复数选择题专项训练知识点-+典型题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数选择题专项训练知识点-+典型题含答案
一、复数选择题
1.设复数1i
z i
=+,则z 的虚部是( )
A .
12
B .12
i
C .12
-
D .12
i -
答案:A 【分析】
根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:.
解析:A 【分析】
根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】
()()()1111111222
i i i i z i i i i -+=
===+++-,z ∴的虚部为12.
故选:A .
2.若复数()()24z i i =--,则z =( ) A .76i --
B .76-+i
C .76i -
D .76i +
答案:D 【分析】
由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,. 故选:.
解析:D 【分析】
由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】
()()2248676z i i i i i =--=-+=-,76z i ∴=+.
故选:D .
3.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )
A B C .3
D .5
答案:D
【分析】
求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .
解析:D 【分析】
求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意121
22i z i i i
-=
=-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.
故选:D . 4.若复数1211i
z i
+=--,则z 在复平面内的对应点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
答案:B 【分析】
利用复数的运算法则和复数的几何意义求解即可 【详解】 ,
所以,在复平面内的对应点为,则对应点位于第二象限 故选:B
解析:B 【分析】
利用复数的运算法则和复数的几何意义求解即可 【详解】
()()12i 1i 12i
33i 33i 111i 2222
z +++-+=
-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫
- ⎪⎝
⎭,则对应点位于第二象限 故选:B
5.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -
B .3i --
C .3i +
D .3i -+
答案:A 【分析】
根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,
复数的共扼复数是, 故选:A
解析:A 【分析】
根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】
因为313i z i ⋅=-, 所以()13133i
z i i i i
-=
=-=+-, 复数z 的共扼复数是3z i =-, 故选:A
6.已知复数()2
11i z i
-=
+,则z =( )
A .1i --
B .1i -+
C .1i +
D .1i -
答案:B 【分析】
根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B
解析:B 【分析】
根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】 由题意可得
()()
()()
()2
12111111i i i z i i i i i i ---=
==--=--++-,则1z i =-+. 故答案为:B 7.设复数2i
1i
z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
答案:D 【分析】
先求出,再求出,直接得复数在复平面内对应的点 【详解】
因为,所以,在复平面内对应点,位于第四象限. 故选:D
解析:D 【分析】
先求出z ,再求出z ,直接得复数z 在复平面内对应的点 【详解】 因为211i z i i
=
=++,所以1z i -
=-,z 在复平面内对应点()1,1-,位于第四象限.
故选:D
8.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2
C .10
D
答案:D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.
解析:D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,
所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.
9.设复数z 满足41i
z i
=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
答案:D 【分析】
先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】
解:因为, 所以,
所以共轭复数在复平面内的对应点位于第四象限, 故选:D
解析:D 【分析】 先对41i
z i
=
+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2
i i i i i z i i i i i i i i --=
==-=-=+++-, 所以22z i =-,
所以共轭复数z 在复平面内的对应点位于第四象限, 故选:D
10.已知i 是虚数单位,设复数22i
a bi i
-+=+,其中,a b ∈R ,则+a b 的值为( ) A .7
5
B .75-
C .
15
D .15
-
答案:D 【分析】
先化简,求出的值即得解. 【详解】 , 所以. 故选:D
解析:D 【分析】 先化简345
i
a bi -+=,求出,a
b 的值即得解. 【详解】
22(2)342(2)(2)5
i i i
a bi i i i ---+===++-,
所以341,,555
a b a b ==-∴+=-. 故选:D
11.已知i 为虚数单位,则
43i
i
=-( )
A .
2655
i + B .
2655
i - C .2655
i -
+ D .2655
i -
- 答案:C 【分析】
对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C
解析:C 【分析】 对
43i
i
-的分子分母同乘以3i +,再化简整理即可求解. 【详解】
()()()434412263331055
i i i i i i i i +-+===-+--+, 故选:C
12.若i 为虚数单位,,a b ∈R ,且2a i
b i i
+=+,则复数a bi -的模等于( )
A B C D 答案:C 【分析】
首先根据复数相等得到,,再求的模即可. 【详解】 因为,所以,. 所以. 故选:C
解析:C 【分析】
首先根据复数相等得到1a =-,2b =,再求a bi -的模即可. 【详解】
因为()21a i b i i bi +=+=-+,所以1a =-,2b =.
所以12a bi i -=--=
故选:C 13.题目文件丢失!
14.已知复数21i
z i
=
-,则复数z 在复平面内对应点所在象限为( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
答案:B 【分析】
对复数进行化简,再得到在复平面内对应点所在的象限. 【详解】
,在复平面内对应点为,在第二象限. 故选:B.
解析:B 【分析】
对复数z 进行化简,再得到z 在复平面内对应点所在的象限. 【详解】
21i z i =
-()()()
2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.
15.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3
π
而得到.则21
arg(
)2
z z -的值为( ) A .
6
π B .
3
π
C .
23
π D .
43
π 答案:C 【分析】
写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,
所以复数在第二象限,设幅角为, 故选:C 【点睛】
在复平面内运用复数的三
解析:C 【分析】
写出复数11z =的三角形式1cos0sin 0z i =+,绕原点O 逆时针方向旋转
3
π
得到复数2z 的
三角形式,从而求得21
2
z z -的三角形式得解. 【详解】
11z =,1cos0sin 0z i ∴=+,
121(cos
sin )332Z i O OZ π
π=+=
2111()222z z --∴
=+
所以复数在第二象限,设幅角为θ,tan θ=
23
π
θ∴=
故选:C 【点睛】
在复平面内运用复数的三角形式是求得幅角的关键.
二、复数多选题
16.若复数z 满足()1z i i +=,则( )
A .1z i =-+
B .z 的实部为1
C .1z i =+
D .22z i =
答案:BC 【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可 【详解】 解:由,得,
所以z 的实部为1,,, 故选:BC 【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭
解析:BC 【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可 【详解】
解:由()1z i i +=
,得2(1)2(1)
1(1)(1)2
i i z i i i --=
===-+-, 所以z 的实部为1,1z i =+,22z i =-, 故选:BC 【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题 17.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12
=z z
B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
答案:BCD 【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD 【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,
比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
18.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)1
22
- C .实数1
2
a =-
是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2
答案:ACD 【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】
∴选项A :为纯虚数,有可得,故正确 选项B
解析:ACD 【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误 【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20
120a a -=⎧⎨
+≠⎩
可得2a =,故正确
选项B :z 在复平面内对应的点在第三象限,有20120
a a -<⎧⎨+<⎩解得1
2a <-,故错误
选项C :12a =-时,52z z ==-;z z =时,120a +=即1
2
a =-,它们互为充要条件,故正确
选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD 【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围
19.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:
()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:
()()()n cos sin co i s s n
n n
z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2
2
z z = B .当1r =,3
π
θ=时,31z =
C .当1r =,3
π
θ=时,122
z =
- D .当1r =,4
π
θ=
时,若n 为偶数,则复数n z 为纯虚数
答案:AC 【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.
对于A 选项,,则,可得
解析:AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.
【详解】
对于A 选项,()cos sin z r i θθ=+,则()2
2cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;
对于B 选项,当1r =,3πθ=
时,()33cos sin cos3sin 3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;
对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=,则12z =-,C 选项正确;
对于D 选项,()cos sin cos sin cos sin 44
n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC.
【点睛】
本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.
20.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )
A .20z
B .2z z =
C .31z =
D .1z = 答案:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数(其中为虚数单位),
,故错误;
,故正确;
,故正确;
.故正确.
故选:.
本题考查命题真假的判断,考查复数的运算法则
解析:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数12z =-+(其中i 为虚数单位),
2131442z ∴=--=-,故A 错误; 2z z ∴=,故B 正确;
31113()()12244
z =---+=+=,故C 正确;
||1z ==.故D 正确. 故选:BCD .
【点睛】
本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.
21.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
答案:ABCD
【分析】
利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.
【详解】
因为(1﹣i )z =
解析:ABCD
【分析】
利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.
【详解】
因为(1﹣i )z =2i ,所以21i z i
=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以
||z =A 正确; 所以1i z =--,故B 正确;
由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;
因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.
故选:ABCD.
【点睛】
本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.
22.以下为真命题的是( )
A .纯虚数z 的共轭复数等于z -
B .若120z z +=,则12z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD
【分析】
根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.
【详解】
解:对于A ,若为纯虚数,可设,则,
即纯虚数的共轭复数等于,故A 正确;
对于B
解析:AD
【分析】
根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.
【详解】
解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,
即纯虚数z 的共轭复数等于z -,故A 正确;
对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;
对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;
对于D ,120z z -=,则12z z =
,则1z 与2z 互为共轭复数,故D 正确.
故选:AD.
【点睛】
本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.
23.对于复数(,)z a bi a b R =+∈,下列结论错误..
的是( ). A .若0a =,则a bi +为纯虚数
B .若32a bi i -=+,则3,2a b ==
C .若0b =,则a bi +为实数
D .纯虚数z 的共轭复数是z -
答案:AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为
当且时复数为纯虚数,此时,故A 错误,D 正确;
当时,复数为实数,故C 正确;
对于B :,则即,故B 错误;
故错误的有AB
解析:AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为(,)z a bi a b R =+∈
当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;
当0b =时,复数为实数,故C 正确;
对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩
,故B 错误; 故错误的有AB ;
故选:AB
【点睛】
本题考查复数的代数形式及几何意义,属于基础题.
24.给出下列命题,其中是真命题的是( )
A .纯虚数z 的共轭复数是z -
B .若120z z -=,则21z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD
【分析】
A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.
【详解】
A .根据共轭
解析:AD
【分析】
A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.
【详解】
A .根据共轭复数的定义,显然是真命题;
B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;
C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;
D. 若120z z -=,则12z z =
,所以1z 与2z 互为共轭复数,故D 是真命题.
故选:AD
【点睛】
本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.
25.对任意1z ,2z ,z C ∈,下列结论成立的是( )
A .当m ,*n N ∈时,有m n m n z z z +=
B .当1z ,2z
C ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅
D .12z z =的充要条件是12=z z
答案:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.
【详解】
解:由复数乘法的运算律知,A 正确;
取,;,满足,但且不
解析:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .
【详解】
解:由复数乘法的运算律知,A 正确;
取11z =,;2z i =,满足2212
0z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;
由12z z =能推出12=z z ,但12||||z z =推不出12z z =
, 因此12z z =的必要不充分条件是12
=z z ,D 错误. 故选:AC
【点睛】 本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.
26.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )
A .|z |=
B .z 的实部是2
C .z 的虚部是1
D .复数z 在复平面内对应的点在第一象限 答案:ABD
【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.
【详解】


,故选项正确,
的实部是,故选项正确,
的虚部是,故选项错误,

解析:ABD
【分析】
把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.
【详解】
(1i)3i z +=+,
()()()()3134221112
i i i i z i i i i +-+-∴====-++-,
z ∴==A 正确,
z 的实部是2,故选项B 正确,
z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.
故选:ABD .
【点睛】
本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.
27.已知复数12ω=-+(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )
A .2ωω=
B .31ω=-
C .210ωω++=
D .ωω> 答案:AC
【分析】
根据复数的运算进行化简判断即可.
【详解】
解:∵所以,
∴,故A 正确,
,故B 错误,
,故C 正确,
虚数不能比较大小,故D 错误,
故选:AC.
【点睛】
本题主要考查复数的有关概念
解析:AC
【分析】
根据复数的运算进行化简判断即可.
【详解】
解:∵12ω=-+所以12ω=--,
∴2131442ωω=--=--=,故A 正确,
321
11312244ωωω⎛⎫⎛⎫⎛⎫==--
-+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,
2111102
2ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,
故选:AC .
【点睛】 本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.
28.已知i 为虚数单位,则下列选项中正确的是( )
A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数()()
2234224m m m m +-+--i 是纯虚数,则1m =或4m =-
D .对任意的复数z ,都有20z
答案:AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240
m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.
29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5 答案:ABC
【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
∴,
∴,解得:,
∴实数的值可能是.
故选:ABC.
【点
解析:ABC
【分析】
设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222
223,23042,
x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.
故选:ABC.
【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
30.设()()
2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )
A .z 对应的点在第一象限
B .z 一定不为纯虚数
C .z 一定不为实数
D .z 对应的点在实轴的下方
答案:CD
【分析】
利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
【详解】
,,
所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD
【分析】
利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
2
2549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;
当222530220
t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;
由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.
【点睛】
本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。

相关文档
最新文档