山东省曲阜市2019-2020学年八年级上学期期末考试数学试题(扫描版 无答案)

合集下载

2019-2020年八年级上学期期末考试数学试卷(IV)

2019-2020年八年级上学期期末考试数学试卷(IV)

2019-2020年八年级上学期期末考试数学试卷(IV)亲爱的同学:寒假快要到了,祝贺你又完成了一个学期的学习,为了使你度过一个丰富多彩的寒假生活,过一个快乐、幸福的春节,请你认真思考、细心演算,尽情发挥,向一直关心你的人们递交一份满意的答卷,祝你成功! 亲爱的同学,请注意:★ 本试卷满分150分; ★120分钟;一、精心选一选(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).1.下列图形中不是轴对称图形的是 ( )A .B .C .D .2.下列多项式中能用平方差公式分解因式的是 ( ) (A ) (B ) (C ) (D )3. 一个多边形的内角和比它的外角和的3倍少180°,这个多边形边数是( ) A. 5条 B. 6条 C. 7条 D. 8条4.下列运算正确的是 ( )5.已知P (a ,3)和Q (4,b )关于x 轴对称,则(a+b )xx的值为 ( )A. 1B. -1C. 7xxD. -7xx6.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) A. 60° B. 120° C. 60°或150° D.60°或120°7.如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC+BC 的长度最短,作法为:①作点B 关于直线l 的对称点B ’;②连接AB ’,与直线l 相交于点C ,则点C 为所求作的点。

在解决这个问题时没有..运用到的知识或方法是 ( ) A: 转化思想B: 三角形的两边之和大于第三边 C: 两点之间,线段最短D: 三角形的一个外角大于与它不相邻的任意一个内角8.下列各式计算正确的 ( ) A.x ·x=(x ) B .x ·x=(x ) C.(x )=(x ) D. x · x · x=x9.若关于x 的分式方程=2的解为正数,则m 的取值范围是 ( ) A.m>-1 B.m-1 C.m>1 且m-1 D.m>-1且m110.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =S △ABC ;④ 当∠EPF 在△ABC 内绕顶点P 旋转时 (点E 不与A 、B 重合),BE +CF =EF , 上述结论中始终正确的有 ( ) A .1个 B .2个 C .3个 D .4个二、细心填一填(本大题共有8个小题,每小题4分,共32分.请把答案填在题中的横线上.)11. 因式分解:a 3-ab 2= .12. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .13.如图所示,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .14.已知a+b=-3,ab=1,则a 2+b 2=15.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: .(答案不唯一,写一个即可)16.要使4y 2+9是完全平方式,需添加一项,添加的项为 (写出一个答案即可)。

2019-2020年八年级上学期期末考试数学试卷

2019-2020年八年级上学期期末考试数学试卷

2019-2020年八年级上学期期末考试数学试卷(C)一个角等于已知角.(D)角平分线.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5cm, △ADC的周长为17cm,则BC的长为()(A)7cm (B)10cm (C)12cm (D)22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。

根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()(A)1月至2月(B)2月至3月(C)3月至4月(D)4月至5月8.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC,若小方格边长为1,则△ABC是()(A)直角三角形.(B)锐角三角形.(C)钝角三角形.(D)以上都不对.10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()(A)48.(B)60.(C)76.(D)80.二、填空题(每小题2分,共18分)11.计算:= .12.因式分解:=__________________.13.如图将4个长、宽分别均为、的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD按如图所示方式折叠,使C点落在处,交AD于点E,则△EBD的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在1.58m~1.63m这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

山东省曲阜上学期初中八年级期末教学质量检测考试数学试卷(附答案解析)

山东省曲阜上学期初中八年级期末教学质量检测考试数学试卷(附答案解析)

上学期初中八年级期末教学质量检测考试数学试卷注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共8页,第I 卷2页为选择题和填空题,48分,第Ⅱ卷6页为解答题,52分;共100分,考试时间为120分钟.2.第I 卷每题选出答案后,填写在第Ⅱ卷的指定位置.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在指定位置,用钢笔或圆珠笔直接答在试卷上,第I 卷(共48分)一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( )A .x<3B .x>3C .x ≠3D .x=32.下面四个手机应用图标中是轴对称图形的是( )3.下列各式中,计算正确的是A .3412a a a ⋅=B .23193x x x +=--C .22(2)4a a +=+D .32()()xy xy xy --⋅-=4.如图,△ABO 关于x 轴对称,若点A 的坐标为(3,1),则点B 的坐标为()A .(1,3)B .(-1,3)C .(3,-1)D .(-1,-3)5.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2-6a+9C .x 2+5yD .x 2-5y6.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=34°,则∠BED 的度数是( )A .17°B .34°C .56°D .68°7.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC=3,则DE 的长为( )A .1B .2C .3D .48.把x 3-9x 分解因式,结果正确的是( )A .x (x 2-9)B .x (x-3)2C .x (x+3)2D .x (x+3)(x-3)9.如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF10.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米:设原计划每天施工x 米,则根据题意所列方程正确的是( )A .20002000250x x -=+B .20002000250x x-=+ C .20002000250x x -=- D .20002000250x x -=- 二、填空题:(每小题3分,共18分;结果填写在第Ⅱ卷的指定位置)11.当x=____时,分式1x x -值为0. 12.PM 2.5是指大气中直径小于或等于0.000 002 5m 的颗粒物,将0.000 0025用科学记数法表示为____.13.已知一个多边形的内角和是1620°,则这个多边形是____边形.14.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为____.15.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE=2,BC=5,则△BCE 的面积为____.16.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得:3S-S=39-1,即2S=39-1,∴9312S -=得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m+m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是____.第Ⅱ卷(共52分)三、解答题:(共52分)17.(每小题3分,共6分)计算:(1)33222a ab b b ⎛⎫⎛⎫÷-⋅ ⎪ ⎪-⎝⎭⎝⎭ (2)2(2)()()x y x y x y --+- 18.(5分)如图,C 是线段AB 的中点,CD=BE ,CD ∥BE.求证:∠D=∠E.19.(6分)先化筒再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭(取一个你认为合适的数) 20.(6分)解方程:3111x x x -=-+ 21.(6分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度(1)用记号(a ,b ,c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹)22.(7分)甲乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲、乙两人每小时各做多少个零件?23.(8分)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌AACD;(2)BE=CE。

2019-2020年八年级上学期期末考试数学试题

2019-2020年八年级上学期期末考试数学试题

5∶ 3∶ 2 的比例确定每人的成绩,
25、某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学
有关租车问题的对话:
李老师:“平安客运公司有 60 座和 45 座两种型号的客车可供租用, 60 座客车每辆每天的租金比 45
座的贵 200 元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了
(单位:元) :50, 20, 50, 30,50, 25,135.这组数据的众数和中位数分别是(

A. 50,20
B. 50, 30
C. 50, 50
D. 135, 50
3、将△ ABC的三个顶点坐标的横坐标和纵坐标都乘以- 1,则所得图形与原图形的关系是(

A、关于 x 轴对称
B 、关于 y 轴对称
145 元;购买 2 盒“福娃”玩具和 3 盒徽章共需 280 元 . 一盒“福娃”玩具和一盒徽章的价格各是
元.
15、正方形 ABCD在坐标系中的位置如图所示,将正方形 旋转后, B 点的坐标为 .
ABCD绕 D点顺时针方向
16、如图,已知函数和的图象交于点 P, 则根据图象
可得,关于 x,y 的二元一次方程组的解是
2019-2020 年八年级上学期期末考试数学试题
班级
姓名
学号
评分
一、选择题: (每小题 3 分,共 30 分,每小题只有一个答案,请你把正确的选择填在表格中)
题号
1
2
3
4
5
6
7
8
9
10
答案
1、计算的结果是(

A、
B
、-1
C

D

2019-2020学年新人教版八年级上学期末考试数学试题附参考答案

2019-2020学年新人教版八年级上学期末考试数学试题附参考答案

2019-2020学年八年级上学期末考试数学试题一、选择题(本大题共14小题,共42.0分)1.下面设计的原理不是利用三角形稳定性的是()A. 三角形的房架B. 自行车的三角形车架C. 斜钉一根木条的长方形窗框D. 由四边形组成的伸缩门2.视力表中的字母“E”有各种不同的摆放形式,下面每种组合中的两个字母“E”不能关于某条直线成轴对称的是()A. B. C. D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. B. C. D.5.已知a m=6,a n=3,则a2m-n的值为()A. 12B. 6C. 4D. 26.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A. 3B. 4C. 3或5D. 3或4或57.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A. 0个B. 1个C. 2个D. 3个8.下列计算正确的是()A. B. C. D.9.一定能确定△ABC≌△DEF的条件是()A. ,,B. ,,C. ,,D. ,,10.由图中所表示的已知角的度数,可知∠α的度数为()A.B.C.D.11.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A. B. C. D.13.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是()A. B. C. D.14.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A. 0个B. 2个C. 4个D.8个二、填空题(本大题共4小题,共16.0分)15.分解因式:9-12t+4t2=______.16.一个正多边形的每个内角都是150°,则它是正______边形.17.已知,则代数式的值为______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.三、计算题(本大题共1小题,共10.0分)19.(1)解分式方程:(2)计算:x(x+2y)-(x+y)2四、解答题(本大题共5小题,共52.0分)20.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.21.如图,在一块边长为a米的正方形空地的四角均留出一块边长为<米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a=13.6,b=1.8时,草坪的面积.22.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ.(1)证明:CP=CQ;(2)求∠PCQ的度数;(3)当点D是AB中点时,请直接写出△PDQ是何种三角形.23.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.24.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上,证明:∠BAD=∠EDC;(2)如图1,若点D在线段BC上,证明:①AD=DE;②BC=DC+2CF(提示:构造全等三角形);(3)如图2,若点D在线段BC的延长线上,直接写出BC、DC、CF三条线段之间的数量关系.答案和解析1.【答案】D【解析】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.利用三角形的稳定性进行解答.此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.【答案】C【解析】解:如图所示,A,B,D选项中,两个字母“E”关于直线l成轴对称,而C选项中,两个字母“E”不能沿着某条直线翻折互相重合,故选:C.把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.本题主要考查了轴对称的概念,轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.3.【答案】D【解析】解:0.000 000001=1×10-9,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:由题意得,x-2≠0,解得x≠2.故选:A.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【答案】A【解析】解:∵a m=6,a n=3,∴a2m-n=(a m)2÷a n=36÷3=12.故选:A.直接利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,C、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;B、当EF=4时,不符合EF为奇数,故本选项错误;A、当EF=3时,由选项C知,此选项错误;D、当EF=3或4或5时,其中4不符合EF为奇数,故本选项错误;故选:C.根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.7.【答案】D【解析】解:(1)满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;(2)只有锐角三角形的三条高交于三角形内一点,故错误;(3)三角形的外角大于与它不相邻的任何一个内角,故错误;故选:D.利用三角形的三边关系、三角形的三线的定义及三角形的外角的性质,分别判断后即可确定正确的选项.本题考查了三角形的三边关系、三角形的三线的定义及三角形的外角的性质,属于基础定义或基本定理.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】B【解析】解:(-2a)2=4a2,A选项错误;(-3)-2==,B选项正确;(a5)2=a10,C选项错误;b3•b4=b7,D选项错误;故选:B.根据积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法法则计算,判断即可.本题考查的是积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.【答案】A【解析】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.【答案】D【解析】解:∠α=360°-120°-120°-70°=50°.故选:D.根据四边形的外角和为360°直接求解.本题考查了多边形的内角与外角,牢记多边形的外角和定理是解答本题的关键.11.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等.12.【答案】B【解析】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE 与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.13.【答案】A【解析】解:设甲每小时做x个零件,则乙每小时做(x+6)个零件,依题意,得:=.故选:A.设甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.14.【答案】C【解析】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,所以满足条件的格点C有4个,故选:C.根据等腰三角形的性质和三角形的面积解答即可.本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键15.【答案】(3-2t)2【解析】解:原式=(3-2t)2.故答案为:(3-2t)2原式利用完全平方公式分解即可得到结果.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.16.【答案】十二【解析】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.17.【答案】7【解析】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9-2=7.根据完全平方公式把已知条件两边平方,然后整理即可求解.本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.18.【答案】60°或120°【解析】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.【答案】解:(1)去分母得:2-x-1=2x-5,解得:x=2,经检验x=2是分式方程的解;(2)原式=x2+2xy-x2-2xy-y2=-y2.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了解分式方程,以及整式的乘除,熟练掌握运算法则是解本题的关键.20.【答案】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【解析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:由图可得,草坪的面积是:a2-4b2,当a=13.6,b=1.8时,a2-4b2=(a+2b)(a-2b)=(13.6+2×1.8)×(13.6-2×1.8)=17.2×10=172,即草坪的面积是172.【解析】根据题意和图形可以表示出草坪的面积,然后根据因式分解法和a、b的值可以求得草坪的面积本题考查因式分解的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ;(2)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°-(∠ACP+BCQ+∠ACB)=360°-(120°+120°)=120°;(3)△PDQ是等边三角形.理由:∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形【解析】(1)由折叠直接得到结论;(2)由折叠的性质求出∠ACP+∠BCQ=120°,再用周角的意义求出∠PCQ=120°;(3)先判断出△APD是等边三角形,△BDQ是等边三角形,再求出∠PDQ=60°,即可.此题是几何变换综合题,主要考查了折叠的性质,等腰三角形的性质,等边三角形的判定,锐角三角函数,极值的确定,三角形的面积公式,解本题的关键是判断出∠PCQ=120°是个定值.23.【答案】解:(1)如图所示:(2)△ABC的面积=;(3)如图所示,点P即为所求.【解析】(1)直接利用对称点的性质得出对应点位置进而得出答案;(2)利用割补法即可得出答案;(3)利用轴对称求最短路线的方法得出答案.本题主要考查作图-轴对称变换,解题的关键是根据与轴对称的定义作出变换后的对应点及割补法求三角形的面积.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠B=60°,∵∠ADC=∠ADE+∠EDC=∠B+∠BAD,∠ADE=60°,∴∠BAD=∠EDC;(2)证明:①过D作DG∥AC交AB于G,如图1所示:∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°,∴∠BDG=∠ACB=60°,∴∠BGD=60°,∴△BDG是等边三角形,∴BG=BD,∠AGD=∠B+∠BGD=60°+60°=120°,∴AG=DC,∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD,由(1)知∠GAD=∠EDC,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS),∴AD=DE;②∵△AGD≌△DCE,∴GD=CE,∴BD=CE,∵EF⊥BC,CE是∠ACB外角的平分线,∴∠ECF=60°,∠CEF=30°,∴CE=2CF,∴BC=CE+DC=DC+2CF;(3)解:BC=2CF-DC;理由如下:过D作DG∥AC交AB延长线于G,如图2所示:∵DG∥AC,△ABC是等边三角形,∴∠BGD=∠BDG=∠B=60°,∴△GBD是等边三角形,∴GB-AB=DB-BC,即AG=DC,∵∠ACB=60,CE是∠ACB的外角平分线,∴∠DCE=∠ACE=×(180°-∠ACB)=60°,∴∠AGD=∠DCE=60°,∵∠GAD=∠B+∠ADC=60°+∠ADC,∠CDE=∠ADC+∠ADE=∠ADC+60°,∴∠GAD=∠CDE,在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),∴GD=CE,∴BD=CE,∵CE=2CF,∴BC=BD-DC=CE-DC=2CF-DC.【解析】(1)由等边三角形的性质得出∠B=60°,再由三角形的外角性质结合已知条件,即可得出结论;(2)过D作DG∥AC交AB延长线于G,证得△AGD≌△DCE,得出:①AD=DE;进一步利用GD=CE,BD=CE得出②BC=DC+2CF;(3)过D作DG∥AC交AB延长线于G,由平行线和等边三角形的性质得出∠BGD=∠BDG=∠B=60°,证出△GBD是等边三角形,证出AG=CD,再证出∠GAD=∠CDE,证明△AGD≌△DCE,得出GD=CE,进而得出结论.此题是三角形综合题目,考查了等边三角形的性质、角平分线的意义、全等三角形的判定与性质以及平行线的性质等知识,通过作辅助线,构造三角形全等是解决问题的关键.。

2019--2020学年第一学期八年级上册期末考试数学试题及答案

2019--2020学年第一学期八年级上册期末考试数学试题及答案

八年级数学试卷注意:本试卷共 8 页,三道大题, 26 小题。

总分 120 分。

时间 120 分钟。

二 26 总分题号 得分得分 评卷人一、 选择题(本题共16 小题,总分42 分。

1-10 小题,每题3 分; 11-16 小题,每题 2 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

请将正确选项的代号填写在下面的表格中)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16题号 答案1.点 P (﹣1,2)关于 y 轴的对称点坐标是( A .(1,2)B .(﹣1,2)C .(1,﹣2),则∠α 等于(C .58°D .50°3.用一条长 16cm 的细绳围成一个等腰三角形,若其中一 )D .(﹣1,﹣2)ABC EF G )边长 4cm ,则该等腰三角形的腰长为( A .4cmB .6cm4.在以下四个图案中,是轴对称图形的是()C .4cm 或 6cmD .4cm 或 8cm)A .B .C .D .5.一个多边形,每一个外角都是 45°,则这个多边形的边数是( A .6 B .7C .8) D .9m的乘积中不含 的一次项,则实数 的值是(x+m 2﹣x与x 6.若 )A .﹣2B .2x+y C .0) D .1x y 7.若 3 =4,3 =6,则 3 的值是(A .24B .10C .3D .28. “已知∠AOB ,求作射线 OC ,使 OC 平分∠AOB ”的作法的合理顺序是()①作射线 OC ; ②在 OA 和 OB 上分别截取 OD 、 OE ,使 OD=OE ;③分别以 D 、E 为圆心,大于 DE 的长为半径作弧,在∠AOB 内,两弧交于 C . A .①②③9. 下列计算中,正确的是( 3 2 4 B .②①③C .②③①D .③②①) 2 2x •x =x (x+y )(x ﹣y )=x +y B .A . 3 2 2 4 x (x ﹣2)=﹣2x+x 2.3xy ÷xy =3x C D .10.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1(x+y )(x ﹣y )=x 2﹣y 2B .C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2xyl)A .30°B .45°C .50°D .75°12. 某市政工程队准备修建一条长 1200 米的污水处理管道。

2019—2020学年第一学期八年级数学期末考试试卷及答案

2019—2020学年第一学期八年级数学期末考试试卷及答案

2019—2020学年第一学期期末考试试卷八年级数学题号一二三四总分得分一、选择题(每小题4分,共40分)1.等腰三角形的顶角为40°,则它的底角是() A.40°B.50°C.70°D.80°2.下列图案是轴对称图形的是()3.下列分解因式正确的是 ( )A.32(1)x x x x-=-. B.2(3)(3)9a a a+-=-C.29(3)(3)a a a-=+-D.22()()x y x y x y+=+-4.下列长度的三条线段,哪一组不能构成三角形()A. 3,3,3 B. 3,4,5 C. 5,6,10 D. 4,5,95.下列运算正确的是() A.a3·a4=a12B.(-2a2b3)3=-2a6b9C.a6÷a3=a3D.(a+b)2=a2+b26.上图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是() A.△ABD≌△CBD B.△ABC≌△ADCC.△AOB≌△COB D.△AOD≌△COD7.芝麻作为食品和药物均广泛使用,经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为()A.2.01×10-6千克B.0.201×10-5千克C.20.1×10-7千克D.2.01×10-7千克8.正多边形的一个外角等于30°,则这个多边形的边数为() A.6 B.9 C.12 D.159.已知(m-n)2=32,(m+n)2=4000,则m2+n2的值为() 得分评卷人A.2014 B.2015 C.2016 D.403210.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A .B .= C.D.二、填空题(每小题4分,共32分)11.分解因式:a3b-ab=________.12.如图,在△ABC中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,∠A =46°,∠1=52°,则∠2=________度.13.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为________.14.化简x2-1x2-2x+1·x-1x2+x+2x的结果是________.15.已知2y10y m++是完全平方式,则m的值是________.(第12题图)(第13题图)(第18题图)16.甲做90个机器零件所用的时间和乙做120个所用时间相等,又知每小时甲乙二人一共做35个机器零件.求甲、乙每小时各做多少个机器零件。

2019-2020年八年级上学期期末考试数学试卷(III)

2019-2020年八年级上学期期末考试数学试卷(III)

第8题图B DCA第7题图DFCEBA 2019-2020年八年级上学期期末考试数学试卷(III)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成; 4.考试结束,由监考人员将答题卡收回.一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在对应题号的答题卡上.1.以下为正方体的展开图,在这些展开图中,为轴对称图形的是2. 的计算结果是A .B .C .D .3. 下列等式从左到右的变形是因式分解的是A .B .()14218222+-=+-x x x x C . D . 4.正八边形的每个外角的度数是A . 18°B . 36°C . 45°D . 60° 5.分式有意义的条件是A. B. C. D. 为任意实数6.到三角形三个顶点的距离都相等的点是这个三角形的A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点7. 如图,B ,C ,E ,F 四点在一条直线上,下列条件不能判定△ABC 与△DEF 全等的是 A .B .C .D . 8. 若是完全平方式,则的值是A. B. C. 3 D. 6 9.若整式不含的一次项,则的值为A . ﹣3B . ﹣2C . ﹣1D .2 10.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 平分 ∠BAC ,若BC =6,则点D 到线段AB 的距离等于 A. 5 B. 4 C. 3 D.2 第10题图11.按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块EFDBCA第12题图第18题图DE ACB数是A.273B. 293C. 313D. 333 12.如图,在△ABC 和△DBC 中,∠ACB =∠DBC =90°,E 是BC 的中点,DE ⊥AB ,垂足为点F ,且AB =DE .若BD =8cm ,则AC 的长为 A .2 cm B .3 cm C .4 cmD .6 cm二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上.13. 因式分解的结果是_____________. 14. 氧原子的直径约为0.000 000 0016米,数据0.000 000 0016用科学记数法表示为______. 15. 计算的结果是_____________.16. 若分式的值为零,则的值是_____________.17. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为__________.18. 如图,△ABC 和△CDE 都是等边三角形,连接BE,AE,BD,若∠EBD =14°,则∠AEB 的度数是 ______________.第18题图 三、解答题:(本大题8个小题,共78分),解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(本小题满分7分)解方程:20.(本小题满分7分) 已知,求代数式的值 21.(本小题满分10分)如图,在平面直角坐标系中,已知两点A (1,2),B (﹣1,﹣1),(1)画出以点B 为顶角顶点,对称轴平行于y 轴的等腰△ABC ,并写出满足条件的C 点 坐标_____________(2)A 点关于y 轴的对称点为M ,平移 △ABC ,使A 点平移至M 点位置,B 点的对 应点为N 点,C 点的对应点为点P ,画出平移 后的△MNP ,并求出△MNP 的面积.22. (本小题满分10分)计算下列各式:(1)()()()a b b a b b ab b a +--÷--222322(2)21)113(4422+++-+÷++-a a a aa a a 23. (本小题满分10分)计算下列各式:如图,在△中,是上一点,, 是△外一点,CAE BAD ADE B ∠=∠∠=∠,.(1)求证:(2)若∠BAD =30°,AB =6,BD =4,DE =9,求△ADC 的面积. 第23题图24.(本小题满分10分)随着人们节能意识的增强,节能产品进入千家万户,今年10月萌萌家将天然气热水器换成了太阳能热水器.9月份萌萌家的燃气费是96元,已知 10月份起天然气价格每立方米上涨25%,萌萌家11月份的用气量比9月份少10立方米,11月份的燃气费是90元.问萌萌家11月份用气多少立方米.25.(本小题满分12分)阅读材料:如果一个花坛的长,宽分别是m 、n ,且m 、n 满足m 2﹣2mn +2n 2﹣4n +4=0,求花坛的面积.解:∵m 2﹣2mn +2n 2﹣4n +4=0,∴(m 2﹣2mn +n 2)+(n 2﹣4n +4)=0∴(m ﹣n )2+(n ﹣2)2=0,∴(m ﹣n )2=0,(n ﹣2)2=0,∴m = n ,n =2. ∴mn=4根据你的观察和思考,探究下面的问题: (1)若x 2﹣2xy +5y 2+4y +1=0,求xy 的值; (2)若0245222=-+++xz xy z y x ,求代数式的值;(3)若△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b +61=0,求△ABC的周长的最大值.26.(本小题满分12分)如图,∠MAN =45°,点C 在射线AM 上,AC =10,过C 点作CB ⊥AN 交AN 于点B ,P 为线段AC 上一个动点,Q 点为线段AB 上的动点,且始终保持PQ =PB . (1)如图1,若∠BPQ =45°,求证:△ABP 是等腰三角形;(2)如图2, DQ ⊥AP 于点D ,试问:此时PD 的长度是否变化?若变化,请说明理由;若不变,请计算其长度;(3)当点P 运动到AC 的中点时,将△PBQ 以每秒1个单位的速度向右匀速平移,设运动时间为t 秒,B 点平移后的对应点为E ,求△ABC 和△PQE 的重叠部分的面积.AMBCPQ N26题图(2)DQPCB NMA26题图(1)xx 学年度上学期期末考试 八年级数学参考答案及评分意见一、选择题:1—5:BBDCA 6—10:CBBDD 11—12:CC 二、填空题:13. 14. 15.10 16.17.120°或20° 18. 46°三、解答题:19.解:()()()()32236+---=+x x x x x ………………………2分 623218622++---=+x x x x x x ………………………4分………………………6分经检验,是原方程的解………………………7分20.解:()ab b a b ab a 3222-+=+- ………………………3分=52– 3×2………………………5分=19………………………7分 21.解:(1)C (-3,2),………………………3分 (2)图形略,………………………7分△MNP 的面积=×4×3=6………………………10分22.解:(1)原式=)4(22222b a b ab a ----………………………2分 =………………………3分 =………………………5分(2)原式=()211113)1(222++⎪⎪⎭⎫ ⎝⎛+--+÷+-a a a a a a a ………………………6分 ==21)2)(2(1)1()2(2++-++⋅+-a a a a a a a ………………………8分==………………………10分 23.(1)证明:∵∠BAD=∠CAE,G F∴∠BAD +∠DAC =∠CAE +∠DAC即∠BAC =∠DAE ………………………3分 ∵AB =AD, ∠B =∠ADE∴△ABC ≌△ADE(ASA) ………………………4分 ∴AC =AE ………………………5分(2) 解1(面积法):由(1)可知,△ABC ≌△ADE ∴AB =AD =6,BC =DE =9 ∵BD =4,∴DC =BC -BD =5过点D,F 分别作DF⊥AB ,AG ⊥BC ,垂足分别为F,G,. ∵∠BAD =30°, ∴DF =AD =3∵BD =4, AG ·BD =AB ·DF ∴AG =………………………8分 ∴S △ADC =DC ·AG =×5×=………………………10分解2(勾股定理):过点A 作AG 垂直于BD 于G ………..6分 由已知知AB =AD ,∴BG=DG=2,AG=………8分 ∴S △ADC =DC ·AG =×5×=………………………10分 24.解:设萌萌家11月份用气立方米.由题意得 ………………………5分解得,………………………8分经检验,是原方程的解. ………………………9分答:萌萌家11月份用气30立方米………………………10分25.解:(1)012,0,0)12()(22=+=-∴=++-y y x y y x∴,∴………………………4分(2) 06,05,0)6()5(22=-=-∴=-+-b a b a∴.∴∵c 为整数,∴c 的最大值为10,∴△ABC 的周长的最大值为21. ………………………8分(3)0,02,0)()2(22=-=+∴=-++z x y x z x y x∴∴0323=-+=--x x x z y x ………………………12分26.(1)证明:∵∠BPQ=45°,PQ=PB,F EQPCBA图1图2FEQ P CBA∴∠PBQ=∠PQB=67.5°. ∵∠MAN=45°,∴ ∠APB=180°-45°-67.5°=67.5° ∴∠APB= ∠PBQ∴AP=AB 即三角形ABP 为等腰三角形。

初中数学山东省济宁市曲阜市八年级上期末数学考试卷.docx

初中数学山东省济宁市曲阜市八年级上期末数学考试卷.docx

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题 填空题 简答题 xx 题 xx 题 xx 题 总分 得分一、xx 题 (每空xx 分,共xx 分)试题1:将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A .1,2,4B .8,6,4C .12,6,5D .3,3,6试题2:下列计算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(a 3)2 D .a 15÷a 3试题3:如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别是边AB 、AC 上,将△ABC 沿着DE 重叠压平,A 与A ′重合,若∠A=70°,则∠1+∠2=( )A .140°B .130°C .110°D .70°试题4:评卷人得分若分式的值为0,则x的值为()A.0 B.1C.﹣1 D.±1试题5:第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A. B.C. D.试题6:如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD试题7:石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7 C.0.1×10﹣5 D.1×106试题8:如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论不一定成立的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠AED=2∠ECD试题9:某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C. D.试题10:如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③ B.①②④ C.①③④ D.①②③④试题11:当x≠时,分式有意义.试题12:在平面直角坐标系中点P(﹣2,3)关于x轴的对称点是.试题13:如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= °.试题14:如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C= .试题15:一列数a1,a2,a3…满足条件,:a1=,a n=(n≥2,且n为整数),则a2018= .试题16:(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)试题17:(x+y)2﹣x(2y﹣x)试题18:解方程: +=.试题19:如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.试题20:先化简,再求值:(﹣)÷,其中a=﹣1.试题21:如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.试题22:星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.试题23:阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m≠n时,m2+n≠m+n2.可是我见到有这样一个神奇的等式:()2+=+()2(其中a,b为任意实数,且b≠0).你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);①当a= ,b= 时,等式(□成立;□不成立);②当a= ,b= 时,等式(□成立;□不成立).(2)对于任意实数a,b(b≠0),通过计算说明()2+=+()2是否成立.试题24:在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)试题1答案:B.【解答】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、6+4>8,能组成三角形,故此选项正确;C、6+5<12,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;试题2答案:C解:A、a2+a3,无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、(a3)2=a6,故此选项正确;D、a15÷a3=a12,故此选项错误;试题3答案:A解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.试题4答案:C解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.试题5答案:D解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;试题6答案:A解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;试题7答案:A解:0.000 001=1×10﹣6,试题8答案:D解:∵∠ADB是△ACD的外角,∴∠ADB=∠ACB+∠CAD,选项A正确;∵AD=AE,∴∠ADE=∠AED,选项B正确;∵AB=AC,∴∠B=∠C,选项C正确;∵ED≠EC,∴∠AED=2∠ECD不一定成立,选项D错误;故选:D.试题9答案:A解:设慢车的速度为xkm/h,慢车所用时间为,快车所用时间为,可列方程:﹣=1.试题10答案:C解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.试题11答案:﹣1 解:根据题意得,x+1≠0,解得x≠﹣1.故答案为:﹣1.试题12答案:(﹣2,﹣3).【解答】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答案为:(﹣2,﹣3).试题13答案:425 °.解:∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,试题14答案:35°.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,试题15答案:2 .【解答】解:a1=,a2==2,a3==﹣1,a4=…可以发现:数列以,2,﹣1循环出现,2018÷3=672…2,所以a2018=2.试题16答案:(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)=x2+2x+1+x2﹣2x﹣x2+1=x2+2;试题17答案:(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2.试题18答案:解:去分母得:2x+2+x﹣1=7,移项合并得:3x=6,解得:x=2,经检验x=2是分式方程的解.试题19答案:证明:∵∠1=∠2,∴∠CAB=∠EAD在△CAB和△EAD中,∴△CAB≌△EAD(SAS)∴BC=DE试题20答案:解:原式=[﹣]÷=[﹣]÷=•=,当a=﹣1时,原式==﹣1.试题21答案:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.试题22答案:解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.试题23答案:解:(1)例如:①当a=2,b=3时,等式()2+=()+()2成立;②当a=3,b=5时,等式()2+=+()2成立.(2)解:∵()2+==,+()2=+=.所以等式()2+=+()2成立.试题24答案:解:(1)如图1,∵DE=DA,∴∠E=∠DAC,∵△ABC是等边三角形,∴∠BAC=∠ACD=60°,即∠BAD+∠DAC=∠E+∠EDC=60°,∴∠BAD=∠EDC;(2)①补全图形如图2;②证法1:由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=180°﹣120°=60°,∴△ADN是等边三角形,∴AD=AM;证法2:连接CM,由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=180°﹣120°=60°,∴△ADM中,∠DAM=(180°﹣60°)÷2=60°,又∵∠BAC=60°,∴∠BAD=∠CAM,由轴对称可得,∠DCE=∠DCM=120°,又∵∠ACB=60°,∴∠ACM=120°﹣60°=60°,∴∠B=∠ACM,在△ABD和△ACM中,,∴△ABD≌△ACM(ASA),∴AD=AM.。

山东省济宁市曲阜市八年级数学上学期期末考试试题(含

山东省济宁市曲阜市八年级数学上学期期末考试试题(含

山东省济宁市曲阜市2015-2016学年八年级数学上学期期末考试试题一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A.B.C.D.3.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣24.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣115.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°6.下列计算正确的是()A.a﹣1=﹣a B.aa2=a2C.a6÷a2=a3D.(2012贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.如图,在△ABC中,AB=AC,BD平分∠AB C交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°10.观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是()A.﹣36 B.45 C.﹣55 D.66二、填空题(共5小题,每小题3分,满分15分)11.计算:3a3a2﹣2a7÷a2= .12.如果一个正多边形的内角和是900°,则这个正多边形是正边形.13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.14.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R= .15.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=度.三、解答题(共7小题,满分55分)16.化简:( +)÷.17.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.18.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.19.阅读:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.20.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD 与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.21.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON 上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE 交于点F,求证:AC=AE+CD.2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)【考点】坐标与图形变化-平移.【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).故选D.【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、B、D中的图案是轴对称图形,C中的图案不是轴对称图形,故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.3.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得x+2≠0,据此求出x的取值范围即可.【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,要熟练掌握,解答此题的关键是要明确:(1)分式有意义的条件是分母不等于零.分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000034=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.6.下列计算正确的是()A.a﹣1=﹣a B.aa2=a2C.a6÷a2=a3D.(a3)2=a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.7.(3分)(2012贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.10.观察下列各式及其展开式:(a﹣b)2=a2﹣2ab+b2(a﹣b)3=a3﹣3a2b+3ab2﹣b3(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5…请你猜想(a﹣b)10的展开式第三项的系数是()A.﹣36 B.45 C.﹣55 D.66【考点】完全平方公式.【专题】计算题;规律型.【分析】根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【解答】解:根据题意得:第五个式子系数为1,﹣6,15,﹣20,15,﹣6,1,第六个式子系数为1,﹣7,21,﹣35,35,﹣21,7,﹣1,第七个式子系数为1,﹣8,28,﹣56,70,﹣56,28,﹣8,1,第八个式子系数为1,﹣9,36,﹣84,126,﹣126,84,﹣36,9,﹣1,第九个式子系数为1,﹣10,45,﹣120,210,﹣252,210,﹣120,45,﹣10,1,则(a﹣b)10的展开式第三项的系数是45,故选B.【点评】此题考查了完全平方公式,弄清题中的规律是解本题的关键.二、填空题(共5小题,每小题3分,满分15分)11.计算:3a3a2﹣2a7÷a2= a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3a2﹣2a7÷a2的值是多少.【解答】解:3a3a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.【点评】(1)此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.如果一个正多边形的内角和是900°,则这个正多边形是正七边形.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.【解答】解:设这个正多边形的边数是n,则(n﹣2)180°=900°,解得:n=7.则这个正多边形是正七边形.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= 7 cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到AD=BD,进行等量代换后可得答案.【解答】解:∵DE为AB边的垂直平分线∴DA=DB∵△ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故填7.【点评】此题主要考查线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进行线段的等量代换是正确解答本题的关键.14.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R= .【考点】分式的加减法.【分析】先找出最简分母,方程两边同乘以最简公分母,再求R即可.【解答】解:方程两边同乘RR1R2,R1R2,=RR2+RR1,R1R2,=R(R2+R1),R=,故答案为.【点评】本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.15.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD,则∠BDE=90 度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】要证∠BDE=90°可转化为证明△BAD≌△CAE,由已知可证AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC+∠CAE=∠EAD+∠CAE,即可证∠BAD=∠CAE,符合SAS,即得对应角相等,于是得到结论.【解答】证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠BDA=∠E=45°,∴∠BDE=∠BDA+∠ADE=90°.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(共7小题,满分55分)16.化简:( +)÷.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式===.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.【点评】此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.18.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先根据等腰三角形的性质得到AD是顶角的平分线,再利用全等三角形进行证明即可.【解答】证明:∵AM=2MB,AN=2NC,AB=AC,∴AM=AN,∵AB=AC,AD平分∠BAC,∴∠MAD=∠NAD,在△AMD与△AND中,,∴△AMD≌△AND(SAS),∴DM=DN.【点评】本题考查了全等三角形的判定和性质,关键是根据等腰三角形的性质进行证明.19.阅读:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:①am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)②x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式(1)mx﹣2ny﹣nx+2my;(2)4x2﹣4x﹣y2+1.【考点】因式分解-分组分解法.【专题】阅读型.【分析】(1)将原式重新分组进而提取公因式进而分解因式得出答案;(2)将原式重新分组进而提取公因式进而分解因式得出答案.【解答】解:(1)mx﹣2ny﹣nx+2my=(mx﹣nx)﹣(2ny﹣2my)=x(m﹣n)﹣2y(m﹣n)=(m﹣n)(x﹣2y);(2)4x2﹣4x﹣y2+1=(4x2﹣4x+1)﹣y2=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).【点评】此题主要考查了分组分解法因式分解,正确分组是解题关键.20.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD 与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】几何综合题.【分析】(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.【解答】(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.【点评】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,得出∠DCF=∠AMF是解题关键.21.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【考点】分式方程的应用;一元一次方程的应用.【分析】(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成24000个零件的生产任务,列出方程求解即可.【解答】解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.【点评】考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON 上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE 交于点F,求证:AC=AE+CD.【考点】全等三角形的判定与性质.【分析】在AC上截取AG=AE,连接FG,根据“边角边”证明△AEF和△AGF全等,根据全等三角形对应角相等可得∠AFE=∠AFG,全等三角形对应边相等可得FE=FG,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,从而得到∠AFE=∠CFD=∠AFG=60°,然后根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,根据全等三角形对应边相等可得FG=FD,从而得证.【解答】证明:如图,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,CE是∠BCA的平分线,∴∠1=∠2,3=∠4在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,∵∠B=60°∴∠BAC=∠ACB=120°,∴∠2+∠3=(∠BAC+∠ACB)=60°,∵∠AFE=∠2+∠3,∴∠AFE=∠CFD=∠AFG=60,∴∠CFG=180°﹣∠CFD﹣∠AFG=60°,∴∠CFD=∠CFG,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴CG=CD,∴AC=AG+CG=AE+CD.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,三角形的内角和定理,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,根据所求角度正好等于60°得到角相等是解题的关键.。

山东省曲阜市2019-2020学年八年级上学期期末数学试题(word无答案)

山东省曲阜市2019-2020学年八年级上学期期末数学试题(word无答案)

山东省曲阜市2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 点关于轴对称的点的坐标是()A.B.C.D.(★) 2 . 若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数(★) 3 . 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m(★) 4 . 若一个多边形的内角和是1080°,则此多边形的边数是()A.十一B.十C.八D.六(★) 5 . 下列式子不正确的是()A.B.C.D.(★★) 6 . 等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm (★) 7 . 把分式的分子与分母各项系数化为整数,得到的正确结果是()A.B.C.D.(★) 8 . 如图,∠ ACB=90°, AC= BC.AD⊥ CE,BE⊥ CE,垂足分别是点 D, E, AD=3,BE=1,则 DE的长是()A.1B.2C.3D.4(★) 9 . 如图,是等边三角形,是边上的高,是的中点,是上的一个动点,当与的和最小时,的度数是()A.B.C.D.(★★) 10 . 老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁二、填空题(★) 11 . 当x= _____ 时,分式的值为零.(★) 12 . 二次三项式是一个完全平方式,则k=_______.(★★) 13 . 如图,AB=AD,∠1=∠2,如果增加一个条件_____,那么△ABC≌△ADE.(★★) 14 . 已知,,是的三边,且,则的形状是__________.(★★) 15 . 已知,且,,,…,,请计算__________(用含在代数式表示).三、解答题(★★) 16 . 解答下列各题:(1)计算:(2)分解因式:.(★) 17 . 如图,已知点 B、F、C、E 在一条直线上,BF = CE,AC = DF,且AC∥DA.求证:∠B =∠B.(★★) 18 . 解分式方程:.(★★) 19 . 先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.(★★) 20 . 为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.(★★) 21 . 如图,两条公路 OA与 OB相交于点 O,在∠ AOB的内部有两个小区 C与 D,现要修建一个市场 P,使市场 P到两条公路 OA、 OB的距离相等,且到两个小区 C、 D的距离相等.(1)市场 P应修建在什么位置?(请用文字加以说明)(2)在图中标出点 P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).(★★) 22 . 阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式( x 2﹣4 x+1)( x 2﹣4 x+7)+9进行因式分解的过程.解:设 x 2﹣4 x= y原式=( y+1)( y+7)+9(第一步)= y 2+8 y+16(第二步)=( y+4)2(第三步)=( x 2﹣4 x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法 B.平方差公式法 C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式( x 2+2 x)( x 2+2 x+2)+1进行因式分解.(★★) 23 . 如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q 分别从顶点B、C同时出发,且它们的速度都为3cm/s.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.。

2019—2020学年度曲阜市第一学期初二期末考试初中数学

2019—2020学年度曲阜市第一学期初二期末考试初中数学

2019—2020学年度曲阜市第一学期初二期末考试初中数学八年级数学试题本卷须知:1.本试题分第一卷和第二卷两部分,第一卷为选择题,36分;第二卷为非选择题,84分;共120分。

考试时刻为120分钟。

2.答第二卷时,将密封线内的项目填写清晰,用钢笔或圆珠笔答题。

第一卷(选择题 共36分)一、选择题(以下各题的四个选项中,只有一项符合题意,每题3分,共36分)1.以下各式中,正确的选项是( ) A .623y y y =⋅ B .633)(a a = C .632)(x x -=-D .842)(m m =--2.下面有四个汽车标致图案,其中是轴对称图形的是( ) A .②③④B .①②③C .①③④D .①②④3.如图是某蓄水池的横断面示意图,分为深水池和浅水池,假如那个蓄水池以固定的注水速度注水,下面能大致表示水的最大深度h 与时刻t 之间的关系的图像是( ).4.如图,E ,B ,F ,C 四点在一条直线上,EB=CF ,∠A=∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB=DEB .DF//AC C .∠E=∠ABCD .AB//DE5.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,以下讲法错误的选项是( )A .△EBD 是等腰三角形,EB=EDB .叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形 6.2264y kxy x ++是一个完全平方式,那么k 的值是( ) A .8B .±8C .16D .±167.点A(x ,1)、B(3,y)关于x 轴对称,那么y x -的值为( ) A .2B .4C .一4D .一28.等腰三角形底边长为5cm ,一腰上中线把周长分为两部分的差为3cm ,那么腰长为 ( )A .2cmB .2cm 或8cmC .8cmD .7cm9.如图是某校初二年级学生到校方式的条形统计图,依照图形可得出步行人数占总人数的( )A .20%B .30%C .50%D .60%10.一次函数k kx y -=,假设y 随着x 的增大而减小,那么该函数的图象通过( )。

最新精选济宁市曲阜市精选八年级上册期末数学试卷((含答案))(已纠错)

最新精选济宁市曲阜市精选八年级上册期末数学试卷((含答案))(已纠错)

2019-2019学年山东省济宁市曲阜市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.(3分)将下列长度的三根木棒首尾顺次连接,能组成三角形的是()A.1,2,4B.8,6,4C.12,6,5D.3,3,62.(3分)下列计算结果为a6的是()A.a2+a3B.a2•a3C.(a3)2D.a15÷a33.(3分)如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC 上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.6.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1068.(3分)如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论不一定成立的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠AED=2∠ECD9.(3分)某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1B.﹣=1C.D.10.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)当x≠时,分式有意义.12.(3分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点是.13.(3分)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.14.(3分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=.15.(3分)一列数a1,a2,a3…满足条件,:a1=,a n=(n≥2,且n为整数),则a2019=.三、解答题(共55分)16.(5分)计算:(1)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)(2)(x+y)2﹣x(2y﹣x)17.(6分)解方程: +=.18.(6分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.19.(7分)先化简,再求值:(﹣)÷,其中a=﹣1.20.(7分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.21.(7分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.22.(8分)阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m≠n时,m2+n≠m+n2.可是我见到有这样一个神奇的等式:()2+=+()2(其中a,b为任意实数,且b≠0).你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);①当a=,b=时,等式(□成立;□不成立);②当a=,b=时,等式(□成立;□不成立).(2)对于任意实数a,b(b≠0),通过计算说明()2+=+()2是否成立.23.(9分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)2019-2019学年山东省济宁市曲阜市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档