备战中考数学专题复习分类练习 二次函数综合解答题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战中考数学专题复习分类练习二次函数综合解答题含答案
一、二次函数
1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
【答案】(1)足球飞行的时间是8
5
s时,足球离地面最高,最大高度是4.5m;(2)能.
【解析】
试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.
解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),
∴,
解得:,
∴抛物线的解析式为:y=﹣t2+5t+,
∴当t=时,y最大=4.5;
(2)把x=28代入x=10t得t=2.8,
∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,
∴他能将球直接射入球门.
考点:二次函数的应用.
2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交
于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存
在,理由见解析;(3)y=﹣x+3;P点到直线BC的距离的最大值为
2
8
,此时点P的坐
标为(3
2
,
15
4
).
【解析】
【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,
得
10
930
b c
b c
-++=
⎧
⎨
-++=
⎩
,解得:
2
3
b
c
=
⎧
⎨
=
⎩
,
∴抛物线的表达式为y=﹣x2+2x+3;
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,
∴抛物线的对称轴为直线x=1,
当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,
∴点C的坐标为(0,3),点P的坐标为(2,3),
∴点M的坐标为(1,6);
当t≠2时,不存在,理由如下:
若四边形CDPM是平行四边形,则CE=PE,
∵点C的横坐标为0,点E的横坐标为0,
∴点P的横坐标t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(3)①在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(3,0)、C(0,3)代入y=mx+n,
得
30
3
m n
n
+=
⎧
⎨
=
⎩
,解得:
1
3
m
n
=-
⎧
⎨
=
⎩
,
∴直线BC的解析式为y=﹣x+3,
∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),
∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴S=1
2
PF•OB=﹣
3
2
t2+
9
2
t=﹣
3
2
(t﹣
3
2
)2+
27
8
;
②∵﹣3
2
<0,
∴当t=3
2时,S取最大值,最大值为
27
8
.
∵点B的坐标为(3,0),点C的坐标为(0,3),
∴线段
=
∴P点到直线BC
27
2
8
⨯
=,
此时点P的坐标为(3
2
,
15
4
).
【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
3.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;
(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.
【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);
(4)5
2
或5.
【解析】
试题分析:(1)利用待定系数法进行求解即可;
(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;
(3)利用三角形的面积以及点P所处象限的特点即可求;
(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.
试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2
+bx 中,得1640
3a b a b +=⎧⎨
+=⎩
,解得1
4a b =-⎧⎨=⎩
, ∴抛物线的表达式为y =-x 2+4x .
(2)∵抛物线的表达式为y =-x 2+4x ,∴抛物线的对称轴为直线x =2.
又C ,B 关于对称轴对称,∴C (3,3).∴BC =2,∴S △ABC =1
2
×2×3=3. (3)存在点P .作PQ ⊥BH 于点Q ,设P (m ,-m 2+4m ). ∵S △ABP =2S △ABC ,S △ABC =3,∴S △ABP =6. ∵S △ABP +S △BPQ =S △ABH +S 梯形AHQP
∴6+
12×(m -1)×(3+m 2-4m )=12×3×3+1
2×(3+m -1)(m 2-4m ) 整理得m 2-5m =0,解得m 1=0(舍),m 2=5,∴点P 的坐标为(5,-5). (4)
5
2
或5. 提示:①当以M 为直角顶点,则S △CMN =52
; ②当以N 为直角顶点,S △CMN =5;
③当以C 为直角顶点时,此种情况不存在.
【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.
4.如图,在平面直角坐标系中,直线4
83
y x =-
+与x 轴,y 轴分别交于点A 、B ,抛物线2
4y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.
(1)求抛物线的解析式;
(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似; (3)当△ADE 为等腰三角形时,求t 的值;
(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由. 【答案】(1)抛物线的解析式为228
833
y x x =-++; (2)t 的值为3011或50
13
; (3)t 的值为
103或6017或258
; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8). 【解析】
(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用
△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.
解:(1)A (6,0),B (0,8),依题意知36240{8
a a c c -+==,解得2
{
38
a c =-
=, ∴228
833
y x x =-
++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t , ①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴30
11t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴50
13
t =; 综上所述,t 的值为
3011或
5013
. (3) ①当AD=AE 时,t=10-2t ,∴103
t =
; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,
AH=
()31025
t -,∴()61025
t t -=
,∴6017
t =
; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35
t ,∴61025t t -=
,∴258
t =; 综上所述,t 的值为
103或6017或
25
8
. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴228
8833
x x -++=-,解得227x =±,∵x ﹥0,∴227x =+,∴()
227,8+-.
综上所述,符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8).
“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.
5.如图1,在矩形ABCD 中,DB =6,AD =3,在Rt △PEF 中,∠PEF =90°,EF =3,PF =6,△PEF (点F 和点A 重合)的边EF 和矩形的边AB 在同一直线上.现将Rt △PEF 从A 以每秒1个单位的速度向射线AB 方向匀速平移,当点F 与点B 重合时停止运动,设运动时间为t 秒,解答下列问题:
(1)如图1,连接PD ,填空:PE = ,∠PFD = 度,四边形PEAD 的面积是 ;
(2)如图2,当PF 经过点D 时,求△PEF 运动时间t 的值;
(3)在运动的过程中,设△PEF 与△ABD 重叠部分面积为S ,请直接写出S 与t 的函数关系式及相应的t 的取值范围.
【答案】(1)300,9+93
2
;(233)见解析. 【解析】
分析:(1)根据锐角三角形函数可求出角的度数,然后根据勾股定理求出PE 的长,再根据梯形的面积公式求解.
(2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函数计算可得3
(3)根据题意,分三种情况:①当0≤t <3时,②3≤t <3时,③3≤t≤6时,根据三角形、梯形的面积的求法,求出S 与t 的函数关系式即可. 详解:(1)∵在Rt △PEF 中,∠PEF=90°,EF=3,PF=6
∴sin ∠P=
1
=2
EF PF ∴∠P=30° ∵PE ∥AD
∴∠PAD=300,
根据勾股定理可得PE=33, 所以S 四边形PEAD =
12×(33+3)×3=993+; (2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,得∠EPF=∠ADF=30°, 在Rt △ADF 中,由AD=3,得AF=3,所以t=3 ; (3)分三种情况讨论:
①当0≤t <3时, PF 交AD 于Q ,∵AF=t ,AQ=3t ,∴S=
12×t×3t=3
t ; ②当3≤t <3时,PF 交BD 于K ,作KH ⊥AB 于H ,∵AF=t ,∴BF=33-t ,S △ABD =93
, ∵∠FBK=∠FKB ,∴FB=FK=33-t ,KH=KF×sin600=9-3t
,∴S=S △ABD ﹣S △FBK =23993,424
t t -
+- ③当3≤t≤33时,PE 与BD 交O ,PF 交BD 于K ,∵AF=t ,∴AE=t-3,BF=33-t, BE=33-t+3,OE=BE×tan300=
9-333t +,∴S=233233633
-t t --++
. 点睛:此题主要考查了几何变换综合题,用到的知识点有直角三角形的性质,三角函数值,三角形的面积,图形的平移等,考查了分析推理能力,分类讨论思想,数形结合思想,要熟练掌握,比较困难.
6.二次函数y=x 2-2mx+3(m >
)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n
>0且n 为整数),与y 轴交于C 点.
(1)若a=1,①求二次函数关系式;②求△ABC 的面积; (2)求证:a=m-;
(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值. 【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=
−.
【解析】
试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;
②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;
(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;
(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.
试题解析:(1)①∵a=1,
∴A(1,0),
代入y=x2-2mx+3得1-2m+3=0,解得m=2,
∴y=x2-4x+3;
②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,
∴A(1,0)、B(3,0),
∴AB=2再根据解析式求出C点坐标为(0,3),
∴OC=3,
△ABC的面积=×2×3=3;
(2)∵y=x2-2mx+3=(x-m)2-m2+3,
∴对称轴为直线x=m,
∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B
∴点A和点B关于直线x=m对称,
∴a+n-m=m-a,
∴a=m-;
(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)
①当a为整数,因为n>0且n为整数所以a+n是整数,
∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,
∴n=2,
∴a=m-1,
∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,
∴m2-4=0,
∴m=2,m=-2(舍去),
∴a=2-1=1,
②当a不是整数,因为n>0且n为整数所以a+n不是整数,
∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,
∴n=3,
∴a=m-
∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,
∴m2=,
∴m=,m=-(舍去),
∴a=−,
综上所述:a=1或a=−.
考点:二次函数综合题.
7.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣110)或P
(﹣110P(﹣1,6)或P(﹣1,5
3
);(3)存在,Q(﹣1,2);(4)
63 8,
315
,
24
E
⎛⎫
-
⎪
⎝⎭
.
【解析】
【分析】
(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即
可求出二次函数的解析式;
(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M 点的坐标,由于C 是抛物线与y 轴的交点,因此C 的坐标为(0,3),根据M 、C 的坐标可求出CM 的距离.然后分三种情况进行讨论:
①当CP =PM 时,P 位于CM 的垂直平分线上.求P 点坐标关键是求P 的纵坐标,过P 作PQ ⊥y 轴于Q ,如果设PM =CP =x ,那么直角三角形CPQ 中CP =x ,OM 的长,可根据M 的坐标得出,CQ =3﹣x ,因此可根据勾股定理求出x 的值,P 点的横坐标与M 的横坐标相同,纵坐标为x ,由此可得出P 的坐标.
②当CM =MP 时,根据CM 的长即可求出P 的纵坐标,也就得出了P 的坐标(要注意分上下两点).
③当CM =C P 时,因为C 的坐标为(0,3),那么直线y =3必垂直平分PM ,因此P 的纵坐标是6,由此可得出P 的坐标;
(3)根据轴对称﹣最短路径问题解答;
(4)由于四边形BOCE 不是规则的四边形,因此可将四边形BOCE 分割成规则的图形进行计算,过E 作EF ⊥x 轴于F ,S 四边形BOCE =S △BFE +S 梯形FOCE .直角梯形FOCE 中,FO 为E 的横坐标的绝对值,EF 为E 的纵坐标,已知C 的纵坐标,就知道了OC 的长.在△BFE 中,BF =BO ﹣OF ,因此可用E 的横坐标表示出BF 的长.如果根据抛物线设出E 的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E 的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE 的最大值及对应的E 的横坐标的值.即可求出此时E 的坐标.
【详解】
(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩
, 解得:12a b =-⎧⎨=-⎩
. ∴所求抛物线解析式为:y =﹣x 2﹣2x+3;
(2)如答图1,
∵抛物线解析式为:y =﹣x 2﹣2x+3,
∴其对称轴为x =22
-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,
∴C (0,3),M (﹣1,0)
∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=5
3
,
∴P点坐标为:P1(﹣1,5
3
);
∴当CM=PM时,(﹣1)2+32=a2,解得a=±10,
∴P点坐标为:P2(﹣1,10)或P3(﹣1,﹣10);
∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,
∴P点坐标为:P4(﹣1,6).
综上所述存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣
1,6)或P(﹣1,5
3
);
(3)存在,Q(﹣1,2),理由如下:
如答图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.
设直线AC′函数关系式为:y=kx+t(k≠0).
将点A(1,0),C′(﹣2,3)代入,得
23 k t
k t
+=
⎧
⎨
-+=
⎩
,
解得
1
1
k
t
=-
⎧
⎨
=
⎩
,
所以,直线AC′函数关系式为:y=﹣x+1.
将x=﹣1代入,得y=2,
即:Q(﹣1,2);
(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a
∴S四边形BOCE=1
2BF•EF+
1
2
(OC+EF)•OF
=1
2
(a+3)•(﹣a2﹣2a+3)+
1
2
(﹣a2﹣2a+6)•(﹣a)
=﹣3
2
a2﹣
9
2
a+
9
2
=﹣
3
2
(a+
3
2
)2+
63
8
,
∴当a=﹣3
2时,S四边形BOCE最大,且最大值为
63
8
.
此时,点E坐标为(﹣3
2
,
15
4
).
【点睛】
本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.
8.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
【分析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=1
2
×(2﹣t)×2t=﹣t2+2t,把解
析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.
【详解】
解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,
103
b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x 2﹣4x+3;
(2)令y=0,则x 2﹣4x+3=0,
解得:x=1或x=3,
∴B (3,0),
∴BC=32, 点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3
∴P 1(0,3+32),P 2(0,3﹣32);
②当PB=PC 时,OP=OB=3,
∴P 3(0,-3);
③当BP=BC 时,
∵OC=OB=3
∴此时P 与O 重合,
∴P 4(0,0);
综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);
(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,
∴S △MNB=12
×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1, 当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.
9.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .
(1)求该抛物线的解析式;
(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;
(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;
②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.
【答案】(1)2y x 2x 3=--+.
(2)3210.
(3)①2S m 4m 3=---.
②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).
【解析】
【分析】
(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.
(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.
(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.
【详解】
解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),
∴可设抛物线交点式为()()y a x 3x 1=+-.
又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.
∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.
(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.
∴当PB+PC 最小时,△PBC 的周长最小.
∵点A 、点B 关于对称轴I 对称,
∴连接AC 交l 于点P ,即点P 为所求的点.
∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.
∵A (-3,0),B (1,0),C (0,3),∴2,10.
∴△PBC 的周长最小是:3210.
(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),
∴直线AD 的解析式为y=2x+6
∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)
∴()22
EF m 2m 32m 6m 4m 3=--+-+=---. ∴
()
22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.
∴S 与m 的函数关系式为2S m 4m 3=---.
②()2
2S m 4m 3m 21=---=-++,
∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).
10.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .
(1)请直接写出点A ,C ,D 的坐标;
(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;
(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.
【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37
-
,0);(3)P (2,﹣5)或(1,0).
【解析】 试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;
(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;
(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.
试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,
2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).
当2
23y x x =--+中x=0时,则y=3,∴C (0,3).
∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).
(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.
∵C (0,3),∴C′(0,﹣3). 设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3
k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-
,∴当△CDE 的周长最小,点E 的坐标为(37
-,0).
(3)设直线AC 的解析式为y=ax+c ,则有:3{
30c a c =-+=,解得:1{3
a c ==,∴直线AC 的解析式为y=x+3. 假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,
∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);
②当∠AFP=90°时,P (2m+3,0)
∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);
③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,
∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0). 综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).
考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.
11.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.
【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.
【解析】
【分析】
(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.
【详解】
(1)由题意得,
3 2
2
a b
b
a
+-
⎧
⎪
⎨
-⎪
⎩
=
=
,
解得
1
4
a
b-
⎧
⎨
⎩
=
=
,
∴抛物线的解析式为y=x2-4x,
令y=0,得x2-2x=0,解得x=0或4,
结合图象知,A的坐标为(4,0),
根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,
设P(x,x2-4x),
∵PA⊥BA
∴∠PAF+∠BAE=90°,
∵∠PAF+∠FPA=90°,
∴∠FPA=∠BAE
又∠PFA=∠AEB=90°
∴△PFA ∽△AEB, ∴PF AF AE BE =,即244213
x x x --=-, 解得,x= −1,x=4(舍去)
∴x 2-4x=-5
∴点P 的坐标为(-1,-5),
又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1
所以BP 与x 轴交点为(
14,0) ∴S △PAB=
115531524
⨯⨯+= 【点睛】
本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.
12.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).
(1)求抛物线对应的二次函数表达式;
(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;
(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122
y y +).
【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;
(3)点N(43,﹣73
). 【解析】
【分析】
(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解;
(2)利用同底等高的两个三角形的面积相等,即可求解;
(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.
【详解】
(1)函数表达式为:y=a(x﹣1)2+4,
将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,
解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+2x﹣3;
(2)OM将四边形OBAD分成面积相等的两部分,理由:
如图1,∵DE∥AO,S△ODA=S△OEA,
S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,
∴S△OME=S△OBM,
∴S四边形OMAD=S△OBM;
(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,
解得:m=﹣1或4,故点P(4,﹣5);
如图2,故点D作QD∥AC交PC的延长线于点Q,
由(2)知:点N是PQ的中点,
设直线PC的解析式为y=kx+b,
将点C(﹣1,0)、P(4,﹣5)的坐标代入得:
45
k b
k b
-+=
⎧
⎨
+=-
⎩
,
解得:
1
1 k
b
=-
⎧
⎨
=-
⎩
,
所以直线PC的表达式为:y=﹣x﹣1…①,
同理可得直线AC的表达式为:y=2x+2,
直线DQ∥CA,且直线DQ经过点D(0,3),
同理可得直线DQ的表达式为:y=2x+3…②,
联立①②并解得:x=﹣4
3
,即点Q(﹣
4
3
,
1
3
),
∵点N是PQ的中点,
由中点公式得:点N(4
3
,﹣
7
3
).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.
13.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为45+41
或
5-41 2;②点M的坐标为(
13
6
,﹣
17
6
)或(
23
6
,﹣
7
6
).
【解析】
分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;
(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到
∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得
到
PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;
②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(
12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125
,则解方程组511255y x y x -⎧⎪⎨--⎪⎩
==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式
得到3=13+62
x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标. 详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),
当y=0时,x ﹣5=0,解得x=5,则B (5,0),
把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得
253005a c c ++=⎧⎨=-⎩,解得15
a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;
(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),
∵B (5,0),C (0,﹣5),
∴△OCB 为等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM ⊥BC ,
∴△AMB 为等腰直角三角形,
∴
AM=2
AB=2
, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,
∴
PQ ⊥BC ,
作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,
∴PD=2PQ=2×22=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
当P点在直线BC上方时,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+41
2
,m2=
5-41
2
,
综上所述,P点的横坐标为4或5+41
或
5-41
;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(1
2
,﹣
5
2
,
设直线EM1的解析式为y=﹣1
5
x+b,
把E(1
2
,﹣
5
2
)代入得﹣
1
10
+b=﹣
5
2
,解得b=﹣
12
5
,
∴直线EM1的解析式为y=﹣1
5x﹣
12
5
解方程组
5
112
55
y x
y x
=-
⎧
⎪
⎨
=--
⎪⎩
得
13
6
17
6
x
y
⎧
=
⎪⎪
⎨
⎪=-
⎪⎩
,则M1(
13
6
,﹣
17
6
);
作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),
∵3=13
+ 6
2
x
∴x=23
6
,
∴M2(23
6,﹣
7
6
).
综上所述,点M的坐标为(13
6
,﹣
17
6
)或(
23
6
,﹣
7
6
).
点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
14.在平面直角坐标系中,二次函数y=ax2+5
3
x+c的图象经过点C(0,2)和点D(4,﹣
2).点E是直线y=﹣1
3
x+2与二次函数图象在第一象限内的交点.
(1)求二次函数的解析式及点E的坐标.
(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.
(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.
【答案】(1)E(3,1);(2)S最大=21
4
,M坐标为(
3
2
,3);(
3)F坐标为(0,﹣
3
2
).
【解析】
【分析】
1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;
(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;
(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC 与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.
【详解】
(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:
20
162
3
2
a c
c
⎧
++=-
⎪
⎨
⎪=
⎩
,
解得:
2
a
3
2
c
⎧
=-
⎪
⎨
⎪=
⎩
,即二次函数解析式为y=﹣
2
3
x2+
5
3
x+2,
联立一次函数解析式得:
2
2
25
2
33
y x
y x x
﹣
﹣
=+
⎧
⎪
⎨
=++
⎪⎩
,
消去y得:﹣
1
3
x+2=﹣
2
3
x2+
5
3
x+2,
解得:x=0或x=3,
则E(3,1);
(2)如图①,过M作MH∥y轴,交CE于点H,。