. Journal of Electronics & Information Technology, 2013, 35(3): 689-695(in Chinese)(李贺军, 李和平, 李建雄. 一种采用多模式切换的快速运动估计算法[J]. 电子与信息学报, 2013, 35(3): 689-695) [9] Li Qiaoliang, Wang Guoyou, Zhang Guilin, et al. Accurateglobal motion estimation based on pyramid with mask[J].Journal of Computer Aided Design & Computer Graphics, 2009, 21(6): 758-762(in Chinese)(李乔亮, 汪国有, 张桂林, 等. 基于掩模金字塔的高精度全局运动估计算法[J]. 计算机辅助设计与图形学学报, 2009, 21(6): 758-762)[10] Zhang Maolei, Chen Jianguo, Yuan Hongyong, et al. Videostabilization on a six-rotor aircraft platform[J]. Journal of Tsinghua University: Science and Technology, 2014, 54(11): 1412-1416(in Chinese)(张毛磊, 陈建国, 袁宏永, 等. 六旋翼飞行平台的视频稳像技术[J]. 清华大学学报: 自然科学版, 2014, 54(11): 1412-1416) [11] Zhang T, Fei S M, Li X D, et al. Fast global motion estimationand moving object extraction algorithm in image sequences[J].Journal of Southeast University: English Edition, 2008, 24(2): 192-196[12] Li R X, Zeng B, Liou M L. A new three-step search algorithmfor block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(4): 438-442 [13] Xu Jin. Research on key technology of digital restoration ofmotion picture film[D]. Shanghai: Shanghai Jiaotong Univer-sity, 2009(in Chinese)(徐进. 电影胶片数字修复关键技术研究[D]. 上海: 上海交通大学, 2009)。

Colour FAST (CFAST) match fast affine template matching for colour images

Colour FAST (CFAST) match fast affine template matching for colour images

two colour images I1 and I2, the colour SAD (CSAD) is calculated as dT (I1 , I2 ) = 1 n2 1 F (I1 (p), I2 (T (p)))
p[I1
(4)
⎧ R R G G (|(I1 (p) − I2 (T (p))| + |I1 (p) − I2 (T (p))| ⎪ ⎪ ⎨ B B (p) − I2 (T (p))|) ∗ Ds(p), +|I1 F (I1 (p), I2 (T (p))) = ⎪ if (Dist(C (I1 (p)), I2 (T (p))) ,= r) ⎪ ⎩ 1, if (Dist(C (I1 (p)), I2 (T (p))) . r)
Colour FAST (CFAST) match: fast affine template matching for colour images
Di Jia, Jun Cao , Wei-dong Song, Xiao-liang Tang and Hong Zhu
Fast-match is a fast and effective algorithm for template matching. However, when matching colour images, the images are converted into greyscale images. The colour information is lost in this process, resulting in errors in areas with distinctive colours but similar greyscale values An improved fast-match algorithm that utilises all three RGB channels to construct colour sum-of-absolute-differences (CSAD) is proposed, thus improving the sum-of-absolute-differences distance used in fast-match. In this algorithm, each pixel in the image is categorised by clustering them using density-based spatial clustering of applications with noise (DBSCAN) algorithm over the RGB vector, then the number of pixels in each category and the cumulative RGB values for each RGB channel are calculated to identify the centroid of each category. The RGB vector centroid is used as the CSAD decision criteria, and inverse of number of pixels in each category is used as the differentiating coefficient to construct a new similarity measure. Experiment results demonstrate that this algorithm has significant higher accuracy for matching colour images than the original fast-match algorithm.

施耐德电气低压配电产品选型指南说明书

施耐德电气低压配电产品选型指南说明书

ABB EntrelecSommaireBU0402061SNC 160 003 C0205SummarySelection guide ....................................................................................page 1Screw clamp ........................................................................................page 2Feed through and ground terminal blocks .......................................................page 2 - 5 to 10Single pole, multiclamp terminal blocks..........................................................................page 4Feed through terminal blocks - Double-deck................................................................page 11Feed through terminal blocks - Triple-deck...................................................................page 12Three level sensor, terminal blocks without ground connection...................................page 13Three level sensor, terminal blocks with ground connection ........................................page 14Terminal blocks for distribution boxes, double deck + protection .......................page 15 - 16Interruptible terminal blocks for neutral circuit......................................................page 17 - 18Distribution : phase, ground terminal blocks .......................................................page 19 to 21Single pole or four pole distribution blocks..........................................................page 22 to 24Heavy duty switch terminal blocks with blade......................................................page 25 - 26Heavy duty switch terminal blocks with push-turn knob..............................................page 26Heavy duty switch terminal blocks with contact control pull lever...............................page 29Heavy duty switch terminal blocks with blade - Double-deck .....................................page 27Fuse holder terminal blocks for 5x20 mm (.197x.787 in.) and 5x25 mm (.197x.984 in.)or 6.35x25.4 mm (1/4x1 in.) and 6.35x32 mm (1/4x11/4 in.) fuse s.........................................page 28 - 29Fuse holder terminal blocks for 5x20 mm (.197x.787 in.) and 5x25 mm (.197x.984 in.) fuses -Double-dec k.....................................................................................................................page 27Terminal blocks for test circuits with sliding bridge ......................................................page 30Terminal blocks for metering circuits.............................................................................page 31ESSAILEC terminal blocks.............................................................................................page 32Safety connection terminal blocks ................................................................................page 33Miniblocks for EN 50045 (DIN 46277/2) rail ..........................................................page 34 - 35Spring clamp ......................................................................................page 36Angled terminal blocks - Feed through and ground .....................................................page 36Feed through and ground terminal blocks ...........................................................page 37 to 41Feed through terminal blocks - Double deck ................................................................page 42Terminal blocks for sensors / actuators ........................................................................page 42Terminal blocks for distribution boxes...........................................................................page 43Switch terminal blocks for neutral conductor........................................................page 44 - 45Heavy duty switch terminal blocks with blade..............................................................page 46Fuse holder terminal blocks for 5x20 mm (.197x.787 in.) and 5x25 mm (.197x.984 in.) fuse s....page 47Miniblocks Spring clamp ......................................................................................page 48 to 52ADO - Screw clamp ...........................................................................page 53Feed through and ground terminal blocks ...........................................................page 53 to 56Feed through and ground terminal blocks - Double-deck............................................page 57Heavy duty switch terminal blocks with blade..............................................................page 58Fuse holder terminal blocks for 5x20 mm (.197x.787 in.) and 5x25 mm (.197x.984 in.) fuse s ......page 59 - 60Miniblocks ADO - Screw clamp............................................................................page 61 to 65ADO - ADO .........................................................................................page 66Feed through and ground terminal blocks ...........................................................page 66 to 69Feed through and ground terminal blocks - Double-deck............................................page 70Terminal blocks for sensors / actuators ........................................................................page 71Heavy duty switch terminal blocks with blade..............................................................page 72Fuse holder terminal blocks for 5x20 mm (.197x.787 in.) and 5x25 mm (.197x.984 in.) fuse s ......page 73 - 74Miniblocks ADO - ADO .........................................................................................page 75 to 79Accessories ADO ...........................................................................................................page 80Power terminal blocks .............................................................page 81 to 84Quick-connect terminal blocks .................................................page 85 - 86Terminal blocks for railway applications ................................page 87 to 97Pluggable terminal blocks .....................................................page 98 to 100Accessories......................................................................................page 101Marking..................................................................................page 102 to 104GrossAutomation(877)268-3700··*************************PR30PR3.Z2PR3.G2PR5PR4PR1.Z2Rated wire size :Rated wire size :Rated wire size :Rated wire size :Mounting railsShield terminals forcollector barMarking tableHorizontal Rated wire size :0.5 to 16 mm² (22 to 8 AWG)Rated wire size :Rated wire size :Rated wire size :P a g e t o 29e30 t o 32ag e e3P a ge 8 t o 60a g e6t o 6574P a ge 7 t o 79P a ge 9P a g P a gGrossAutomation(877)268-3700··*************************2ABB Entrelecd010830402051SNC 160 003 C0205MA 2,5/5 - 2.5 mm² blocks - 5 mm .200" spacingAccessoriesGrossAutomation(877)268-3700··*************************3ABB Entrelec D010740402051SNC 160 003 C0205M 4/6 - 4 mm² blocks - 6 mm .238" spacingAccessoriesGrossAutomation(877)268-3700··*************************4ABB EntrelecD011030402051SNC 160 003 C0205M 4/6.3A - 4 mm² blocks - 6 mm .238" spacingM 4/6.4A - 4 mm² blocks - 6 mm .238" spacingGrossAutomation(877)268-3700··*************************5ABB Entrelec D010840402051SNC 160 003 C0205M 6/8 - 6 mm² blocks - 8 mm .315" spacingAccessoriesGrossAutomation(877)268-3700··*************************6ABB EntrelecD010850402051SNC 160 003 C0205M 10/10 - 10 mm² blocks - 10 mm .394" spacingAccessoriesGrossAutomation(877)268-3700··*************************7ABB Entrelec D010860402051SNC 160 003 C0205M 16/12 - 16 mm² blocks - 12 mm .473" spacingAccessoriesGrossAutomation(877)268-3700··*************************8ABB EntrelecD010870402051SNC 160 003 C0205M 35/16 - 35 mm² blocks - 16 mm .630" spacingGrossAutomation(877)268-3700··*************************M 95/26 - 95 mm² blocks - 26 mm 1.02" spacingM 70/22.P - 70 mm² ground block with rail contact - 22 mm .630" spacingSelection35 mm / 1.37"12 mm / 0.47"14-30 Nm / 124-260 Ib.in 1.2-1.4 Nm / 10.6-12.3 Ib.in1000600600415400400577070240 mm 2500 MCM 500 MCM 10 mm 2 6 AWG 6 AWG IEC UL CSANFC DIN0.5 - 160.5 - 100 AWG-600 MCM 2 AWG-500 MCM 50 - 30035 - 24018-6 AWGD 150/31.D10 - 150 mm² blocks - 31 mm 1.22" spacingCharacteristicsD 240/36.D10 - 240 mm² blocks - 36 mm 1.41" spacingSelectionWire size main circuit mm² / AWG VoltageV Current main circuit A Current outputARated wire size main circuit mm² / AWG Rated wire size outputmm² / AWG Wire stripping length main circuit mm / inches Wire stripping length output mm / inches Recommended torque main circuit Nm / Ib.in Recommended torque outputNm / Ib.inSolid Stranded Solid Stranded Wire size output mm² / AWG9.5 mm / .37"0.5-0.8 Nm / 4.4-7.1 Ib.in5003003003220204 mm 212 AWG12 AWG0.2 - 422-12 AWG 22-12 AWG 0.22 - 4IEC ULCSANFC DINCharacteristicsWire size mm² / AWGSolid Stranded D 4/6.T3 - 4 mm² blocks - 6 mm .238" spacingSelectionVoltage V CurrentARated wire sizemm² / AWG Wire stripping length mm / inches Recommended torqueNm / Ib.inM 4/6.T3.P - 4 mm² block - 6 mm .238" spacingD 2,5/6.D - 2.5 mm² blocks - 6 mm .238" spacingD 2,5/6.DL - 2.5 mm² blocks - 6 mm .238" spacingD 2,5/6.DPA1 - 2.5 mm² blocks - 6 mm .238" spacingD 2,5/6.DPAL1 - 2.5 mm² blocks - 6 mm .238" spacingD 4/6... - 4 mm² blocks - 6 mm .238" spacingD 4/6.LNTP - 4 mm² closed blocks - 17.8 mm .700" spacingMA 2,5/5.NT- 2.5 mm² block - 5 mm .200" spacingAccessories**SFB2 : 16 to 35 mm² 6 to 2 AWG H= 3 mm/.12"M 10/10.NT- 10 mm² block - 10 mm .394" spacingAccessories(1) Except for M 35/16 NT (closed block)*SFB1 : 0.5 to 35 mm² 18 to 2 AWG H= 7 mm/.28"**SFB2 : 16 to 35 mm² 6 to 2 AWG H= 3 mm/.12"MB 4/6... - 4 mm² blocks - 6 mm .238" spacingMB 6/8... - 6 mm² blocks - 8 mm .315" spacingMB 10/10... - 10 mm² blocks - 10 mm .394" spacingBRU 125 A - 35 mm² block - 27 mm 1.063" spacingBRU 160 A - 70 mm² block - 35.2 mm 1.388" spacingBRU 250 A - 120 mm² blocks - 44.5 mm 1.752" spacingBRU 400 A - 185 mm² block - 44.5 mm 1.752" spacingAccessoriesAccessoriesBRT 80 A - 16 mm² block - 48 mm 1.89" spacingBRT 125 A - 35 mm² block - 48 mm 1.89" spacingBRT 160 A - 50 mm² block - 50 mm 1.97" spacing9.5 mm / .37"0.5-0.6 Nm / 4.4-5.3 Ib.in4003003002010104 mm 210 AWG 12 AWG 0.5 - 422-10 AWG20-12 AWG0.5 - 2.5IEC ULCSANFC DINMA 2,5/5.SNB - 2.5 mm² blocks - 5 mm .200" spacingCharacteristicsM 4/6.SNB - 4 mm² blocks - 6 mm .238" spacingSelectionWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping length mm / inches Recommended torqueNm / Ib.inSolid StrandedM 6/8.SNB - 6 mm² blocks - 8 mm .315" spacing - blade switchingSelectionAccessoriesM 4/8.D2.SF - for fuses 5x20 mm .197x.787 in. and 5x25 mm .197x.984 in. -4 mm² blocks - 8 mm .315" spacingM 4/6.D2.SNBT - 4 mm² blocks - 6 mm .238" spacing - blade switchM 4/8.SF- 4 mm² blocks - 8 mm .315" spacingM 4/8.SFL - 4 mm² blocks - 8 mm .315" spacing12 mm / .472"1.2-1.4 Nm / 10.6-12.3 Ib.in800(1)60060016252510 mm 210 AWG8 AWG0.5 - 1622-10 AWG 22-8 AWG 0.5 - 10IEC ULCSANFC DINCBD2SML 10/13.SF - for fuses 6.35x25.4 mm 1/4x1 in. and 6.35x32 mm 1/4x11/4 in. -10 mm² blocks - 13 mm .512" spacingSelectionAccessoriesCharacteristicsWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping length mm / inches Recommended torqueNm / Ib.inSolid Stranded (1) Insulation voltage of terminal block - operating voltage : according to fuse.M 4/6.D2.2S2... - 4 mm² blocks - 6 mm .238" spacing11 mm / .43"0.8-1 Nm / 7.1-8.9 Ib.in50060030306 mm 28 AWG0.5 - 1022-8 AWG0.5 - 6IECULCSANFC DINM 6/8.ST... - 6 mm² blocks - 8 mm .315" spacingCharacteristicsWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping length mm / inches Recommended torqueNm / Ib.inSolid Stranded M 6/8.STA - 6 mm² blocks - 8 mm .315" spacing(3)Only for M 6/8.STAM 4/6.ST- 4 mm² blocks - 6 mm .236" spacingBNT...PC...(2) Only for M10/10.ST-SnThe PREM IUM solution for testing the secondary circuits of current or voltage transformers.ESSAILEC, approved by the major electricity utilities, remains the premium choice for the energy market.Implemented in the transformers secondary circuits, ESSAILEC thanks to its intelligent “make before break” design eases and secures any intervention. Cutting the energy supply is avoided with zero risk for the operator.The plug and socket connection cuts cost installation as well as in-situ wiring errors. ESSAILEC is ideal for the wiring of sub-assemblies in the secondary circuits.ESSAILEC terminal blocksProtection relays,Protection relays,Testing :The ESSAILEC socket supplies energy to the protection or counting devices. The insertion of the test plug, which is connected to the measurement equipment, allows the testing of the devices, without perturbing the circuit.ESSAILEC blocks are well adapted to current or voltage measurement :-Current sockets with make before break contacts and pre-wired test plug for current measures-Voltage sockets with open contacts and pre-wired test plug for voltage measures-Up to 4 ammeters or 4 voltmeters connected to the test plugDistributing :The ESSAILEC plug is continuously mounted on the socket to supply current or voltage to secondary circuits sub assemblies.ESSAILEC blocks extreme versatility allow :-Safe current distribution with current socket with mobile contacts since the secondary circuit is not cut when plug is removed-Voltage or polarity distribution with dedicated voltage or polarity socket with closed contactESSAILEC is designed to offer :Great flexibility :-Connection multi contacts « plug and play »-Panel, rail, rack fixed mounting or stand-alone connector -Two wiring technologies, up to 10 mm²Extreme reliability :-Non symmetric blocks -Coding accessories -IP20 design -Locking system -Sealed coverR S T NFor technical characteristics and complete part numbers list, please ask for the ESSAILEC catalog10005006003225254 mm 21.65 mm²12 AWG 13 mm / .51"IECB.SCSANFC DINTS 50-180.5 - 0.8 Nm /4.4 - 7.1 Ib.in0.2 - 422-12 AWG0.22 - 40.5 - 1.50.28 - 1.6580050060041252562.512 AWG 13 mm / .51"0.8 - 1 Nm / 7.1 - 8.9 Ib.inIECB.S CSANFC DINTS 50-180.5 - 1020-12 AWG0.5 - 60.28 - 2.590050060046406510 mm 26 mm² 6 AWG 14 mm / .55"IECB.S UL/CSANFC DINTS 50-181.2 - 1.4 Nm / 10.6 - 12.3 Ib.in0.5 - 1620 - 6 AWG0.5 - 100.28 - 6M 4/6.RS - 4 mm² blocks - 6 mm .238" spacingCharacteristicsWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping lengthmm / inches Recommended torque (screw)Nm / Ib.inSolid wire Stranded wire Solid wire Stranded wire Screw clampLugsM 6/8.RS - 6 mm² blocks - 8 mm .315" spacingCharacteristicsWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping lengthmm / inches Recommended torque (screw)Nm / Ib.inSolid wire Stranded wire Solid wire Stranded wire Screw clampLugspending M 10/10.RS - 10 mm² blocks - 10 mm .394" spacingCharacteristicsWire size mm² / AWGVoltage V CurrentARated wire sizemm² / AWG Wire stripping lengthmm / inches Recommended torque (screw)Nm / Ib.inSolid wire Stranded wire Solid wire Stranded wire Screw clampLugspending SelectionAccessories(1) Only for block M 4/6.RS (4) For blocks M 4/6.RS and M 6/8.RS(2) Only for block M 6/8.RS(3) Only for block M 10/10.RSDR 1,5/4 - 1.5 mm² blocks - 4 mm .157" spacingDR 1,5/5... - 1.5 mm² blocks - 5 mm .200" spacing。

视频编码中的运动估计算法探索

视频编码中的运动估计算法探索

视频编码中的运动估计算法探索视频编码是指将连续的视频信号转换为数字形式,以便于存储、传输和处理的过程。

视频编码的核心任务之一是压缩视频数据,以减小文件大小或减少带宽需求。

其中,运动估计是视频编码中一个关键的环节,它能够找到连续视频帧之间的运动信息,并将其利用于压缩算法中。

本文将探索视频编码中常用的运动估计算法及其原理、优缺点以及应用。

一、运动估计的原理及作用运动估计是基于视频序列中的帧间差异进行的。

它通过比较当前帧与参考帧之间的差异来计算运动矢量(Motion Vector,MV)。

运动矢量表示了目标在时域上的运动特征。

在编码时,只需保留运动矢量和差异帧,从而实现视频压缩。

运动估计的作用是找到当前帧与参考帧之间的最佳匹配,以便能够准确描述目标的运动状态。

通过将运动估计的信息传递给解码器,解码器能够使用这些信息来还原出原始视频帧,从而实现视频的连续播放。

二、全局运动估计算法1. 块匹配算法(Block Matching Algorithm,BMA)块匹配算法是最常用的全局运动估计算法之一。

其基本思想是将当前帧划分为若干个块,并在参考帧中寻找与之最佳匹配的块,从而得到对应的运动矢量。

BMA算法简单有效,但在处理快速运动和复杂运动时存在一定的局限性。

2. 平方和差分算法(Sum of Absolute Difference,SAD)平方和差分算法是BMA算法的一种改进。

它通过计算块中像素值的差的平方和来度量差异,从而找到最小差异的块作为最佳匹配。

SAD算法在提高运动估计的精度方面有所帮助,但在速度上相对较慢。

三、局部运动估计算法1. 区域匹配算法(Region Matching Algorithm,RMA)区域匹配算法是一种基于像素的非全局运动估计算法。

它将当前帧的图像划分为不同的区域,并寻找参考帧的区域进行匹配。

RMA算法能够更好地处理复杂运动情况,但计算量和时间复杂度较高。

2. 梯度法梯度法是一种基于局部像素间梯度变化的运动估计方法。

算法的论文

算法的论文

算法的论文以下是一些著名的算法论文:1. "A Fast Algorithm for Particle Simulations" - Leslie Greengard, Vladimir Rokhlin(1987)该论文提出了快速多极子方法(Fast Multipole Method, FMM),广泛应用于粒子模拟和计算机图形学中。

2. "An Efficient Parallel Algorithm for Convex Hulls in Two Dimensions" - Timothy Chan(1996)该论文提出了线性时间复杂度的二维凸包算法,对于计算凸包非常高效。

3. "A Fast Algorithm for Approximate String Matching" - Wu, S.M.; Manber, U.(1992)该论文提出了经典的字符串匹配算法——Wu-Manber算法,通过利用位运算技术,实现了高效的近似匹配。

4. "PageRank: Bringing Order to the Web" - Sergey Brin, Lawrence Page(1998)该论文介绍了PageRank算法,用于评估网页的重要性,为谷歌搜索引擎的核心算法。

5. "An O(n log n) Algorithm for Implicit Dual Graph Enumeration" - Jonathan Shewchuk(1997)该论文提出了计算三维内隐图的线性对数时间复杂度算法,为计算机图形学中的几何建模和网格生成提供了重要基础。

6. "A Fast Algorithm for the Belief Propagation" - Yair Weiss (2001)该论文提出了信念传播算法(Belief Propagation),在概率图模型和机器学习中得到广泛应用。

MatchAlign

MatchAlign

Table 2: Additional functions for PairwiseAlignedFixedSubject objects.
matchPDict Utilizes a fast string matching algorithm for multiple patterns. Finds all occurrences with up to the specified # of mismatches. Supports removal of repeat masked regions. Produces limited output: # of times a pattern matches and where they occur. Does not support insertions or deletions. Uses a mismatch penalty scheme.
Sequence Alignment of Short Read Data using Biostrings
Patrick Aboyoun Fred Hutchinson Cancer Research Center Seattle, WA 98008 18 November 2009
Contents
1 Introduction 2 Setup 3 Pattern and PWM Matching along a Genome 4 Finding Possible Contaminants in the Short Reads 5 Aligning Bacteriophage Reads 6 Session Information 1 3 4 6 17 19
vmatchPattern : matchPattern, countPattern, vmatchPattern, vcountPattern, neditStartingAt, neditEndingAt, isMatchingStartingAt, isMatchingEndingAt, which.isMatchingStartingAt, which.isMatchingEndingAt pairwiseAlignment : pairwiseAlignment, stringDist matchPWM : matchPWM, countPWM OTHER : matchLRPatterns (finds singleton paired-end matches), trimLRPatterns (trims left and/or right flanking patterns), matchProbePair (finds theoretical amplicons), For detailed information on any of these functions, use help( function name ) from within R. Of the functions listed above, the pairwiseAlignment function stands out because it creates the most complex output object. When producing more than just the alignment score, this output (either a PairwiseAlignedXStringSet or a PairwiseAlignedFixedSubject ) can be processed by a number of helper functions including those listed in Tables 1 & 2 below.

MPEG4 编码器流程

MPEG4 编码器流程

一、MPEG4 编码器流程MPEG-4视频编码器的实现步骤首先读取一帧数据,取一个宏块,根据编码控制选择编码类型,是intra 帧内编码,还是inter 帧间编码。

如果是I 帧,所有宏块都是intra 帧内编码,则读取的宏块数据直接进入DCT 、Q(量化)、DC/AC 预测(直流系数与交流系数)、RLC(行程编码)并与其他信息一起合成形成码流;如果是P 帧,先进行ME(运动估计),然后判断是intra 帧内编码,还是inter 帧间编码。

如果是intra 帧内编码,则直接利用宏块本身进行DCT 等一系列数据处理;如果是inter 帧间编码,则将经过运动估计得到的运动矢量MV 传送给MC(运动补偿)单元,结合帧缓存中的上一帧的重建帧数据与当前宏块的像素值做运算,得到残差数据,然后对残差值进行DCT 等处理。

在编码过程中,有一个重建图像的过程,其得到的数据存放在帧缓存中,作为下一帧的参考帧。

二、各层参数(一)MPEG-4视频数据流结构:其位流语法从上到下大致可以分为:视觉对象序列(Visual Object Sequence),视觉对象(Visual Object),视频对象层(Video Object Layer),视频对象平面层(Group of Video Object Plane ) 帧缓存VLC 多路复合编码控制MVME MCDCT Q IQIDCTRLC intrainter 编码模式量化参数DC/AC 预测扫描取一个宏块读取一帧数据视频对象平面(Video Object Plane)。

VS(Visual Object Sequence):由一系列VO视频对象组成。

场景是一个或多个声视频对象的组合。

场景的逻辑结构可以用一棵树表示,树中的节点是声视频对象。

MPEG4系统用二进制场景格式BIFS描述场景中声视频对象的空间和时间位置及它们之间的关系。

MPEG4的视频比特流提供了对场景的分层描述。

翻译A fast learning algorithm for deep belief nets

翻译A fast learning algorithm for deep belief nets

基于深度置信网络的快速学习算法A fast learning algorithm for deep belief nets摘要本文展示了如何运用“互补先验”来消除使得在多隐层密度连接型置信网络中推理困难的explaining away现象。

利用互补先验,我们提出了一个快速贪婪算法,用于学习深度有向置信网络,每次学习一层,为最顶上的两层提供无向关联记忆。

快速贪婪算法用来初始化一个更慢的的学习过程,这个过程是用wake-sleep算法的对比版本来微调权值。

在微调之后,一个三层隐含层的网络生成了一个很好的手写数字图像和其它记号的联合分布生成模型。

这个生成模型能比判别式学习算法更好的分类数字。

这些存在数字的低维副本通过顶层关联记忆的自由能量地形的长峡谷建模,利用有向关系去表现脑海中的关联记忆,很容易找到这些峡谷。

1、介绍在一些含有多个隐层的密度连接有向置信网络中,学习是困难的,因为给定一个数据向量,要推断隐含活动的条件分布是很难的。

变分方法简单地去近似真实的条件分布,但是这些近似可能很差,特别是在假设先验独立的最深的隐层。

而且,很多学习仍需要所有的参数一起学习,造成学习时间随参数增加而剧增。

图1 这个网络用来建模数字图像的联合分布。

我们设计了一个模型,模型的顶部两层来自于一个无向联想记忆(见图1),剩下的隐层来自于一个有向无环图,这个有向无环图能将联想记忆转换为像像素点那样的观察变量的。

这种混合模型有很多优点:1、可以利用快速贪婪算法来快速的寻找一个很好的参数集合,甚至是有数百万参数和很多隐层的深度网络。

2、学习算法是无监督的,但是可以通过学习一个生成标记和数据的模型,从而使的模型同样适用于有标记的样本。

3、提出微调算法来学习优秀的生成模型,是一个优于用于手写数字MNIST 数据库的判别式算法的算法。

4、生成模型更易于解释深度隐层的分布情况。

5、用于形成认知的推断又快又准。

6、学习算法是本地的:神经元强度的调整仅取决于前端神经元和后端神经元的状态。

斑马技术公司DS8108数字扫描仪产品参考指南说明书

斑马技术公司DS8108数字扫描仪产品参考指南说明书
Chapter 1: Getting Started Introduction .................................................................................................................................... 1-1 Interfaces ....................................................................................................................................... 1-2 Unpacking ...................................................................................................................................... 1-2 Setting Up the Digital Scanner ....................................................................................................... 1-3 Installing the Interface Cable .................................................................................................... 1-3 Removing the Interface Cable .................................................................................................. 1-4 Connecting Power (if required) ................................................................................................ 1-4 Configuring the Digital Scanner ............................................................................................... 1-4

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

fast算子的快速配准

fast算子的快速配准

1
Input 1
Matching, M Output 1 switching fabric
N 1
Output N
Input N
N
scheduler
Fig. 1.
Logical structure of an input-queued cell switch
I. I NTRODUCTION Study the past if you would divine the future. - Confucius (c. 551-c. 479 BC) Over the past few years the input-buffered switch architecture has become dominant in high speed switching. This is mainly due to the fact that the memory bandwidth of its packet buffers is very low compared to that of an output-queued or a shared-memory architecture. Furthermore, for an n × n switch, an output-buffered architecture requires a switch fabric with a processing speed of n times the line-rate, whereas an inputbuffered switch requires a fabric with a processing speed as much as the line-rate. Fig. 1 shows the logical structure for an input-queued (IQ) switch. Suppose that time is slotted so that at most one packet can arrive at each input in one time slot. Packets arriving at input i and destined for output j are buffered in a “virtual output queue” (VOQ), denoted here by V OQij . The use of virtual output queues avoids performance degradation due to the head-of-line blocking phenomenon [2]. Let the average cell arrival rate at input i for output j be λij . The incoming traffic n is called admissible if n i=1 λij < 1, and j =1 λij < 1. We assume that packets are switched from inputs to outputs by

南邮ECHO成绩

南邮ECHO成绩

南京邮电大学通信与信息工程学院爱科(Echo)工作室成果汇编附件 7 ECHO 工作室介绍及论文和获奖情况目一.爱科(ECHO)工作室简介录二.爱科(ECHO)工作室主要成员简介 三.爱科(ECHO)工作室成员活动照片 四.爱科(ECHO)工作室成果 附录一 附录二 爱科(ECHO)成员中本科生发表论文 爱科(ECHO)成员中本科生获奖目录82南京邮电大学通信与信息工程学院爱科(Echo)工作室成果汇编一、爱科(ECHO)工作室简介创新型人才培养是南京邮电大学通信与信息工程学院在系统深化教育教学改革进程中对 大学生课堂外综合教育体系进行探索的一项重要工作。

作为创新型人才培养全新形式的一种 尝试,学院将大学生科技创新活动与大学生思想政治教育、综合素质锻炼、创新能力培养融 为一体,组织大学生在校期间走出课堂,走进科协,通过组织多种形式的科技创新活动,营 造浓郁的科研学术氛围,实现“综合素质高,发展潜力大,创新能力强”的人才培养基本要 求。

在全员参与创新、人人鼓励科研的良好氛围的带动下,学院大学生科协选拔出了一批具 有顽强的科学精神、严谨的科学作风、优秀的科学品质的动手能力强、科研能力突出的科技 活动活跃分子,组建了大学生爱科工作室。

目前,工作室在大学生科技创新活动中发挥着越 来越重要的作用,他们既是大学生科技活动的指导者,又是大学生科技思想的领路人。

爱科(ECHO)工作室自成立以来,在学院大学生科技创新中心的指导下,充分利用大学 生科协这一有利平台,通过层次化的培训和专业分组合作的方式来重点培训有潜力的同学和 开展具有较高技术含量的科技创新活动,培养同学们具备良好的科学素养和科研意识。

同时, 爱科(ECHO)工作室利用假期定期举行面向全校同学的专业技术义务培训班以及 LINUX 相 关技术义务培训。

为全校科技爱好者们提供良好的接触最新科技的机会,通过手把手的实训, 让参与者能迅速的入门,并且极大的激发了参与者的兴趣。

一种用于运动估计的十字六边形搜索算法

一种用于运动估计的十字六边形搜索算法

—227—一种用于运动估计的十字六边形搜索算法吕 瑞,卿粼波,何小海,龙建忠(四川大学电子信息学院图像信息研究所,成都 610064)摘 要:提出了一种十字六边形搜索算法用于快速运动估计。

该算法利用了运动矢量的中心偏置性和相关性,运动估计时通过预测确定搜索起始点,在搜索前期利用十字模板结合提前退出技术优先搜索起始点附近的局部区域,后期则改用六边形模板扩大搜索范围并完成运动估计。

实验证明该算法与原始的六边形搜索算法相比平均减少了45%的搜索点数,与一些新的快速搜索算法相比,在搜索精度基本相似的情况下也有效地降低了运动估计的运算复杂度。

关键词:运动估计;提前退出;十字模板;六边形搜索Cross Hexagon Search Algorithm for Motion EstimationLV Rui, QING Linbo, HE Xiaohai, LONG Jianzhong(Institute of Image Imformation, College of Electronics and Information Engineering, Sichuan University, Chengdu 610064)【Abstract 】A cross hexagon search(CHS) algorithm is proposed for fast motion estimation(ME). CHS algorithm utilizes both the center-based distribution characteristic of motion vectors(MVs) and the correlation among MVs. In ME, the initial search points are decided by prediction at first,then at early searching stage CHS employs cross search pattern and halfway-stop technique in searching the local areas around the initial search points priority, and at later stage CHS enlarges searching range and completes ME by using hexagon search patterns. Experiment results show that CHS gains 45% average reduction in average searching point(ASP) over original hexagon-based search(HEXBS) algorithm, and that CHS can effectively reduce the computational complexity of ME over some new fast searching algorithms with similar searching precision. 【Key words 】motion estimation; halfway-stop; cross searching pattern; hexagon-based search (HEXBS)计 算 机 工 程Computer Engineering 第33卷 第13期Vol.33 No.13 2007年7月July 2007·多媒体技术及应用·文章编号:1000—3428(2007)13—0227—03文献标识码:A中图分类号:TP391在视频压缩编码中,运动估计是减少视频序列时间冗余度的有效手段,其运算效率对整个编码系统的性能有着重大影响。

双目相机 根据深度信息计算三维坐标的方法

双目相机 根据深度信息计算三维坐标的方法

双目相机根据深度信息计算三维坐标的方法The use of stereo cameras for calculating three-dimensional coordinates based on depth information is a fascinating and challenging task. This technology leverages the disparities between the images captured by the two cameras to estimate the depth of objects in the scene. By aligning and comparing these disparities, the camera system can reconstruct the three-dimensional structure of the environment.双目相机技术的发展为深度信息计算提供了更为准确和可靠的解决方案。

通过利用两个摄像头捕获的图像之间的差异,系统可以计算出物体在场景中的深度。

这种方法结合了视差计算和几何原理,进而实现对物体的三维坐标进行精确测量。

One of the key challenges in utilizing stereo cameras for 3D coordinate calculation is the accurate calibration of the camera system. Ensuring that the two cameras are properly calibrated in terms of their intrinsic and extrinsic parameters is crucial for obtaining precise depth information. Any misalignment or mismatchin the calibration process can introduce errors in the depth calculations and affect the accuracy of the 3D coordinates.在利用双目相机进行三维坐标计算的过程中,正确的相机系统校准显得至关重要。

异源图像匹配自相似性测度的快速算法

异源图像匹配自相似性测度的快速算法

异源图像匹配自相似性测度的快速算法自相似性是圖像特征分析的一项重要指标,将其作为异源图像的匹配测度有着很强的可靠性,但因为要在多个通道的特征图像上进行匹配,计算效率是其中的一个瓶颈问题。

文章将特征图像的差平方和运算转换到频率域处理,利用快速傅里叶变换将图像特征的计算效率提高一个数量级,实现了异源图像匹配的一种快速算法。

标签:异源图像匹配;快速傅里叶变换;自相似性;匹配测度1 概述异源图像(来自不同类型传感器获取的图像)匹配的研究重点主要在于匹配测度问题。

由于成像机理不同,灰度差异很难用显式的函数模型表示。

互信息[1]无需对图像的灰度映射关系作出假设,适用于异源图像匹配的测度,不足是计算量大,目前还找不到有效的快速计算方法。

文献[2]采用另外一种匹配策略,利用图像的自相似性将图像变换成多个通道的特征图像,灰度特性差异很大的异源图像,在各个通道的特征图像上具有很强的相似性,采用差平方和计算,就可以实现异源图像之间的匹配。

自相似性测度的主要优势是有较强的抗干扰能力,因此算法的可靠性较高。

但是由于需要在多个通道上的特征图像之间进行匹配,因此计算量大的问题仍然有待解决。

本文将差平方和的计算转换到频率域进行处理,通过快速傅里叶变换,来实现异源图像匹配的一种快速算法。

2 异源图像匹配的自相似性测度自相似性曾被成功地应用于图像去噪和图像检索,在此研究基础上进一步利用自相似性构建图像的特征图像,灰度特性差异很大的异源图像,在特征图像上呈现出了很强的相似性[2]。

特征图像的生成可以通过卷积实现:式中q表示图像块的形状规格,X表示图像坐标,t表示基准图像块与领近图像块的相对位移,C为卷积模板(例如图像块规格若为3×3矩形,则C为元素全部为1的3×3矩阵)。

通过卷积运算可以直接求得所有像点在4或6个领域方向的自相似特征。

如图1左为红外图像,右为可见光图像,由于两种图像的成像机理不同,对应位置的图像灰度呈现出不确定性的差异。

分数像素快速块匹配运动估计方法综述

分数像素快速块匹配运动估计方法综述

分数像素快速块匹配运动估计方法综述陈志江;涂丹【摘要】The basic theory of fractional pel block-matching motion estimation was introduced,because of the high-complexity,fast algorithm is required.This article gave a summarize of existed fastalgorithm,introduced the main four key technique: mathematical model,motion vector prediction,search strategy optimize and early termination.It gave an introduction of representative algorithms.Finally,the paper prospected some future directions of fast fractional pel block-matching motion estimation algorithm.%介绍了视频压缩中分数像素快速块匹配运动估计的基础原理,由于全搜索算法计算量很大,需要发展快速算法。

对现有快速算法进行了研究总结,介绍了所应用的数学模型、向量预测、搜索优化、提前终止4个关键技术及代表算法。

最后对分数像素快速块匹配运动估计方法进行了总结和展望。

【期刊名称】《电子设计工程》【年(卷),期】2011(019)016【总页数】7页(P182-187,192)【关键词】运动估计;块匹配;快速算法;分数像素【作者】陈志江;涂丹【作者单位】国防科技大学信息系统与管理学院系统工程系,湖南长沙410073;国防科技大学信息系统与管理学院系统工程系,湖南长沙410073【正文语种】中文【中图分类】TP391运动估计(Motion Estimation,ME)是根据图像内容估计图像序列相对运动的方法,是计算机视觉领域的关键技术,由于其在压缩编码、视频稳像、目标跟踪、图像配准等方面有着重要应用,一直以来都是研究的热点,各种技术方案推陈出新、快速发展。

block matching算法原理

block matching算法原理

block matching算法原理Block matching算法是一种用于运动估计的经典算法,其原理是通过分析图像中相邻帧之间的差异,寻找最佳匹配的图像块,从而得到图像中的运动信息。

这种算法在视频编码和视频分析等领域得到广泛应用。

Block matching算法的基本原理是将当前帧图像分成一系列大小一致的块,然后在参考帧图像中搜索与当前块最相似的块。

与当前块最相似的块被认为是当前块的最佳匹配块,两者之间的位移被视为块的运动向量。

块的大小在算法中起到了关键作用,通常选取的块的大小与所研究的应用相关。

在Block matching算法中,最常用的相似度度量是均方误差(Mean Squared Error,MSE),即计算当前块与参考块之间对应像素值的差的平方的平均值。

MSE越小表示两块越相似。

根据这一度量,Block matching算法的目标是找到最小的MSE,即找到与当前块最相似的参考块。

Block matching算法主要包括以下几个步骤:1. 将当前帧图像分块:将当前帧图像分成大小一致的块,每个块称为“搜索块”。

2. 选择参考块:从参考帧图像中选择一块作为参考块,初始选择的参考块一般为与当前搜索块位置相对应的块。

3. 计算相似度:计算当前搜索块与参考块之间的相似度,通常使用均方误差度量。

4. 匹配搜索块:在参考帧图像中搜索与当前搜索块最相似的块,即计算当前搜索块与参考帧图像中每个块的相似度。

5. 确定运动向量:找到与当前搜索块最相似的参考块,该参考块的位置与当前搜索块的位置之间的位移被视为当前搜索块的运动向量。

通过重复执行以上步骤,可以得到整个图像的运动向量场。

Block matching算法的优点是简单且易于实现,而且运算速度较快,适用于实时应用。

然而,它也存在一些问题,比如在存在遮挡或图像变形的情况下,准确性会受到影响。

因此,在实际应用中,常常需要结合其他运动估计算法进行优化。

总结起来,Block matching算法是一种经典的运动估计算法,通过分析图像中相邻帧之间的差异来寻找最佳匹配的图像块,从而得到图像中的运动信息。

block matching算法原理

block matching算法原理

block matching算法原理Block matching算法是一种用于运动估计的方法,常用于视频压缩和图像处理领域。

其原理是通过比较不同帧间的像素块来寻找最佳匹配,从而推断出图像或视频中的运动信息。

在block matching算法中,首先将两个帧的像素块进行比较。

每个像素块由一定数量的像素组成,通常是一个正方形的区域。

然后,通过计算两个像素块之间的差异来评估它们的相似度。

常用的差异度量方法包括均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)等。

接下来,需要在参考帧中搜索最佳匹配块。

对于每个目标像素块,在参考帧中搜索一定范围的像素块,并计算其与目标像素块之间的差异度量值。

搜索范围可以是一个固定大小的区域,也可以是根据预估的运动范围进行调整。

最后,选择差异度量值最小的参考像素块作为最佳匹配块,并记录其在参考帧中的位置偏移。

这个位置偏移就是目标像素块在不同帧间的运动向量,用来表示目标像素块的运动信息。

Block matching算法的优点是简单而且易于实现。

它可以在实时应用中快速计算出运动信息,并用于视频压缩和运动补偿等领域。

然而,由于图像中存在复杂的运动情况,单纯的block matching算法会存在一些问题。

例如,对于非刚体运动、快速运动和背景复杂的情况,block matching算法很容易产生错误的运动估计结果。

为了解决这些问题,研究者们还提出了一系列的改进算法。

例如,改进的block matching算法可以通过使用多尺度和多步长搜索来提高运动估计的精确度。

此外,也可以使用一些补偿技术来进一步提高运动估计的效果,如运动矢量预测和运动补偿。

总之,block matching算法是一种常用的运动估计方法,在视频压缩和图像处理领域具有广泛的应用。

虽然存在一些问题,但通过改进算法可以提高它的准确性和鲁棒性。

基于AC自动机的多模式匹配算法FACA

基于AC自动机的多模式匹配算法FACA

基于AC自动机的多模式匹配算法FACA陈新驰;韩建民;贾泂【摘要】Aho-Corasick automata algorithm has to backtrack for multiple times to shift to the effective subsequence state when it fails in one pattern matching. In order to solve this problem, this paper proposes a fast multiple patterns matching algorithm based on Aho-Corasick automata. The improved algorithm builds the subsequence pointers for each state. On failing matching, it can shift to the effective subsequence state through the subsequence pointers efficiently, which can reduce backtracking times in Aho-Corasick automata. Furthermore, the proposed algorithm achieves information such as matching length, matching times etc for each state during building automata by dynamic programming methods. Based on this information, the algorithm can calculate the repeated times of pattern strings, earliest position of pattern strings. Experimental results show that the algorithm has advantages of matching accuracy, efficiency, and supporting on-line operation.%Aho-Corasick自动机算法在模式匹配失配时,需要多次回溯才转移到有效的后继状态.为此,提出一种快速多模式匹配算法.该算法为每个状态建立失配时的后继指针,在模式匹配失配时,可以通过失配后继指针快速找到有效后继状态,从而避免Aho-Corasick自动机失配时的过多回溯,提高匹配效率.算法在自动机建立时采用动态规划的方法,为每个状态建立匹配长度和匹配量等信息,在模式匹配过程中,基于这些信息统计模式串在主串中的重复次数、最早出现模式串位置等信息.实验结果表明,该算法匹配精确、效率高,且支持在线操作.【期刊名称】《计算机工程》【年(卷),期】2012(038)011【总页数】4页(P173-176)【关键词】模式匹配;自动机;动态规划;Trie树【作者】陈新驰;韩建民;贾泂【作者单位】浙江师范大学计算机系,浙江金华321004;浙江师范大学计算机系,浙江金华321004;浙江师范大学计算机系,浙江金华321004【正文语种】中文【中图分类】TP3121 概述模式匹配算法是信息领域中的重要内容,广泛应用于文本搜索、网络入侵检测系统、病毒检测、信息检索、计算生物学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c s /0609131v 1 [c s .M M ] 24 S e p 2006A Fast Block Matching Algorithm for Video Motion Estimation Basedon Particle Swarm Optimization and Motion PrejudgmentRan Ren ∗Madan mohan Manokar †Yaogang Shi ‡Baoyu Zheng §February 1,2008AbstractIn this paper,we propose a fast 2-D block-based motion estimation algorithm called Particle Swarm Op-timization -Zero-motion Prejudgment (PSO-ZMP)which consists of three sequential routines:1)Zero-motion prejudgment.The routine aims at finding static macroblocks(MB)which do not need to perform remaining search thus reduces the computational cost;2)Predictive image coding and 3)PSO matching routine.Simu-lation results obtained show that the proposed PSO-ZMP algorithm achieves over 10times of computation less than Diamond Search(DS)and 5times less than the recent proposed Adaptive Rood Pattern Search-ing(ARPS).Meanwhile the PSNR performances using PSO-ZMP are very close to that using DS and ARPS in some less-motioned sequences.While in some sequences containing dense and complex motion contents,the PSNR performances of PSO-ZMP are several dB lower than that using DS and ARPS but in an acceptable degree.1IntroductionWith the increasing popularity of technologies such as digital television,Internet streaming video and video conferencing,video compression has became an essential component of broadcast and entertainment media.Among various kinds of approaches,block-based motion estimation and compression are most widely accepted ones.The block-matching algorithm (BMA)for motion estimation (ME)has been adopted in many international standards for digital video compression,such as H.264and MPEG 4[8].In the framework of video coding,the statistical redundancies can be categorized by either temporal or spatial.For the purpose of reducing the temporal redundancies among frames,motion estimation was applied [4].Block-based matching algorithms consider each frame in the video sequence formed by many nonoverlapping small regions,called the marcoblocks(MB)which are often square-shaped and with fixed-size(16×16or 8×8).Let B m represents the m th MB and M the number of blocks,and M =1,2,···,M ;let Λbe the entire frame and the partition into MBs should satisfy B m =Λand B m B n =Ø,m =n [14].Given a MB B m in the anchor frame,the motion estimation problem is todetermine a corresponding matching MB B ′min the target frame such that the matching error between these two blocks is minimized.Then,a motion vector is computed by subtracting the coordinates of the MB in the anchor frame from that of the matching MB in the target frame.Instead of sending the entire frame pixel-by-pixel,a set of motion vectors is transmitted through the channel which greatly reduces the amount of transmission.In the decoder side,a motion compensated procedure is applied to reconstruct frames using the received motion vectors and the anchor frame.Referred to many researches,the motion estimation and encoding part consumes nearly 70−90percent of the total amount of computation in the whole video compression procedure thus making it an active research topic in the last two decades.There are many proposals of BMAs in literature.The most basic one is the Exhaustive Search (ES),also known as full search which simply compares the given MB in the anchor frame with all candidate MBs in the target frame exhaustively within a predefined search region.Previous research showed that ES can obtainhigh matching accuracy but requires a very large amount of computation thus infeasible to implement in real-time video applications.To speed up the search,various fast algorithms for block matching which reduce the number of search candidates have been developed.Well known examples are2-D Logarithmic Search(LOGS)[6], Three Step Search(TSS)[10],Four Step Search(4SS)[7],Diamond Search(DS)[9]which is accepted in the MPEG-4Verification Model and widely implemented in VLSI,and the recent proposed Adaptive Rood Pattern Search(ARPS)[13]which is almost two or three times faster than DS and even achieves higher peak signal-to-noise ratio(PSNR)than that using DS.From the optimization point of view,block-based methods can be described by the following minimization[1],∀m:ε(d m),ε(d m)= n∈B mΦ(I k[n]−I k−1[n+d m])mind m∈Pwhere I k is the target frame;I k−1is the anchor frame;ε(d m)is the matching error;d are the motion vectors and P is the search area to which d m belongs,defined as P=n=(n1,n2):−P≤n1≤P,−P≤n2≤P.Sign of d is positive when motion of the block is towards positive direction from k−1th frame to k th frame.And negative when motion of the blcok is in negative direction from k−1th frame to k th frame.B m is an N×N size MB with the top-left corner coordinate at m=(m1,m2).The goal is tofind the best displacement motion vector d m for each MB B m,in the sense of the criterionΦ.Particle swarm optimization(PSO)was originally proposed by Kennedy and Eberhart in1995[5].It is widely accepted and focused by researchers due to its profound intelligence background and simple algorithm structure. Currently,PSO has been implemented in a wide range of research areas such as functional optimization,pattern recognition,neural network training,fuzzy system control etc.and obtained significant success.Like Genetic Algorithm(GA),PSO is also an evolutionary algorithm based on swarm intelligence.But,on the other side, unlike GA,PSO has no evolution operators such as crossover and mutation[3].In PSO,the potential solutions, called particles,fly through the solution space by following the current optimum particles.The original intent was to graphically simulate the graceful but unpredictable choreography of a birdflock.Through competitions and cooperations,particles follow the optimum points in the solution space to optimize the problem.Many proposals indicate that PSO is relatively more capable for global exploration and converges more quickly than many other heuristic algorithms[2].The rest of the paper is organized as follows.Section II introduces the PSO algorithm and we propose the PSO-ZMP block-matching algorithm for motion estimation in Section III.Simulation results and analysis onfive video sequences are given in Section IV.Section V concludes the paper.2Particle Swarm OptimizationParticle swarm algorithm is a kind of evolutionary algorithm based on swarm intelligence.Each potential solution is considered as one particle,and these particles are distributed stochastically in the high-dimensional solution space in the initialization period of the algorithm.Through following the optimum discovered by itself and the entire group,each particle periodically updates its own velocity and position.v id(t+1)=w×v id(t)+c1×rand1(·)×(p id−x id)+c2×rand2(·)×(p gd−x id)(1)x id(t+1)=x id(t)+v id(t+1)(2)1≤i≤N,1≤d≤DWhere,N is the number of particles and D is the dimensionality;V i=(v i1,v i2,···,v iD),v id∈[−v max,v max] is the velocity vector of particle i which decides the particle’s displacement in each iteration.Similarly,X i= (x i1,x i2,···,x iD),x id∈[−x max,x max]is the position vector of particle i which is a potential solution in the solution space.the quality of the solution is measured by afitness function;w is the inertia weight which decreases linearly during a run;c1,c2are both positive constants,called the acceleration factors which are generally set to 2.0;rand1(·)and rand2(·)are two independent random number distributed uniformly over the range[0,1];and p g,p i are the best solutions discovered so far by the group and itself respectively.In the t+1time iteration,particle i uses p g and p i as the heuristic information to updates its own velocity and position.Thefirst term in Eq.1represents the diversification,while the second and third intensification.The second and third terms should be understood as the trustworthiness towards itself and the entire social system respectively.Therefore,a balance between the diversification and intensification is achieved based on which the optimization progress is possible.3Block-matching algorithm based on PSO-ZMPIn this paper,an algorithm based on Particle Swarm Optimization(PSO)and Zero-Motion Prejudgment(ZMP) is proposed to reduce the computation and obtain satisfied compensated video quality.The PSO-ZMP algorithm consists of three sequential routines.1)Zero-motion prejudgment;2)Predictive image coding;3)PSO matching. Instead of distributed stochastically in the entire matching space,we also devise a novel distribution pattern for particle initialization to bear the center-biased characteristics of common motionfields.3.1Performance Evaluation CriterionAs widely adopted,we measure the amount of computation and the quality of compensated video sequence by Computation and Peak Signal-to-Noise Ratio(PSNR).Computation is defined as the average number of the error function evaluations per MV generation.Due to the minimum computational cost,we choose Summed Absolute Difference(SAD)as the error function which is defined as follows:1SAD=σ2e1σ2e=MSE=Figure1:Four types of ROS for current-encoded MB.(The block marked“ ”is the current-encoded MB; Blocks in grey are the reference MBs for prediction.)Figure2:Patterns to initial particles3.4Selection of Search PatternsDue to the spatial correlation characteristics between MBs in one frame,during the initiation period of the PSO matching routine,we distribute the particles in four specific patterns(Fig.2)with a view to reduce the computational cost but to achieve higher PSNR.Since frames are processed in raster order,the MB in the top-left corner in the frame,can not be predictive coded because there is no reference MB for prediction in the current-encoded frame.Thus,for this condition,we simply skip the predictive coding and begin PSO searching routine directly with the initial positions of particles in the pattern type B in Fig.2.For those MBs located at the leftmost column of frames,their reference MBs used in predictive coding are in the other side of the frame,thus may not be highly correlated and inefficient in prediction.So,we also solely perform the PSO searching routine in this case,with the pattern type D in Fig.2.And,for the last leftmost MB been processed in the frame,that is,the MB in the bottom-left corner,we use the pattern type C in Fig.2 instead.Otherwise,pattern type A in Fig.2is adopted.We put four particles in a rood shape with size zero(size refers to the distance between any vertex point and the center-point)in the adjacent MBs and four particles in a rood shape with size one,and then rotate it by angleπ/2.With two rood shape in difference size,we try to balance the global exploration and local refined search in order for broader searching space as well as higher matching accuracy.Moreover,we distribute particles equally in all directions(8particles in8directions)with a view to,in stochastic condition,find the matching MB in each direction with equal possibility.Notably,if the position of a particle in the during initialization and a PSO run is out of the boundary of the image frame,we simply put the particle in the position nearest to its intended position.3.5Stopping CriterionGenerally,there are two widely adopted stopping criteria.One is Fixed-iteration,that is,given a certain iteration time,saying N,the search stops after N times of iteration.The other is Specified-threshold.During a PSO run, the most-fitted value found by the entire group p g,called the“best so far”value will be updated by the particles. For minimization problems,we specify a very small thresholdε,and if the change of p g during t times ofiteration is smaller than the threshold,we consider the group best value very near to the global optimum,thus the matching procedure stops.Due to the center-biased characteristics of real-world motionfields,we adopt the fixed-iteration method in this paper for reducing the computational cost.3.6Summary of Our MethodWe incorporate the ZMP,the predictive coding and the PSO matching routines together and propose a block-matching algorithm for motion estimation based on PSO and ZMP.The algorithm can be summarized in the pseudocode below:4Experiments and ResultsWe’ve tested our PSO-ZMP algorithm onfive test video sequences:Akiyo,Container,Mother&Daughter,News and Silent within100image frames(except90frames in Akiyo due to the limitation of the sequence length). 4.1Experimental Settings4.1.1PSO ParametersPSO matching is the core routine in our algorithm.In this paper,to balance between computational cost and compensated video quality,we adopt the standard PSO with inertia weight[11,12]which is widely considered as the defacto PSO standard.We use thefixed-iteration stopping criterion with max5iterations.The max velocityTable1:ZMP threshold∆forfive test video sequencesSequence ZMP Threshold∆QCIFContainer512QCIFNews512QCIF(a)Computations on Akiyo(b)PSNR on Akiyo(c)Computations on Container(d)PSNR on Container(e)Computations on Mother&Daughter(f)PSNR on Mather&DaughterFigure3:Simulation results on Akiyo,Container and Mother&Daughter(a)Computations on News(b)PSNRon News(c)Computations on Silent(d)PSNR on SilentFigure4:Simulation results on News and SilentTable2:Average PSNR performance of DS,ARPS and PSO-ZMPSequence ARPS PSO-ZMP43.5042.07Container36.1333.1540.4635.66News36.6135.2936.6831.62ARPS to DS PSO-ZMP to ARPSAkiyo12.04 1.472.243.62Mot.&Dau.12.44 1.612.32 4.25Silent8.60 2.17cost of the algorithm.Simulation results show that the PSO-ZMP BMA proposed requires less amount of com-putation and achieves PSNR in a acceptable degree of drop.while close and acceptable PSNR performance compared to widely accepted ARPS and DS BMA.Moreover PSO just consumes a few lines of codes due to its simplicity which makes the PSO-ZMP algorithm attractive for hardware implementation.In the future,variants of PSO might be applied to strengthen the global searching ability and the accelerate the convergence speed.And,to speed up the search and avoid being trapped in local minima,a multiresolution procedure may be used.AcknowledgmentThe authors would like to thank Qian Wu for helping us make the nice search patternfigures and Yuxuan Wang for the invaluable discussion and proofreading.References[1]A.Bovik.Handbook of image and video processing.Publishing house of Electronics Industry and Elsevier,Beijing,China,second edition,2006.[2]R.C.Eberhart and Y.H.Shi.Particle swarm optimization:developments,applications and resources.InProc.The IEEE Congress on Evolutionary Computation,Piscataway,NJ.[3]R.C.Eberhart and parison between genetic algorithm and particle swarm optimization.InProc.The IEEE Congress on Evolutionary Computation,1998.[4]F.Dufaux and F.Moscheni.Motion estimation techniques for digital tv:A review and a new contribution.Proc.IEEE,83(6),June.[5]J.Kennedy and R.C.Eberhart.Particle swarm optimization.In Proc.IEEE International Conference onNeural Networks,Perth,Australia,1995.[6]J.R.Jain and A.K.Jain.Displacement measurement and its application in interframe image coding.IEEEmun.,COM-29,Dec.[7]L.M.Po and W.C.Ma.A noval four-step search algorithm for block motion estimation in video coding.IEEETrans.Circuits Syst.Video Technol.,6,Aug.[8]I.E.G.Richardson.H.264and MPEG-4video compression.Wiley,Chichester,England,2003.[9]S.Zhu and K.K.Ma.A new diamond search algorithm for fast block-matching motion estimation.In Proc.rmation,Communications and Signal Processing(ICICS),volume1,pages292–296,Sept.9-12 1997.[10]T.Koga,K.Iinuma,A.Hirano,Y.Iijima and T.Ishiguro.Motion compensated interframe coding for videoconferencing.In Proc.Nat.Telecommunication Conf.,pages G.5.3.1–G.5.3.5,Nov.29-Dec.31981.[11]Y.H.Shi and R.C.Eberhart.Empirical study of particle swarm optimization.In Proc.IEEE Congress onEvolutionary Computation,1999[12]Y.H.Shi and R.C.Eberhart.A modified particle swarm optimization.In Proc.IEEE Congress on Evolu-tionary Computation,1998[13]Y.Nie and K.K.Ma.Adaptive rood pattern search for fast block-matching motion estimation.IEEE Trans.Image Processing,11(12),Dec.[14]Y.Wang,J.Ostermann and Y.Q.Zhang.Video Processing and Communications.Tsinghua University Pressand Prentice Hall,Beijing,China,2002.。

相关文档
最新文档