视频点睛习题详细解答(理工高数)
高考解答题专项突破(一) 第3课时 利用导数研究函数的零点--2025年高考数学复习讲义及练习解析
第3课时利用导数研究函数的零点考点一确定函数零点的个数(多考向探究)考向1利用单调性和函数零点存在定理确定零点个数例1(2023·湖北武汉模拟)已知函数f (x )=e xx,g (x )=tan x .(1)讨论f (x )的单调性;(2)设函数F (x )=f (x )-g (x ),试判断F (x )-π2,解(1)函数f (x )=e xx 的定义域为{x |x ≠0},f ′(x )=e x x -e x x 2=e x (x -1)x 2,令f ′(x )=0,得x =1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增.(2)令F (x )=f (x )-g (x )=e xx -tan x =0,得x sin x -e x cos x =0.设h (x )=x sin x -e x cos x ,所以h ′(x )=(e x +1)sin x +(x -e x )cos x .①当x -π2,,可知e x >0>x ,则e x >x ,所以x -e x <0,又sin x <0,cos x >0,所以h ′(x )<0,从而h (x )=x sin x -e x cos x -π2,,又h (0)=-1,=π2>0,由零点存在定理及h (x )的单调性,得h (x )-π2,.②当x ,π4时,cos x ≥sin x >0,由(1)知函数f (x )=e xx在(0,1)上单调递减,所以当x ,π4时,函数f (x )=e xx >f (1)=e>1,则e x >x >0.所以e x cos x >x sin x ,则h (x )=x sin x -e x cos x <0恒成立.所以h (x ),π4上无零点.③当x,sin x >cos x >0,h ′(x )=e x (sin x -cos x )+(x cos x +sin x )>0,则h (x).又=π2>0,,由零点存在定理及h (x)的单调性,得h (x ).综上,h (x )-π2,2,即F (x )-π2,为2.利用单调性和函数零点存在定理确定零点个数的一般步骤及注意点(1)讨论函数的单调性,确定函数的单调区间.(2)在每个单调区间上,利用函数零点存在定理判断零点的个数.(3)注意区间端点的选取技巧.(4)含参数时注意分类讨论.1.(2023·江西高三质量监测(四))已知函数f (x )=(x -1)e x -13ax 3(a >e ,e 是自然对数的底数).(1)讨论函数f (x )的极值点的个数;(2)证明:函数f (x )在区间(0,+∞)上有且只有一个零点.解(1)f ′(x )=x e x -ax 2=x (e x -ax )(a >e),令f ′(x )=0,得x =0或e x -ax =0.设g (x )=e x -ax ,则g ′(x )=e x -a ,令g ′(x )=0,得x =ln a ,当x <ln a 时,g ′(x )<0,g (x )单调递减;当x >ln a 时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (ln a )=a -a ln a =a (1-ln a ).因为a >e ,则g (x )min <0,此时g (x )在R 上有且仅有两个零点,记为x 1,x 2(x 1<x 2),因为g (0)=1>0,g (1)=e -a <0,当x →+∞时,g (x )>0,所以0<x 1<1<x 2,且x 1,x 2是g (x )的两个变号零点,也是f ′(x )的两个变号零点,又当x <0时,f ′(x )<0,当0<x <x 1时,f ′(x )>0,所以0是f ′(x )的变号零点,即f ′(x )在R 上有且仅有3个变号零点,所以函数f (x )在R 上有且仅有3个极值点.(2)证明:f ′(x )=x (e x -ax ),由(1)知,当a >e 时,f (x )在R 上有3个极值点:0,x 1,x 2,其中0<x 1<1<x 2,且f (0)=-1<0,当0<x <x 1时,g (x )>0,则f ′(x )>0,f (x )单调递增;当x 1<x <x 2时,g (x )<0,则f ′(x )<0,f (x )单调递减;当x >x 2时,g (x )>0,则f ′(x )>0,f (x )单调递增.所以f (x )在区间(0,+∞)内的极大值为f (x 1),极小值为f (x 2),且e x 1=ax 1,e x 2=ax 2⇒a =e x 1x 1,a =e x 2x 2.所以f (x 2)=(x 2-1)e x 2-13ax 32=(x 2-1)e x2-13·e x 2x 2x 32=(x 2-1)e x 2-x 22e x 23=e x 23(-x 22+3x 2-3)=e x 23-2-34<0,同理,f (x 1)=e x 13-1-34<0,而当x →+∞时,f (x )>0,因此函数f (x )在区间(0,x 2]内无零点,在区间(x 2,+∞)上有且只有一个零点.综上所述,函数f (x )在区间(0,+∞)上有且只有一个零点.考向2利用两个函数图象的交点确定零点个数例2(2024·河北邢台第二中学高三阶段练习)已知函数f (x )=ax 2-|1+ln x |(a >0).(1)若a =1,求f (x )的单调区间;(2)讨论f (x )零点的个数.解(1)当a =1时,函数f (x )=x 2-|1+ln x |的定义域为(0,+∞),当0<x ≤1e 时,f (x )=x 2+1+ln x ,f ′(x )=2x +1x >0,因此f (x ),1e 上单调递增,当x >1e 时,f (x )=x 2-1-ln x ,f ′(x )=2x -1x =2x 2-1x ,当1e <x <22时,f ′(x )<0,当x >22时,f ′(x )>0,因此函数f (x ),+,所以函数f (x )+(2)函数f (x )=ax 2-|1+ln x |(a >0)的定义域为(0,+∞),由f (x )=0,得a =|1+ln x |x 2,令函数g (x )=|1+ln x |x2,x >0,当0<x ≤1e 时,g (x )=-1+ln x x 2,g ′(x )=-x -2x (1+ln x )x 4=1+2ln xx 3<0,函数g (x ),1e 上单调递减,由于-(1+ln x )≥0,即有-(1+ln x ),1e 上的取值集合是[0,+∞),又1x 2在,1e 上的取值集合是[e 2,+∞),因此函数g (x ),1e 上的取值集合是[0,+∞).当x >1e 时,g (x )=1+ln x x 2,求导得g ′(x )=-1+2ln x x 3,当1e <x <1e 时,g ′(x )>0,当x >1e 时,g ′(x )<0,因此函数g (x ),+,在x =1e 处取得极大值=e2,而∀x +g (x )>0恒成立,函数f (x )=ax 2-|1+ln x |(a >0)的零点,即方程a =|1+ln x |x 2(a >0)的根,亦即直线y =a (a >0)与函数y =g (x )的图象交点的横坐标,在同一坐标系内作出直线y =a (a >0)与函数y =g (x )的图象,如图,观察图象知,当0<a <e2时,直线y =a (a >0)与函数y =g (x )的图象有3个公共点;当a =e2时,直线y =a (a >0)与函数y =g (x )的图象有2个公共点;当a >e2时,直线y =a (a >0)与函数y =g (x )的图象有1个公共点.所以当0<a <e 2时,函数f (x )有3个零点;当a =e 2时,函数f (x )有2个零点;当a >e2时,函数f (x )有1个零点.在借助函数图象研究函数零点问题时,要准确画出函数的图象,不仅要研究函数的单调性与极值的情况,还要关注函数值的正负以及变化趋势,把函数图象与x 轴有无交点,哪一区间在x 轴上方,哪一区间在x 轴下方等情况分析清楚,这样才能准确地研究直线与函数图象交点的个数情况.2.(2023·湖北七市联考)已知函数f (x )=ln x +2x-2,g (x )=x ln x -ax 2-x +1.(1)证明:函数f (x )在(1,+∞)上有且仅有一个零点;(2)假设存在常数λ>1,且满足f (λ)=0,试讨论函数g (x )的零点个数.解(1)证明:f ′(x )=1x -2x 2=x -2x2,令f ′(x )=0,得x =2,当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.因为f (1)=0,f (2)=ln 2-1<0,f (e 2)=2e2>0,由零点存在定理及f (x )的单调性,得函数f (x )在(1,+∞)上有且仅有一个零点.(2)令g (x )=0,即x ln x -ax 2-x +1=0,从而有ax =ln x -1+1x.令φ(x )=ln x -1+1x ,从而g (x )的零点个数等价于y =ax 的图象与φ(x )图象的交点个数.φ′(x )=1x -1x 2=x -1x 2,令φ′(x )=0,得x =1.当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0,所以φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,且φ(x )min =φ(1)=0,其图象如图所示.当a =0时,y =ax 的图象与φ(x )的图象有一个交点.当a <0时,y =ax 的图象经过第二、四象限,与φ(x )的图象无交点.当a >0时,y =ax 的图象经过第一、三象限,与φ(x )的图象至少有一个交点.当y =ax 的图象与φ(x )的图象相切时,设切点横坐标为x 0,=φ′(x 0)=1x 0-1x 20,0=ln x 0-1+1x 0,即有ln x 0+2x 0-2=0,从而x 0=λ,此时a =1λ-1λ2=λ-1λ2>0.所以,当a =λ-1λ2时,y =ax 的图象与φ(x )的图象有两个交点;当0<a <λ-1λ2时,y =ax 的图象与φ(x )的图象有三个交点;当a >λ-1λ2时,y =ax 的图象与φ(x )的图象有一个交点.综上所述,当a <0时,g (x )没有零点;当0<a <λ-1λ2时,g (x )有三个零点;当a =λ-1λ2时,g (x )有两个零点;当a >λ-1λ2或a =0时,g (x )有一个零点.考点二根据零点情况求参数范围例3(2023·广东惠州实验中学高三下学期适应性考试)已知函数f (x )=a x ,其中0<a <1.(1)求函数g (x )=f (x )-x ln a 的单调区间;(2)若函数h (x )=a x-(ln a )22x 2-x ln a -a +(3-k )ln a +(ln a )2在x ∈[1,+∞)上存在零点,求实数k 的取值范围.解(1)由已知,g (x )=a x -x ln a ,g ′(x )=a x ln a -ln a ,令g ′(x )=0,解得x =0.由0<a <1,可知当x 变化时,g ′(x ),g (x )的变化情况如下表:x (-∞,0)0(0,+∞)g ′(x )-0+g (x )单调递减极小值单调递增所以函数g (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)令h (x )=0,则存在x ∈[1,+∞),使得a x -(ln a )22x 2-x ln a -a +(3-k )ln a +(ln a )2=0,两边同时除以ln a ,得a x ln a -ln a 2x 2-x -aln a +ln a +3-k =0,即a x ln a -ln a 2x 2-x -aln a+ln a +3=k .令t (x )=a x ln a -ln a 2x 2-x -aln a +ln a +3,x ∈[1,+∞),t ′(x )=a x -x ln a -1,由(1)知a x -x ln a ≥g (0)=1,即t ′(x )≥0,则函数t (x )在[1,+∞)上单调递增,所以t (x )≥t (1)=a ln a -ln a 2-1-a ln a +ln a +3=ln a2+2.故k ≥2+ln a2,即实数k 的取值范围为2+ln a 2,+根据零点情况求参数范围的解法3.(2022·全国乙卷)已知函数f (x )=ln (1+x )+ax e -x .(1)当a =1时,求曲线f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+∞)各恰有一个零点,求a 的取值范围.解(1)当a =1时,f (x )=ln (1+x )+x e -x ,∴f ′(x )=1x +1+e -x -x e -x ,∴f ′(0)=1+1=2,又f (0)=0,∴所求切线方程为y -0=2(x -0),即y =2x .(2)f (x )=ln (1+x )+ax e -x =ln (x +1)+ax e x ,①当a ≥0时,若x >0,则ln (x +1)>0,axe x ≥0,∴f (x )>0,∴f (x )在(0,+∞)上无零点,不符合题意.②当a<0时,f′(x)=e x+a(1-x2) (x+1)e x.令g(x)=e x+a(1-x2),则g′(x)=e x-2ax,g′(x)在(-1,+∞)上单调递增,g′(-1)=e-1+2a,g′(0)=1,(a)当g′(-1)≥0,即-12e≤a<0时,g′(x)>0在(-1,+∞)上恒成立,∴g(x)在(-1,+∞)上单调递增,∵g(-1)=e-1>0,∴g(x)>0在(-1,+∞)上恒成立,∴f′(x)>0在(-1,+∞)上恒成立,∴f(x)在(-1,+∞)上单调递增,∵f(0)=0,∴f(x)在(-1,0),(0,+∞)上均无零点,不符合题意.(b)当g′(-1)<0,即a<-12e时,存在x0∈(-1,0),使得g′(x0)=0.∴g(x)在(-1,x0)上单调递减,在(x0,+∞)上单调递增.g(-1)=e-1>0,g(0)=1+a,g(1)=e>0.(ⅰ)当g(0)≥0,即-1≤a<-12e时,g(x)>0在(0,+∞)上恒成立,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.∵f(0)=0,∴当x∈(0,+∞)时,f(x)>0,∴f(x)在(0,+∞)上无零点,不符合题意.(ⅱ)当g(0)<0,即a<-1时,存在x1∈(-1,x0),x2∈(0,1),使得g(x1)=g(x2)=0,∴f(x)在(-1,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∵f(0)=0,∴f(x1)>f(0)=0,当x→-1时,f(x)<0,∴f(x)在(-1,x1)上存在一个零点,即f(x)在(-1,0)上存在一个零点,∵f(x2)<f(0)=0,当x→+∞时,f(x)>0,∴f(x)在(x2,+∞)上存在一个零点,即f(x)在(0,+∞)上存在一个零点.综上,a的取值范围是(-∞,-1).考点三“隐零点”问题例4已知函数f(x)=ln x+ax-a(a∈R).(1)讨论函数f(x)的单调性;(2)若不等式f(x)<a(x2-1)在(1,+∞)上恒成立,求实数a的取值范围.解(1)由f (x )=ln x +ax -a 知,定义域为(0,+∞),且f ′(x )=1x +a =ax +1x,①当a ≥0时,在(0,+∞)上f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a <0时,当x ,,f ′(x )>0,当x -1a,+,f ′(x )<0,故f (x ),,-1a ,+.(2)由f (x )<a (x 2-1),得ln x -a (x 2-x )<0,令g (x )=ln x -a (x 2-x ),①当a ≤0时,在(1,+∞)上,g (x )=ln x -a (x 2-x )=ln x -ax (x -1)>0恒成立,与题意不符;②当a >0时,g ′(x )=1x -a (2x -1)=1x -2ax +a 在(1,+∞)上单调递减,且g ′(1)=1-a ,当a ∈(0,1)时,g ′(1)>0,故在(1,+∞)上存在x 0,使得g ′(x )=0,当x ∈(1,x 0)时,g ′(x )>0,则在(1,x 0)上,g (x )单调递增,所以g (x )>g (1)=0,与题意不符.当a ∈[1,+∞)时,g ′(x )<g ′(1)=1-a ≤0,所以g (x )在(1,+∞)上单调递减,所以g (x )<g (1)=0,符合题意.综上所述,实数a 的取值范围为[1,+∞).在函数的零点中,有些零点不易求出,或者可以求出但无需求出,我们把这样的零点称为“隐零点”,即能确定其存在,但又无法或无需求出.对于“隐零点”问题的解题思路是对函数的零点设而不求,通过整体代换和过渡,再结合题目条件解决问题.4.已知函数f (x )=a e x -ln x ,g (x )=f (x )a,a ≠0.(1)若g (x )在[1,3]上是增函数,求实数a 的取值范围;(2)若a >0,求证:f (x )≥2+ln a .解(1)∵g (x )=f (x )a =e x -ln x a,∴g ′(x )=e x -1ax (x >0).∵g (x )在[1,3]上是增函数,∴g ′(x )≥0在[1,3]上恒成立,即1a ≤x e x 在[1,3]上恒成立.令t (x )=x e x ,则t ′(x )=(x +1)e x .∵当x ∈[1,3]时,t ′(x )>0,∴t (x )在[1,3]上是增函数,∴(x e x )min =e.∴1a ≤e ,解得a ≥1e或a <0,即实数a 的取值范围是(-∞,0)∪1e ,+(2)证明:f ′(x )=a e x -1x =ax e x -1x ,令h (x )=ax e x -1,则h ′(x )=a e x +ax e x =a e x (1+x ),∵a >0,∴h ′(x )>0,h (x )在(0,+∞)上单调递增,又h (0)=-1<0,e 1a -1>0,∴存在x 0使得h (x 0)=0,即存在x 0使得f ′(x 0)=a e x 0-1x 0=0,即x 0=1a e x 0.∴当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0,∴f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴f (x )min =f (x 0)=a e x 0-ln x 0=1x 0-ln 1a e x 0=1x 0+x 0+ln a ≥21x 0·x 0+ln a =2+ln a ,当且仅当1x 0=x 0,即x 0=1时等号成立,∴当a >0时,f (x )≥2+ln a .课时作业1.已知函数f (x )=2x 3-3x 2-12x +m .(1)若m =1,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )有3个零点,求实数m 的取值范围.解(1)由题意,得f ′(x )=6x 2-6x -12,故f ′(1)=-12,又当m =1时,f (1)=2-3-12+1=-12,故所求的切线方程为y +12=-12(x -1),即y =-12x .(2)由题意,得f ′(x )=6x 2-6x -12=6(x 2-x -2)=6(x +1)(x -2),令f ′(x )=0,得x =-1或x =2,当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,2)时,f ′(x )<0;当x∈(2,+∞)时,f′(x)>0,所以f(x)在(-∞,-1)上单调递增,在(-1,2)上单调递减,在(2,+∞)上单调递增,所以函数f(x)有极大值f(-1)=m+7,有极小值f(2)=m-20.若函数f(x)有3个零点,则实数m +7>0,-20<0,解得-7<m<20,即实数m的取值范围为(-7,20).2.已知函数f(x)=(x2-2x+a)e x.(1)讨论函数f(x)的单调性;(2)当a=1时,判断函数g(x)=f(x)-12x2+ln x的零点个数,并说明理由.解(1)f(x)的定义域为R,f′(x)=(2x-2)e x+(x2-2x+a)e x=(x2+a-2)e x,当a≥2时,f′(x)≥0,则f(x)在R上是增函数;当a<2时,f′(x)=[x2-(2-a)]e x=(x+2-a)(x-2-a)e x,令f′(x)=0,得x=±2-a;令f′(x)>0,得x<-2-a或x>2-a;令f′(x)<0,得-2-a<x<2-a.所以函数f(x)在(-2-a,2-a)上单调递减,在(-∞,-2-a)和(2-a,+∞)上单调递增.(2)当a=1时,g(x)=(x-1)2e x-12x2+ln x,其定义域为(0,+∞),则g′(x)=(x+1)(x-x设h(x)=e x-1x(x>0),则h′(x)=e x+1x2>0,从而h(x)在(0,+∞)上是增函数,又=e-2<0,h(1)=e-1>0,所以存在x0使得h(x0)=e x0-1x0=0,即e x0=1x0,x0=-ln x0.列表如下:x(0,x0)x0(x0,1)1(1,+∞)g ′(x )+0-0+g (x )增函数极大值减函数极小值增函数由表可得g (x )的极小值为g (1)=-12g (x )的极大值为g (x 0)=(x 0-1)2e x 0-12x 20+ln x 0=x 20-2x 0+1x 0-12x 20-x 0=-12x 20+1x 0-2.因为y =-12x 2+1x-2,所以-32<g (x 0)<-18,所以g (x )在(0,1]内没有零点.又g (1)=-12<0,g (2)=e 2-2+ln 2>0,g (x )在(1,+∞)上单调递增,所以g (x )在(1,+∞)内有一个零点.综上所述,g (x )只有一个零点.3.(2023·河北石家庄高三模拟(二))已知函数f (x )=x -2sin x ,x ,π2.(1)若函数g (x )=f (x )-x +sin2x ,求g (x )的最小值;(2)证明:函数f (x ),π2上有唯一零点.解(1)由题意,g (x )=-2sin x +sin2x ,g ′(x )=-2cos x +2cos2x =2(2cos 2x -cos x -1)=2(cos x -1)(2cos x +1),因为x ,π2,所以0≤cos x <1,所以g ′(x )<0,g (x )是减函数,所以g (x )min = 2.(2)证明:f (x )=x -2sin x ,设h (x )=x -sin x ,则h ′(x )=1-cos x ≥0,h (x )是增函数,所以x >0时,h (x )>h (0)=0,即x >sin x ,从而2x >2sin x ,由2x <x ,解得0<x <14,所以当0<x <14时,x >2sin x ,即f (x )>0,f (x )无零点;当π3<x ≤π2时,2sin x >2sin π3=3,x <π2<3,所以f (x )=x -2sin x <0,f (x )无零点;当14≤x ≤π3时,f ′(x )=12x-2cos x ,12x ≤1214=1,2cos x ≥2cos π3=1,所以f ′(x )=12x-2cos x ≤0,f (x )单调递减,又=12-2sin 14>12-2×14=0,=π3-2sin π3=π3-3<0,所以f (x )在14,π3上有唯一零点,,π2上有唯一零点.4.(2024·湖北武汉模拟)设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )的零点个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.解(1)f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )=2e 2a -1>0,当b 满足0<b <a 4,且b <14时,f ′(b )<0,(讨论a ≥1或a <1来检验,①当a ≥1时,则0<b <14,f ′(b )=2e 2b -a b <2e 12-4a ≤2e 12-4<0;②当a <1时,则0<b <a 4,f ′(b )=2e 2b -a b<2e a 2-4<2e 12-4<0.综上,f ′(b )<0.)故当a >0时,f ′(x )存在唯一零点.(2)证明:由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,则f ′(x 0)=2e2x 0-a x 0=0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,为f (x 0).所以f (x 0)=e2x 0-a ln x 0=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a ,当且仅当x 0=12时等号成立.故当a >0时,f (x )≥2a +a ln 2a.5.(2024·湖南邵东创新实验学校高三第二次月考)已知函数f (x )=e x -12x 2-x -1,(1)证明:当x >0时,f (x )>0恒成立;(2)若关于x 的方程f (x )x +x 2=a sin x 在(0,π)内有解,求实数a 的取值范围.解(1)证明:函数f (x )=e x -12x 2-x -1,x >0,求导得f ′(x )=e x -x -1,令y =e x -x -1,x >0,求导得y ′=e x -1>0,则函数f ′(x )在(0,+∞)上单调递增,f ′(x )>f ′(0)=0,因此函数f (x )在(0,+∞)上单调递增,f (x )>f (0)=0,所以当x >0时,f (x )>0恒成立.(2)设y =x -sin x ,x ∈(0,π),则y ′=1-cos x >0,则y =x -sin x 在(0,π)上单调递增,y >0,即x >sin x >0,方程f (x )x +x 2=a sin x 等价于e x -ax sin x -x -1=0,x ∈(0,π),令g (x )=e x -ax sin x -x -1,原问题等价于g (x )在(0,π)内有零点,由x ∈(0,π),得x sin x <x 2,由(1)知,当a ≤12时,g (x )=e x -ax sin x -x -1>e x -12x 2-x -1>0,当x ∈(0,π)时,函数y =g (x )没有零点,不符合题意;当a >12时,由g (x )=e x -ax sin x -x -1,求导得g ′(x )=e x -a (x cos x +sin x )-1,令t (x )=g ′(x )=e x -a (x cos x +sin x )-1,则t ′(x )=e x +a (x sin x -2cos x ),当x ∈π2,,t ′(x )>0恒成立,当x ,令s (x )=t ′(x )=e x +a (x sin x -2cos x ),则s ′(x )=e x +a (3sin x +x cos x ),因为e x >0,a (3sin x +x cos x )>0,则s ′(x )>0,即t ′(x ),又t ′(0)=1-2a <0,t e π2+π2a >0,因此t ′(x )x 0,当x ∈(0,x 0)时,t ′(x )<0,函数g ′(x )单调递减;当x ∈(x 0,π)时,t ′(x )>0,函数g ′(x )单调递增,显然g ′(x 0)<g ′(0)=0,g ′(π)=e π+a π-1>0,因此g ′(x )在(0,π)上存在唯一的零点x 1,且x 1∈(x 0,π),当x ∈(0,x 1)时,g ′(x )<0,函数g (x )单调递减;当x ∈(x 1,π)时,g ′(x )>0,g (x )单调递增,又g (0)=0,g (x 1)<g (0)=0,由(1)知,e x >12x 2+x +1>x +1(x >0),则g (π)=e π-π-1>0,所以g (x )在(0,x 1)上没有零点,在(x 1,π)上存在唯一零点,因此g (x )在(0,π)上有唯一零点.所以实数a +6.(2022·新高考Ⅰ卷)已知函数f (x )=e x -ax 和g (x )=ax -ln x 有相同的最小值.(1)求a ;(2)证明:存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解(1)f ′(x )=e x -a ,g ′(x )=a -1x =ax -1x.当a ≤0时,因为e x >0,所以f ′(x )>0,即f (x )在R 上单调递增,无最小值,不符合题意.当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,所以f (x )min =f (ln a )=a -a ln a ;g (x ),+,所以g (x )min =1+ln a .由题意,a -a ln a =1+ln a ,即(a +1)ln a =a -1,所以ln a -a -1a +1=0,(*)令h (a )=ln a -a -1a +1,则h ′(a )=1a -2(a +1)2=a 2+1a (a +1)2>0.所以h (a )在(0,+∞)上单调递增.又h(1)=0,由(*)式解得a=1.所以a=1.(2)证明:由(1)知a=1,函数f(x)=e x-x在(-∞,0)上单调递减,在(0,+∞)上单调递增.函数g(x)=x-ln x在(0,1)上单调递减,在(1,+∞)上单调递增.设u(x)=f(x)-g(x)=e x-2x+ln x(x>0),则u′(x)=e x-2+1x>ex-2,当x≥1时,u′(x)>e-2>0,所以函数u(x)在[1,+∞)上单调递增,因为u(1)=e-2>0,所以当x≥1时,u(x)≥u(1)>0恒成立,即f(x)-g(x)>0在[1,+∞)上恒成立,所以函数f(x)与g(x)的图象在[1,+∞)上无交点.当0<x<1时,u′(x)=e x-1+1-xx>0,所以u(x)在(0,1)上单调递增,又u(1)=e-2>0,e 1e2-2e2-2<e12-2e2-2<0,所以u(x)在(0,1)上存在唯一零点,所以函数f(x)与函数g(x)的图象在(0,1)上存在唯一交点,设该交点为M(m,f(m))(0<m<1),由此可作出函数y=f(x)和y=g(x)的大致图象,由图象可知,当且仅当直线y=b经过点M(m,f(m))时,直线y=b与两条曲线y=f(x)和y=g(x)共有三个不同的交点,此时,设三个交点的横坐标分别为x1,x2,x3,且x1<x2<x3,则f(x1)=f(x2)=g(x2)=g(x3)=b.因为f(x)=e x-x,g(x)=x-ln x=e ln x-ln x=f(ln x),所以f(x1)=f(x2)=f(ln x2)=f(ln x3).由于x2≠x1,x2≠ln x2,所以x2=ln x3,x1=ln x2,则f(ln x2)=e ln x2-ln x2=x2-ln x2=x2-x1=b,f(ln x3)=e ln x2-ln x3=x3-ln x3=x3-x2=b,上述两式相减得x1+x3=2x2,即从左到右的三个交点的横坐标成等差数列.综上可得,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.。
《高等数学第五版》(黄立宏)(上)第4章习题详解附答案
习题4-11. 利用定义计算下列定积分: 定积分 定积分的概念定积分的定义(1) d ();b ax x a b <⎰ 10(2)e d .x x ⎰解:(1)将区间[a , b ]n 等分,分点为(), 1,2,,1;i i b a x a i n n-=+=-L 记每个小区间1[,]i i x x -长度为,i b ax n-∆=取, 1,2,,,i i x i n ξ==L 则得和式211()2(1)()[()]()2nni i i i i b a b a n n f x a b a a b a n n n ξ==--+∆=+-⋅=-+∑∑ 由定积分定义得220122()(1) d lim ()lim[()]21().2nbi i an i b a n n x x f x a b a nb a λξ→→∞=-+=∆=-+=-∑⎰(2) 将区间[0, 1] n 等分,分点为 (1,2,,1),i i x i n n ==-L 记每个小区间长度1,i x n∆=取 (1,2,,),i i x i n ξ==L 则和式111()innni i i i f x enξ==∆=∑∑ 12101111111e d lim e lim (e e e )1e (1e )1e (e 1)limlim 1e e 11e (e 1)1lim e 1.1i nn xn n n n n n i n n n nn n n n n x n n n nn n n →∞→∞=→∞→∞→∞==+++--==---==-∑⎰L2. 利用定积分概念求下列极限:定积分 定积分的概念定积分的定义111(1)lim 122n n n n →+∞⎛⎫+++ ⎪++⎝⎭L ;21(2)lim n n →+∞+L解:(1)原式110011111lim d ln 2.ln(1)121111n x x n n xnn n →+∞⎛⎫+++⎪=⋅===++++ ⎪+⎝⎭⎰L (2)原式13200122lim ..33n x x n →+∞====⎰L 3. 用定积分的几何意义求下列积分值:定积分 定积分的概念定积分的定义10(1)2 d x x ⎰;(2)(0)x R >⎰.解:(1)由几何意义可知,该定积分的值等于由x 轴、直线x =1、y =2x 所围成的三角形的面积,故原式=1.(2) 由几何意义可知,该定积分的值等于以原点为圆心,半径为R 的圆在第一象限内的面积,故原式=21π4R . 4. 证明下列不等式: 定积分 定积分的性质定积分的性质2e 22e(1)e e ln d 2(e e)x x -≤≤-⎰; 21(2)1e d e.x x ≤≤⎰证明:(1)当2e e x ≤≤时,2ln e ln ln e ,x ≤≤即1ln e.x ≤≤由积分的保序性知:222e e e e eed ln d 2d x x x x ≤≤⎰⎰⎰即 2e 22ee e ln d 2(e e).x x -≤≤-⎰(2) 证明:当0 1.x ≤≤时,21e e,x ≤≤ 由积分的保序性知:2111d e d ed x x x x ≤≤⎰⎰⎰即211e d e.x x ≤≤⎰5. 证明:(1) 12lim 0;nn x →∞=⎰(2) π40lim sin d 0.n n x x →∞=⎰定积分定积分的性质 定积分的性质 定积分定积分的性质 积分中值定理证明:(1) 当102x ≤≤时,0,n n x ≤≤于是1112200110d (),12n n x x n +≤≤=⋅+⎰⎰ 而111lim()0,12n n n +→∞⋅=+由夹逼准则知:12lim 0.nn x →∞=⎰(2) 由中值定理得π440ππsin d sin (0)sin ,44n n x x ξξ=⋅-=⎰其中π0,4ξ≤≤故π4πlim sin d lim sin 0 ( 0sin 1).4n n n n x x ξξ→∞→∞==≤<⎰Q习题4-21. 计算下列定积分: 定积分 定积分的计算微积分学基本定理3(1)x ⎰; 221(2)d x x x --⎰;π(3)()d f x x ⎰,其中π,0,2()πsin ,π;2x x f x x x ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩;222(4)max{1,}d x x -⎰;(5)x .解:(1)原式43238233x ==-(2)原式01222211()d ()d ()d x x x x x x x x x -=-+-+-⎰⎰⎰01232233210111111132233251511.6666x x x x x x -⎛⎫⎛⎫⎛⎫=++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++= (3)原式πππ2π222π0π221πd sin d cos 1.28x x x x xx=+=-=+⎰⎰(4)原式121122233211212011d d d 2.333x x x x x x x -----=++=++=⎰⎰⎰(5)原式πππ242π04d (cos sin )d (sin cos )d sin cos x x x x x x x x x ==-+--⎰⎰⎰ππ24π04(sin cos )(cos sin )1).x x x x =++--=2. 计算下列导数: 定积分 定积分积分法复合函数求导法20d (1)d x t x ⎰;32d (2)d x x x ⎰解:(1)原式2=(2)原式32200d d d d x x x x =-=⎰⎰3. 求由参数式2020sin d cos d t tx u uy u u⎧=⎪⎨⎪=⎩⎰⎰所确定的函数y 对x 的导数d d y x .定积分 定积分积分法 复合函数求导法解:222d d cos d cot .d d sin d yy t t t x x tt=== 4. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数()y y x =的导数.定积分 定积分积分法 复合函数求导法解:方程两边对x 求导,有e cos 0y y x '⋅+=又 e 1sin yx =- 故 cos sin 1xy x '=-.5. 求下列极限: 定积分 定积分积分法微积分学基本定理2030ln(12)d (1)lim xx t t x →+⎰; 2220020e d (2)lim e d x t xx t t t t→⎡⎤⎣⎦⎰⎰.解: (1)原式21222300ln(12)22lim lim ln(12).333x x x x x x →→+==+=(2)原式2222222002e d e e d 1lim2lim2lim2.12e e xxt xt xxx x x t tx x x →→→⋅====+⎰⎰6. a , b , c 取何实数值才能使201lim sin x bx t c x ax →=-⎰ 成立.定积分 定积分积分法 复合函数求导法解:因为0x →时,sin 0x ax -→而该极限又存在,故b =0.用洛必达法则,有220000,1,lim lim 2cos cos lim 2, 1.sin x x x a x x x x a x a a x→→→≠⎧⎪==⎨--=-=⎪-⎩ 所以 1,0,2a b c ===- 或 1,0,0a b c ≠==.习题4-31. 利用基本积分公式及性质求下列积分:不定积分 求不定积分的方法基本积分公式2(1)5)d x x -;解:原式51732222210d 5d 73x x x x x x c =-=-+⎰⎰. (2)3e d x x x ⎰;解:原式=(3e)(3e)d .ln(3e)xxx c =+⎰23(3)d ;1x x ⎛ +⎝⎰ 解:原式=321d 23arctan 2arcsin .1x x x x c x -=-++⎰22(4)d ;1x x x +⎰解:原式=22211d d d arcsin .11x xx x x x c x x +-=-=-+++⎰⎰⎰ 2(5)sin d 2x x ⎰; 解:原式=1cos 1d sin .222x x x x c -=-+⎰21(6);1x x ⎛- ⎝⎰解:原式=357144444d d 4.7x x x x x x c ---=++⎰⎰2d (7);x x⎰解:原式=21d x x c x-=-+⎰.(8);x ⎰解:原式=35222d 5x x x c =+⎰.(9)解:原式=25322d 3x x x c --=-+⎰.2(10)(32)d ;x x x -+⎰解:原式=32132.32x x x c -++ 422331(11)d ;1x x x x +++⎰解:原式=23213d d arctan .1x x x x x c x +=+++⎰⎰ 3(12)d 2e x x x ⎛⎫+ ⎪⎝⎭⎰;解:原式=2e 3ln .xx c ++(13)e d ;1x xx x -⎛⎫- ⎪⎝⎭⎰解:原式=e d d e 2.xx x x x c x-=-+⎰⎰2352(14)d ;3x xxx ⋅-⋅⎰ 解:原式=5222d 5d 2233ln 3x xx x x c ⎛⎫⎛⎫-=-⋅+ ⎪ ⎪⎝⎭⎝⎭⎰⎰. (15)sec (sec tan )d x x x x -⎰;解:原式=2sec d sec tan d tan sec x x x x x x x c -=-+⎰⎰.1(16)d 1cos 2x x+⎰;解:原式=22111d sec d tan 2cos 22x x x x c x ==+⎰⎰.cos 2(17)d cos sin xx x x-⎰;解:原式=(cos sin )d sin cos .x x x x x c +=-+⎰22cos 2(18)d cos sin xx x x ⎰.解:原式=2211d d cot tan .sin cos x x x x c xx -=--+⎰⎰ 2. 一平面曲线过点(1,0),且曲线上任一点(x , y )处的切线斜率为2x -2,求该曲线方程. 不定积分 求不定积分的方法 基本积分公式 解:依题意知:22y x '=- 两边积分,有22y x x c =-+又x =1时,y =0代入上式得c =1,故所求曲线方程为221y x x =-+. 3. 在下列各式等号右端的空白处填入适当的系数,使等式成立.不定积分 求不定积分的方法 基本积分公式(1)()2(1)xdx d x =-;(2)()22x xx dx d e e =;(3)()(35ln )d xx xd -=; (4)()33(1)x x a a dx d =-;(5)()sin3cos3xdx d x=;(6)()2cos5tan5dxxd x =;(7)()221ln1x x ddx x=--;(8)()l2552ndd xxx=--;()(1arcs in)d x-=;(10)()2arcta9n13ddxxx=+;(11)()()2(3)(3)4dx dx x=---;(12)()22(1)x xx de d e--+=. 4.利用换元法求下列积分:不定积分求不定积分的方法基本积分公式2(1)cos()dx x x⎰;解:原式=22211cos d sin.22x x x c=+⎰(2)x;解:原式=12333(sin cos)d(sin cos)(sin cos).2x x x x x x c---=-+⎰2d(3)21xx-⎰;解:原式=1d112x c=+-+⎰.c=+3(4)cos d x x⎰;解:原式=231(1sin)dsin sin sin.3x x x x c-=-+⎰(5)cos cos d2xx x⎰;解:原式=1133d sin sin.cos cos232222xxx x cx⎛⎫=+++⎪⎝⎭⎰(6)sin2cos3dx x x⎰;解:原式=111(sin5sin)d cos cos5.2210x x x x x c-=-+⎰2arccos(7)xx;解:原式=2arccos 2arccos 1110d(2arccos )10.22ln10xx x c -=-⋅+⎰ 21ln (8)d (ln )xx x x +⎰;解:原式=21(ln )d(ln ).ln x x x x c x x-=-+⎰(9)x ;解:原式=2.c =+⎰ln tan (10)d cos sin xx x x⎰;解:原式=21ln tan d(ln tan )(ln tan ).2x x x c =+⎰5(11)e d x x -⎰;解:原式=51e5xc --+.d (12)12xx -⎰; 解:原式=1ln .122c x -+-(13)t;解:原式=.c =-⎰102(14)tan sec d x x x ⎰;解:原式=10111tan d(tan )tan .10x x x c =+⎰2d (15)ln xx x⎰;解:原式=21(ln )d(ln ).ln x x c x--=+⎰(16)tan x ⎰;解:原式=ln .cos c =-+⎰d (17)sin cos xx x⎰;解:原式=2d d tan ln .tan tan cos tan x xc x x x x ==+⎰⎰2(18)e d x x x -⎰;解:原式=22211e d()e .22x x x c ----=-+⎰ 10(19)(4)d x x +⎰;解:原式=111(4)11x c ++. (20)解:原式=123311(23)d(23)(23)32x x x c ----=--+⎰.2(21)cos()d x x x ⎰;解:原式=2211sin()sin().22d x x c =+⎰(22)x ; 解:原式=122222d 1()d()2x x a a x a x -⎛⎫ ⎪=---⎰arcsin .xa c a =⋅d (23)e ex x x-+⎰;解:原式=2d(e )arctane .1(e )x x x c =++⎰ ln (24)d xx x⎰; 解:原式=21ln d(ln )(ln ).2x x x c =+⎰23(25)sin cos d x x x ⎰;解:原式=223511sin (1sin )d(sin )sin sin .35x x x x x c -=-+⎰(26);解:原式32tan 444sec cos 1sin d d d(sin )tan sin sin x tt t tt t t t t t =-==⎰⎰⎰令311,3sin sin c t t=-++又cos t t ==故上式.c =(27)⎰;d ln |1|ln(1.1tt t t c c t =-++=+++(28) d ;x x⎰解:原式3sec 223tan d 3(sec 1)d 3tan 3x tt t t t t t c ==-=-+⎰⎰令,又3tan arccos ,t t x ===故上式33arccosc x+.(29);解:原式2tan 3sec d cos d sin sec x ttt t t t c t ===+⎰⎰令,又sec t 所以sin t =,故上式c =+.(30)解:原式sin cos d sin cos x ttt t t =+⎰令① sin d sin cos tt t t +⎰②① + ② 1t c =+ ② - ① 2 l n sin cos t t c =++ 故cos 1d ln sin cos sin cos 2211arcsin ln .22t t t ct t t t x c x =++++=++⎰5. 用分部积分法求下列不定积分:不定积分 求不定积分的方法分部积分法2(1)sin d x x x ⎰;解:原式=222dcos cos 2cos d cos 2dsin x x x x x x x x x x x -=-+⋅=-+⎰⎰⎰2cos 2sin 2cos .x x x x x c =-+++(2)e d x x x -⎰;解:原式=de e e d e e .x x x x x x x x x c ------=-+=--+⎰⎰(3)ln d x x x ⎰;解:原式=222211111ln d ln d ln 22224x x x x x x x x x c ⋅=-=-+⎰⎰. 2(4)arctan d x x x ⎰;解:原式=3332111arctan d arctan d 3331x x x x x x x=-+⎰⎰ 322111arctan ln(1).366x x x x c =-+++ (5)arccos d x x ⎰;解:原式=arccos arccos x x x x x c +=.2(6)tan d x x x ⎰;解:原式=22211(sec 1)d d tan tan tan d 22x x x x x x x x x x x -=-=--⎰⎰⎰ 21tan ln .cos 2x x x c x =+-+(7)e cos d x x x -⎰;解:e cos d e dsin e sin e sin d x x x x x x x x x x ----==⋅+⎰⎰⎰e sin e dcos e sin e cos e cos d x x x x x x x x x x x -----=-=--⎰⎰∴原式=1e (sin cos ).2xx x c --+ (8)sin cos d x x x x ⎰;解:原式=1111sin 2d d cos 2cos 2cos 2d 2444x x x x x x x x x =-=-+⎰⎰⎰ 11cos 2sin 248x x x c =-++.32(ln )(9)d x x x⎰; 解:原式=332111(ln )d (ln )3(ln )d x x x x x x ⎛⎫⎛⎫-=--⎪⎪⎝⎭⎝⎭⎰⎰ 32131(ln )(ln )6ln d x x x x x x ⎛⎫=--- ⎪⎝⎭⎰321366(ln )(ln )ln .x x x c x x x x=----+(10)x .解:原式tan 23sec d .x a ta t t =⎰又32sec d sec (tan 1)d tan d(sec )sec d t t t t t t t t t =+=+⎰⎰⎰⎰ 3tan sec sec d ln sec tan t t t t t t =⋅-++⎰所以 311sec d tan sec ln sec tan 22t t t t c t t '=+++⎰故11ln .22x c x =+6. 求下列不定积分:不定积分 求不定积分的方法分部积分法221(1)d (1)(1)x x x x ++-⎰;解:原式=2111111d ln ln 1122122(1)(1)(1)x c x x x x x x ⎛⎫ ⎪-=++++-++ ⎪+++-⎝⎭⎰ 211ln .112c x x =++-+ 33d (2)1x x +⎰;解:原式=22211112d ln ln d 1122111x x x x x x x x x x x -+⎛⎫=-+++-+⎪-++-+⎝⎭⎰⎰c =+. 5438(3)d x x x x x+--⎰; 解:原式=2843d 111x x x x x x ⎛⎫+++-- ⎪+-⎝⎭⎰ 32118ln 4ln 3ln .1132x x x c x x x =+++--++- 26(4)d 1x x x +⎰;解:原式=33321d()1arctan .31()3x x c x =++⎰ sin (5)d 1sin xx x +⎰;解:原式=222sin 1d tan d (sec 1)d sec tan .cos cos x x x x x x x x x c x x-=--=-++⎰⎰⎰ cot (6)d sin cos 1xx x x ++⎰;解:原式22tan 222222212d 1111111d d d 22(1)22211111x t t t t t t t t t t t t t t t t t t =-⋅-++==-+⎛⎫-++⎪+++⎝⎭⎰⎰⎰⎰令1111ln ln tan .tan 222222x x t c c t =-+=-+(7)x ;解:原式=2.c =+(8)x ;解:原式=2d 2ln 21x x x x x ⎛=+-+⎝⎰ 又2x2221d 44d 11t t t t t t =+--⎰⎰142ln1t t c c t -''=++=++故原式=1)x c -+.习题4-4利用计分表,计算下列不定积分: (1)2sin3d x e x x -⎰;解:由积分表(十三)中公式(128)得()()()222221sin 32sin 33cos32312sin 33cos313x xxe xdx e x x C e x x C ---=--+-+=-++⎰(2)x ; 解:令u =,则dx =,由积分表(六)中公式(39)得(9ln 2ln 4u C C⎤==+⎥⎦=++(3)arcsin d 2xx x ⎰;()()2221142arcsin sin 22421arcsin 22x x x x dx acr C x x C⎛⎫=- ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎰由积分表十二中公式得(4);()()12,,45211ln 221ln 22x u dx du u C x C ==⎡⎤==+⎢⎥⎣⎦=++令则由积分表七中公式得(5)()21d 1x x x -⎰;()()()2261111ln 11111ln xdx C x x x x xCx x--=-++--=--+⎰g 由积分表一中公式得(6)x ; ()()51111arccos arccos 1C Cx x =+=+由积分表七中公式得(7)x x ⎰;()()((256121ln .88x xx x C =-++⎰由积分表七中公式得(8)x ;()()().5961=arcsin .x C ==-+⎰⎰Q 由积分表八中公式和得(9)x ;()()12,3721313ln 32u x dx du C C x=====+令则,由积分表六中公式得(10)4sin d x x ⎰.()()432339513sin sin cos sin 441311sin cos sin cos 4422133sin cos sin cos 488xdx x x xdx x x x x dx x x x x x C=-+⎡⎤=-+-+⎢⎥⎣⎦=--++⎰⎰⎰由积分表十一中公式得习题4-51. 利用被积函数奇偶性,计算下列积分值(其中a 为正常数) 定积分 定积分的计算 微积分学基本定理(1)sin d ;||aa xx x -⎰解:因sin ||xx 为[-a , a ]上的奇函数, 故sin d 0.||a a xx x -=⎰(2)ln(a ax x -+⎰;解:因为ln(ln(x x -=-即被积函数为奇函数,所以原式=0.12212sin tan (3)d ln(1)3cos3x x x x x -⎡⎤+-⎢⎥+⎣⎦⎰;解:因为2sin tan 3cos3x xx+为奇函数,故原式=111222111222d 0ln(1)d ln(1)1xx x x x x x---++-=--⎰⎰()121231ln 3ln 2 1.ln 3ln 2ln(1)22x x -==----+-π242π23(4)sin d sin ln 3x x x x x -+⎛⎫+ ⎪-⎝⎭⎰.解:因为3ln3xx+-是奇函数,故 原式=ππ6622π02531π5sin d 2sin d 2π642216x x x x -==⋅⋅⋅⋅=⎰⎰2. 计算下列积分: 定积分 定积分的计算 ??此处更细还需看(1)1x -⎰;2e 1(2)⎰;π40sin (3)d 1sin xx x+⎰;0(4)x ⎰;231(5)ln d x x x ⎰; π220(6)e cos d x x x ⎰;322d (7)2x x x +-⎰;21(8)x ⎰; ππ3π(9)sin d 3x x ⎛⎫+ ⎪⎝⎭⎰; 2120(10)e d t t t -⎰;π22π6(11)cos d u u ⎰.解:(1)()()()()111111311122115451415441554541616125542541631616xx xx x----------=-=-+=---=---=⎰⎰⎰⎰⎰⎰g g(2)原式=221e211).(1ln)d(1ln)x x-=++=⎰(3)原式=πππ244422000sin(1sin)sind d tan dcos cosx xx x x xx x-=-⎰⎰⎰π4π12.tan4cosx xx⎛⎫==+-+⎪⎝⎭(4)原式=πππ2π0002d cos d cos dcosx x x x x xx==⎰⎰ππ2π02x x==(5)原式=22243411111151ln d d4ln2.ln44164x x x xx x=-=-⎰⎰(6)ππππ22222222000e cos d e dsin e sin2e sin dx x x xx x x x x x==⋅-⎰⎰⎰πππ2π2π222200e2e d cos e2e cos4e cos dx x xx x x x=+=+-⎰⎰所以,原式=π1(e2)5-.(7)原式=3322111111d ln ln2ln5.333122xxx x x-⎛⎫==--⎪-++⎝⎭⎰(8)原式11611d6d(1)t1t tt t t⎫=-⎪++⎝⎭()67ln 26ln ln ln(1)1t t ==--+(9)原式ππ3πcos 03x ⎛⎫=-=+ ⎪⎝⎭ (10)原式=2212122ed e 12t t t --⎛⎫-=-=-- ⎪⎝⎭⎰(11)原式=ππ22ππ661π11(1cos 2)d sin 22624u u u u ⎛⎫+==+ ⎪⎝⎭⎰3. 证明:2321()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正常数);定积分 定积分的计算 换元法证明:左222222000111()d()()d ()d 222a a a x t x f x x tf t t xf x x ====⎰⎰⎰ 令右所以,等式成立.4. 证明:ππ2200sin cos πd d sin cos sin cos 4x x x x x x x x ==++⎰⎰,并由此计算0a⎰(a 为正常数)定积分 定积分的计算换元法证明:ππ2200sin cos d d sin cos sin cos x xx x x x x x=++⎰⎰又 πππ222000sin cos πd d d .sin cos sin cos 2x x x x x x x x x +==++⎰⎰⎰故等式成立.a⎰πsin 20cos πd .sin cos 4x a tx t t t ==+⎰令5. 已知201(2),(2)0,()d 12f f f x x '===⎰, 求120(2)d x f x x ''⎰.定积分定积分积分法分部积分法解:原式=11122000111d (2)2(2)d (2)222x f x xf x x x f x ''='-⎰⎰11100012001111(2)d (2)0(2)d (2)22221111(2)(2)d(2)1()d 1402444f x f x f x x xf x f f x x f t t '=-=-+=-+=-+=-+⨯=⎰⎰⎰⎰习题4-61. 用定义判断下列广义积分的敛散性,若收敛,则求其值: 定积分 反常积分 反常积分的计算:定积分的计算22π11(1)sin d x x x+∞⎰; 解:原式=22ππ1111lim sin d lim coslim cos1.b bb b b x bx x →+∞→+∞→+∞⎛⎫-=== ⎪⎝⎭⎰ 2d (2);22xx x +∞-∞++⎰解:原式=02200d(1)d(1)arctan(1)arctan(1)(1)1(1)1x x x x x x +∞+∞-∞-∞+++=+++++++⎰⎰πππππ.4242⎛⎫=-+-=- ⎪⎝⎭ 0(3)e d n x x x +∞-⎰(n 为正整数)解:原式=100e d deen x n xn xn x x x x +∞+∞+∞----+-=-⎰⎰100e d !e d !n xx n x x n x n +∞+∞---=+===⎰⎰L(4)(0)aa >⎰;解:原式=000πlim lim arcsin lim arcsin .12a a xa a εεεεεε+++--→→→⎛⎫===- ⎪⎝⎭⎰e1(5)⎰;解:原式=()e e 0110πlim arcsin(ln )lim lim arcsin .ln(e )2x εεεεεε+++--→→→===-⎰1(6)⎰.解:原式=1120+⎰22122111202lim 2lim πππlim lim 2222π.424εεεεε++-→→→→=⎛⎫=+=⋅+=- ⎪⎝⎭⎰2. 讨论下列广义积分的敛散性:定积分 定积分的计算 反常积分的计算:定积分的计算2d (1)(ln )kxx x +∞⎰; 解:原式=2122112,1ln(ln )1d(ln ),1(ln )1(ln )1(ln 2),1(ln )11k kkk k x x k x k x k x kk +∞+∞-+∞-+∞-⎧=∞=⎪⎪⎪=∞<=⎨-⎪⎪=>⎪--⎩⎰ 故该广义积分当1k >时收敛;1k ≤时发散.d (2)()()bkaxb a b x >-⎰.解:原式=1100011lim ()()1,1lim ()d()1lim 1ln()b k k b a k a b a k b x b a k k b x b x k k b x εεεεεε+++-----→→-→⎧>⎧⎪⎪=-⎨--⎪-<---=⎪⎨-⎩⎪⎪-=-⎩⎰ 发散,发散, 综上所述,当k <1时,该广义积分收敛,否则发散. 3. 已知0sin πd 2x x x +∞=⎰,求:定积分 定积分的计算反常积分的计算:定积分的计算sin cos (1)d ;x xx x+∞⎰220sin (2) d .x x x +∞⎰ 解:(1)原式=001sin(2)1sin πd(2)d .2224x t x t x t +∞+∞==⎰⎰ (2)222002200200020000sin 1cos 2d d 21cos 2d d 22111d cos 2d 2211111d cos 2dcos2222111sin 2cos 2d2222ππ0.22xx x xx x x x x x x x x x xx x x x x xx x xx x x +∞+∞+∞+∞+∞+∞+∞+∞+∞+∞+∞-==-=+=+⋅-⎡⎤=-+⋅+⎢⎥⎣⎦=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰4. 证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2. 定积分 反常积分 反常积分敛散性定理 证明:如果|()|lim0()x f x g x ρ→+∞=≠,那么对于ε(使0ρε->),存在x 0,当0x x ≥时|()|0()f xg x ρερε<-<<+ 即 ()()|()|()()g x f x g x ρερε-<<+ 成立,显然()d ag x x +∞⎰与|()|d af x x +∞⎰同进收敛或发散.如果0ρ=,则有|()|()f x g x ε<, 显然()d ag x x +∞⎰收敛, 则|()|d af x x +∞⎰亦收敛.如果ρ=+∞,则有|()|()()f x g x ρε>-,显然()d ag x x +∞⎰发散,则|()|d af x x +∞⎰亦发散.习题四1.填空题(1)设40ln sin d I x x π=⎰,40ln cot d J x x π=⎰,40ln cos d K x x π=⎰,则,,I J K 的大小关系是 I K J << . 定积分 定积分积分法 牛顿莱布尼兹公式 (2)设2x e -是函数()f x 的一个原函数,则(2)d f x x =⎰2412x e C -+ .定积分 定积分的计算 换元法(3)设[]x 表示不超过x 的最大整数,则定积分[]()2012d x x x -⎰的值是多少 1006 .定积分 定积分的计算 牛顿莱布尼兹公式(4)已知函数()f x ,则1()()d f x f x x '''⎰的值为14.定积分定积分的计算复合函数求导法(5)反常积分220d (1)x x x +?+ò的值为 12.定积分 反常积分的计算定积分的计算2.选择题(1)设函数()f x 与()g x 在(,)-∞+∞内皆可导,且()()f x g x <,则必有( A ).定积分定积分的性质定积分性质A.0lim ()lim ()x x x x f x g x →→< B.()()f x g x ''< C.d ()dg()f x x < D.()d ()d xxf t tg t t <⎰⎰(2)下列定积分中,积分值不等于零的是( D ).定积分 定积分的计算A.20ln(sin x x π⎰B. 2cos 0sin(sin )d x e x x π⎰C.cos 2d x x ππ-⎰ D.2222sin cos d cos 2sin x xx x x ππ-++⎰(3)设()F x 是连续函数()f x 的一个原函数,“⇔M N ”表示“M 的充分必要条件是N ”,则必有( A ). (05年全国考研题第(8)题)定积分 定积分基本公式 原函数定义A.()F x 是偶函数⇔()f x 是奇函数B.()F x 是奇函数⇔()f x 是偶函数 B.()F x 是周期函数()⇔f x 是周期函数 D.()F x 是单调函数()⇔f x 是单调函数 (4)设ln xx为()f x 的一个原函数,则()d xf x x '=⎰( D ).定积分定积分基本公式 原函数定义A.ln x C x + B.2ln 1x C x ++ C.1C x + D.12ln xC x x-+ (5)设函数1()sin()d ,()ln(1)d xf x x t tg x x xt t =-=+⎰⎰,则当0x →时,()f x 是()g x 的( C ).定积分 定积分的计算 牛顿莱布尼兹公式A.高阶无穷小量B.低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量 3.利用定积分概念求下列极限:定积分 定积分的概念 定积分的定义(1)lim n →∞; 解:(1)()()11112001=lim 12131333nn n i n x d x →∞=-===++==⎰⎰g原式(2)1lim ln 1ln 1ln 1n n →∞⎡⎤⎛⎛⎛+++++⎢⎥ ⎢⎥⎝⎝⎝⎣⎦L . 解:(2)有定积分的定义可得(101lim ln 1ln 1ln 1ln 1n dx n →∞⎛⎫⎛⎛⎛+++++=+ ⎪ ⎪⎝⎝⎝⎝⎭⎰L ()120ln 1u du =+⎰(令2x u =)2111200011ln(1)ln 2(1)011u u u du u du du u u =+-=---++⎰⎰⎰11ln 21ln 222=-+-=4*. 已知曲线在点(,)x y 处的斜率为2sin cos x x +,且曲线过点(,0)π,求该曲线的方程. 不定积分 不定积分的计算 基本积分公式解:由已知2sin cos ,(2sin cos )2cos sin y x x y x x dx x x C '=+=+=-++⎰,由于曲线过(,0)π,则有2C =-,因此所求曲线方程为2cos sin 2y x x =-+-.5*. 设函数()f x 连续,且满足0()()d (2)2xx x t f t t x x e x -=-+⎰.(1)求函数()f x 的表达式;定积分定积分的计算 牛顿莱布尼兹公式(2)求函数()f x 的单调区间与极值.微分中值定理 函数的单调性与凹凸性 函数凹凸性判别法解:(1)00()()()()(2)2xxxx x t f t dt xf t dt tf t dt x x e x -=-=-+⎰⎰⎰,方程两边对x 求导数,则有20()(2)2xx f t dt e x =-+⎰,再对x 求导数得2()(22)x f x e x x =+-.(2)()(4)xf x x x e '=+,令()0f x '=得04x x ==-或.所以,函数()f x 的单调增加区间为(),4(0,)-∞-+∞与;单调减少区间为[]4,0-.函数()f x 的极大值为()446f e --=,极小值为()02f =-.6*.设函数2202(1)d ,0,(),0,x t e t x f x x A x ⎧-⎪≠=⎨⎪=⎩⎰问当A 取何值时,()f x 在0x =处可导,并求出(0)f '的值. (国防科大09-10年秋季第三大题第2小题)解:()()()()()()()()()()()22222224222020022020304221214limlimlim 02010lim lim 000110limlim2124limlim 33xt x x x x xt x x xt xt x x x x x e dte xx xxf x x e dtA f x f x x xA A e dt e dt x f xx exx →→→→→→→→→--====---=-==--'==-==⎰⎰⎰⎰Q g 若在处可导,则存在,若,则上述的极限不存在为无穷大,故于是283x =定积分 定积分的计算牛顿莱布尼兹公式7*.设函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上连续,且满足2222()cos ()d x f x x xe f t t ππ-=++⎰,求()f x 的表达式.定积分定积分的计算 牛顿莱布尼兹公式解:设22()a f x dx ππ-=⎰,则有22()cos x f x x xe a =++,所以有222222(cos )2cos 2x a x xe a dx xdx a a ππππππ-=++=+=+⎰⎰,解得2(1)a ππ=-,因此所求函数的表达式为22()cos 2(1)xf x x xe ππ=++-.8. 求下列不定积分,并用求导方法验证其结果正确否:d (1)1exx+⎰; 不定积分 求不定积分的方法基本积分公式解:原式=e d 11de ln(1e ).e (1e )e 1e x x xx x x xx x c ⎛⎫==-++- ⎪++⎝⎭⎰⎰ 验证:e 1(ln(1e ))1.1e 1ex xx xx c '-++=-=++ 所以,结论成立.(2)ln(x x +⎰;不定积分求不定积分的方法分部积分法解:原式=ln(ln(.x x x x x c -=+-验证:ln(ln(x x x x c '⎡⎤=+++-⎣⎦ln(x =+所以,结论成立.2(3)ln(1)d x x +⎰;不定积分求不定积分的方法分部积分法解:原式=2222ln(1)2d ln(1)22arctan 1x x x x x x x x c x+-=+-+++⎰. 验证:2222222ln(1)2ln(1).ln(1)22arctan 11x x x x x x x x c x x'=++⋅-+=+⎡⎤+-++⎣⎦++ 所以,结论正确.(4)x ;不定积分 求不定积分的方法 基本积分公式解:原式=9212)arcsin (.232x x x c ++=++验证: 921arcsin (232x x '+⎡++⎢⎣211(2)32x=+==所以,结论正确.(5)sin(ln)dx x⎰;不定积分求不定积分的方法基本积分公式解:1sin(ln)d sin(ln)cos(ln)dx x x x x x xx=-⋅⋅⎰⎰sin(ln)cos(ln)sin(ln)dx x x x x x=--⎰所以,原式=().sin(ln)cos(ln)2xcx x+-验证:()sin(ln)cos(ln)2xcx x'⎡⎤+-⎢⎥⎣⎦()111sin(ln)cos(ln)cos(ln)sin(ln)22sin(ln).xx x x xx xx⎛⎫=+-⋅+⋅⎪⎝⎭=故结论成立.2e(6)d(e1)xxxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1e1d d de1e1e11ee1xx x x xxx xx x x--⎛⎫-=-+=-+⎪+++++⎝⎭⎰⎰⎰ln(1e).e1xxxc--=-+++验证:22(e1)e e eln(1e)(e1)1e(e1)e1x x x xxx x xxx xxc---'-++--⎡⎤=-=-++⎢⎥++++⎣⎦.故结论成立.23/2ln(7)d(1)xxx+⎰;不定积分求不定积分的方法分部积分法解:原式=1ln d d ln(.x x x cx=-=++⎰验证:ln(x c '⎤-++⎥⎦2223/223/2(1ln )(1)ln ln .(1)(1)x x x x x x x =++-==++所以,结论成立.sin (8)d 1cos x x x x++⎰;不定积分 求不定积分的方法分部积分法解:原式=2d cos d d tan ln(1cos )1cos 22cos 2x x xx x x x x -=-++⎰⎰⎰tantan d ln(1cos )22tan ln(1cos )ln(1cos )2tan 2x xx x x xx x x c x x c=--+=++-++=+⎰验证:2221sin sin (tan)tan sec 22221cos 2cos 2cos 22x x x x x x xx c x x x x +'+=+⋅=+=+ 所以,原式成立.(9)()d xf x x ''⎰;不定积分求不定积分的方法分部积分法解:原式=d ()()()d ()().x f x xf x f x x xf x f x c ''''=-=-+⎰⎰验证:[]()()()().()()f x xf x f x xf x xf x f x c ''''''''=+-=-+ 故结论成立.(10)sin d n x x ⎰ (n >1,且为正整数).不定积分求不定积分的方法分部积分法解:1sin d sindcos nn n I x x x x -==-⎰⎰1221212cos sin (1)cos sin d cos sin (1)sin d (1)sin d cos sin (1)(1)n n n n n n n nx x n x x xx x n x x n x x x x n I n I ------=-+-=-+---=-+---⎰⎰⎰故 1211cos sin .n n n n I x x I n n---=-+ 验证: 1211cos sin sin d n n n x x x x n n --'-⎡⎤-+⎢⎥⎣⎦⎰ 22222111sin cos (1)sin cos sin 111sin (1sin )sin sin sin .n n n n n n n n x x n x x x n n n n n x x x x n n n x -----=-⋅-⋅+--=--+= 故结论成立.9. 求不定积分max(1,)d x x ⎰.不定积分求不定积分的方法 基本积分公式解: ,1max(1,)1,11,1x x x x x x -<-⎧⎪=-≤≤⎨⎪>⎩故原式=212231,12,111,12x c x x c x x c x ⎧-+<-⎪⎪+-≤≤⎨⎪⎪+>⎩又由函数的连续性,可知:213111,1,2c c c c c c =+=+= 所以 221,121max(1,)d ,11211,12x c x x x c x x x c x ⎧-+<-⎪⎪⎪=++-≤≤⎨⎪⎪++>⎪⎩⎰10.计算下列积分:(1)1解:210210211220,1,2,3110422=2111212ln 1112ln 2t x t dx tdt x t x t t tdt dtt t dt t t t ==-=-====-∴=--⎛⎫=+=⎡+-⎤ ⎪⎣⎦-⎝⎭=-⎰⎰⎰则当时,,当时,原式 (2)1定积分 定积分的计算基本积分公式解:原式=211112⎛⎫+ ⎪-== (3) ln3ln 2d e ex xx--⎰;定积分 定积分的计算基本积分公式解:原式=ln3ln32ln 2ln 2de 113e 1ln ln .(e )1222e 1x x x x -==-+⎰(4)x ⎰;定积分 定积分的计算分部积分法解:原式=π33π222π02d sin d sin sin d sin x x x x x x =-⎰⎰⎰ππ55222π02422.sin sin 555x x =-=(5)120ln(1)d (2)x x x +-⎰;定积分定积分的计算分部积分法解:原式=111000111ln(1)ln(1)d d 2212x x x x x x x ++=-⋅--+-⎰⎰101100111ln 2d 321111ln 2ln 2ln(2)ln(1)333x x x x x ⎛⎫=-+ ⎪-+⎝⎭=+-=-+⎰(6){}230max ,d x x x ⎰.解:{}2123301122401max ,1151724244x x dx xdx x dxxx =+=+=+=⎰⎰⎰11. 计算下列积分(n 为正整数): (1)1;n x ⎰定积分 定积分的计算换元法解:令sin x t =,d cos d x t t =, 当x =0时t =0,当x =1时t=π2, ππ12200sin cos d sin d cos n n n tx t t t t t==⎰⎰⎰由第四章第五节例8知11331π, 24221342, 253n n n n n n x n n n n n --⎧⋅⋅⋅⋅⋅⎪⎪-=⎨--⎪⋅⋅⋅⋅⎪-⎩⎰L L为偶数, 为奇数.(2)π240tan d .n x x ⎰定积分 定积分的计算分部积分法解:πππ2(1)22(1)22(1)4440π2(1)411tantan d tansec d tan d 1tan d tan 21n n n n n n n I x x x x x x x xx x I I n ------==-=-=--⎰⎰⎰⎰由递推公式 1121n n I I n -+=- 可得 111(1)(1)[(1)].43521n nn I n π--=---+-+-L。
理工高数考试试题答案
理工高数考试试题答案一、选择题1. 函数y=2x^3-3x^2+4x-1的导数为:A. 6x^2-6x+4B. 6x^2-4x+4C. 6x^2-6x+5D. 6x^2-4x+22. 极限lim(x→0) (sin(x) - x) / x^3的值为:A. 1B. 0C. 不存在D. 无穷大3. 曲线y=x^2在点(1,1)处的切线方程为:A. y=2x-1B. y=x-1C. y=2xD. y=x4. 定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 05. 以下级数收敛的是:A. 1 + 1/2 + 1/3 + ...B. 1 - 1/2 + 1/3 - ...C. 1 + (1/2)^2 + (1/3)^3 + ...D. (1 + 1/2) / (1 - 1/2)二、填空题1. 函数y=cos(x)在区间[0,π]上的最大值为______。
2. 微分方程dy/dx = 3x^2 - 2y的通解为y = ____________。
3. 利用球面坐标系,点(3, 4, 5)的球面坐标为(r, θ, φ) =(_______, _______, _______)。
4. 曲线y=e^(-x^2)在点x=0处的法线斜率为_______。
5. 定积分∫(-∞ to +∞) e^(-x^2) dx的值为_______。
三、计算题1. 求函数f(x)=x^4-4x^3+6x^2-4x+1在区间[0,2]上的最小值。
2. 计算极限lim(x→∞) (1+1/x)^x。
3. 求曲线y=2x^3-3x^2+1在点x=1处的切线与y轴的交点坐标。
4. 求定积分∫(0 to π/2) sin(x) / x dx的值。
5. 求级数1/3 + 1/15 + 1/35 + ...的和。
四、应用题1. 一个球形水池的半径为5米,现在水池里有一定量的水,水面高度为3米。
如果水面半径为4米的圆形桶可以装满整个水池里的水,问桶的深度至少要多少米?2. 某公司计划建造一条长为1000米的直线道路,由于地形限制,道路两端的坐标分别为A(-500, 0)和B(500, 0)。
备战2021年高考理数 6年高考真题分项版精解精析专题08 立体几何(棱锥)(原卷版)
【2022年高考试题】1. 【2022高考北京卷理第7题】在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S == B .21S S =且23S S ≠ C .31S S =且32S S ≠ D .32S S =且31S S ≠2.【2022山东高考理第13题】 三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =________.3. 【2022陕西高考理第5题】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π4. 【2022大纲高考理第8题】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814π B .16π C .9π D .274π5. 【2022高考安徽卷第20题】如图,四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD .四边形ABCD 为梯形,BC AD //,且BC AD 2=.过D C A ,,1三点的平面记为α,1BB 与α的交点为Q . (1)证明:Q 为1BB 的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若A A 14=,2=CD ,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角大小.6. 【2022高考北京理第17题】如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.7. 【2022高考湖北理第19题】如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.8. 【2022高考湖南理第19题】如图6,四棱柱1111ABCD A B C D -的全部棱长都相等,11111,ACBD O AC B D O ==,四边形11ACC A 和四边形11BDD B 为矩形.(1)证明:1O O ⊥底面ABCD ;(2)若060CBA ∠=,求二面角11C OB D --的余弦值.9、【2022高考江苏第16题】如图在三棱锥-P ABC 中,,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===,求证(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC10. 【2022高考江西理第19题】如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD .(1)求证:;PD AB ⊥(2)若,2,2,90===∠PC PB BPC问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值11. 【2022高考辽宁理第19题】如图,ABC ∆和BCD ∆所在平面相互垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.12. 【2022高考全国1第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.(Ⅰ)证明:1AB AC =;(Ⅱ)若1AC AB ⊥,︒=∠601CBB ,BC AB =,求二面角111C B A A --的余弦值.13. 【2022高考陕西第17题】四周体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四周体的棱CA DC BD ,,于点H G F ,,.(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.14. 【2022高考上海理科第19题】底面边长为2的正三棱锥P ABC -,其表面开放图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .15.【2022高考四川第18题】三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥.(1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值.16.【2022高考浙江理第20题】如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小17. 【2022高考重庆理科第19题】如题(19)图,四棱锥ABCD P -中,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (Ⅰ)求PO 的长;(Ⅱ)求二面角C PM A --的正弦值.【2021年高考试题】(2021·辽宁理)(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A .3172B .210C .132D .310(2021·上海理)19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.(2021·广东理)6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥(2021·大纲理)19.(本小题满分12分)如图,四棱锥P-ABCD 中,090ABC BAD ∠=∠=,2BC AD =,PAB ∆和PAD ∆都是等边三角形.(Ⅰ)证明:PB CD ⊥; (Ⅱ)求二面角A-PD-C 的大小.(2021·大纲理)10.已知正四棱柱1111ABCD A B C D -中, 12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23 B 32 D .13(2021·北京理)17. (本小题共14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面AB C ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1BDBC 的值.(2021·北京理)14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .(2021·安徽理)15.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出全部正确命题的编号)。
高数2第七章_习题详细解答(2011[1].10.29)
lim
7.证明下列极限不存在: (1)
x y ; ( x , y ) (0,0) x y lim
x2 y , x 2 y 2 0, 4 2 (2)设 f ( x, y ) x y 0, x 2 y 2 0,
( x , y ) (0,0)
lim
f ( x, y ) .
习题 7-1
1.判定下列平面点集中哪些是开集、 闭集、 区域、 有界集、 无界集?并指出集合的边界. (1) ( x, y ) x 0, y 0 ; (2) ( x, y ) 1 x y 4 ; (3) ( x, y ) y x
2
2
2
;
2 2 2
(4) ( x, y ) x ( y 1) 1且x ( y 2) 4 .
x2 y x2 x x lim lim 2 0, 4 2 4 2 ( x , y ) (0,0) x y x 0 x x x0 x 1 yx yx lim
x2 y x2 x2 x4 1 lim lim , 4 2 4 4 4 ( x , y ) (0,0) x y x 0 x x x 0 2 x 2 2 y x lim
2
{( x, y ) x 2 ( y 1) 2 1} {( x, y ) x 2 ( y 2) 2 4}
2.已知函数 f (u , v) u v ,试求 f ( xy, x y ) . 解
f ( xy, x y ) xy
( x y )
.
3.设 f ( x, y )
f ( x0 h, y0 ) f ( x0 , y0 ) f ( x0 , y0 ) f ( x0 , y0 h) ; (2) lim ; h 0 h 0 h h f ( x0 , y0 2h) f ( x0 , y0 ) f ( x0 h, y0 ) f ( x0 h, y0 ) (3) lim ; (4) lim . h 0 h 0 h h f ( x0 h, y0 ) f ( x0 , y0 ) z x ( x0 , y0 ) A ; 解 (1) lim h 0 h f ( x0 , y0 ) f ( x0 , y0 h) f ( x0 , y0 h) f ( x0 , y0 ) lim z y ( x0 , y0 ) B ; (2) lim h 0 h 0 h h f ( x0 , y0 2h) f ( x0 , y0 ) f ( x0 , y0 2h) f ( x0 , y0 ) lim 2 2B ; (3) lim h 0 h0 h 2h
高考数学备考冲刺之易错点点睛系列专题 选考系列(学生版)
选考系列一、高考预测几何证明选讲是高考的选考内容,主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对本部分的考查主要是一道选考解答题,预测2012年仍会如此,难度不会太大.矩阵与变换主要考查二阶矩阵的基本运算,主要是以解答题的形式出现.预测在2012年高考主要考查(1)矩阵的逆矩阵;(2)利用系数矩阵的逆矩阵求点的坐标或曲线方程.坐标系与参数方程重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化;直线,圆与椭圆的参数方程,参数方程与普通方程的互化,题目不难,考查“转化”为目的.预测2012高考中,极坐标、参数方程与直角坐标系间的互化仍是考查的热点,题目容易.不等式选讲是高考的选考内容之一,主要考查绝对值的几何意义,绝对值不等式的解法以及不等式证明的基本方法(比较法、分析法、综合法).关于含有绝对值的不等式的问题.预测2012年高考在本部分可能会考查不等式的证明或求最值问题.1.极点的极径为0,极角为任意角,即极点的坐标不是惟一的.极径ρ的值也允许取负值,极角θ允许取任意角,当ρ<0时,点M(ρ,θ)位于极角θ的终边的反向延长线上,且OM=|ρ|,在这样的规定下,平面上的点的坐标不是惟一的,即给定极坐标后,可以确定平面上惟一的点,但给出平面上的点,其极坐标却不是惟一的.这有两种情况:①如果所给的点是极点,其极径确定,但极角可以是任意角;②如果所给点M的一个极坐标为(ρ,θ)(ρ≠0),则(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)(k∈Z)也都是点M的极坐标.这两种情况都使点的极坐标不惟一,因此在解题的过程中要引起注意.2.在进行极坐标与直角坐标的转化时,要求极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,且长度单位相同,在这个前提下才能用转化公式.同时,在曲线的极坐标方程和直角坐标方程互化时,如遇约分,两边平方,两边同乘以ρ,去分母等变形,应特别注意变形的等价性.3.对于极坐标方程,需要明确:①曲线上点的极坐标不一定满足方程.如点P(1,1)在方程ρ=θ表示的曲线上,但点P的其他形式的坐标都不满足方程;②曲线的极坐标方程不惟一,如ρ=1和ρ=-1都表示以极点为圆心,半径为1的圆.4.同一个参数方程,以不同量作为参数,一般表示不同的曲线.5.任何一个参数方程化为普通方程,从理论上分析都存在扩大取值范围的可能性.从曲线和方程的概念出发,应通过限制普通方程中变量的取值范围,使化简前后的方程表示的是同一条曲线,原则上要利用x=f(t),y=g(t),借助函数中求值域的方法,以t为自变量,求出x和y的值域,作为普通方程中x和y的取值范围.7.注意柯西不等式等号成立的条件⇔a1b2-a2b1=0,这时我们称(a1,a2),(b1,b2)成比例,如果b1≠0,b2≠0,那么a1b2-a2b1=0⇔=.若b1·b2=0,我们分情况说明:①b1=b2=0,则原不等式两边都是0,自然成立;②b1=0,b2≠0,原不等式化为(a+a)b≥ab,是自然成立的;③b1≠0,b2=0,原不等式和②的道理一样,自然成立.正是因为b1·b2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b1·b2≠0,等号成立的条件可写成=.三、易错点点睛几何证明选讲几何证明选讲是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们更应注意.重点把握以下内容:1.射影定理的内容及其证明;2.圆周角与弦切角定理的内容及证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定;5.平行投影的性质与圆锥曲线的统一定义.如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.证明(1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.易错提醒(1)对四点共圆的性质定理和判定定理理解不透.(2)不能正确作出辅助线,构造四边形.(3)角的关系转化不当.矩阵与变换矩阵与变换易错易漏 (1)因矩阵乘法不满足交换律,多次变换对应矩阵的乘法顺序易错. (2)图形变换后,所求图形方程易代错.已知矩阵M =\o(\s\up12(1b ,N =\o(\s\up12(c0,且MN =\o(\s\up12(2-2 .(1)求实数a ,b ,c ,d 的值;(2)求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程. 解 方法一 (1)由题设得解得易错提醒 (1)忽视将C 1的参数方程和C 2的极坐标方程化为直角坐标系下的普通方程,即转化目标不明确.(2)转化或计算错误. 不等式选讲设a 、b 是非负实数,求证:a 3+b 3≥(a 2+b 2).证明 由a ,b 是非负实数,作差得a 3+b 3-(a 2+b 2)=a 2(-)+b 2(-) =(-)[()5-()5].当a ≥b 时,≥,从而()5≥()5,得(-)[()5-()5]≥0; 当a <b 时,<,从而()5<()5,得(-)[()5 -()5]>0.所以a 3+b 3≥(a 2+b 2).易错提醒 (1)用作差法证明不等式入口较易,关键是分解因式,多数考生对分组分解因式不熟练.(2)分解因式后,与零比较时,易忽略分类讨论.设f x ax bx ()=+2,且112214≤-≤≤≤f f ()(),,求f ()-2的取值范围。
考研数学免费资料大全
考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。
三年高考(2021-2021)(理)真题分类解析:专题06-导数的几何意义
专题06 导数的几何意义考纲解读明方向考点内容解读要求常考题型预测热度1.导数的概念与几何意义1.了解导数概念的实际背景2.理解导数的几何意义Ⅱ选择题、填空题★★★2.导数的运算1.能根据导数定义求函数y=C(C为常数),y=x,y=,y=x2,y=x3,y=的导数2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数Ⅲ选择题、解答题本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2022年高考全景展示1.【2022年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.2.【2022年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。
详解:,则,所以,故答案为-3.点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。
3.【2022年理数全国卷II】曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.4.【2022年理数天津卷】已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】分析:(I)由题意可得.令,解得x=0.据此可得函数的单调递减区间,单调递增区间为.(II)曲线在点处的切线斜率为.曲线在点处的切线斜率为.原问题等价于.两边取对数可得.(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.详解:(I)由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(II)由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③存在实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得,因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.5.【2022年理北京卷】设函数=[].(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;(Ⅱ)若在x=2处取得极小值,求a的取值范围.【答案】(1) a的值为1 (2) a的取值范围是(,+∞)(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a ≤,则当x ∈(0,2)时,x –2<0,ax –1≤x –1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.2021年高考全景展示1.【2021山东,理20】已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-,其中2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f ππ处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.试题解析:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=, 因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-, 即 222y x ππ=--.(Ⅱ)由题意得 2()(cos sin 22)(2cos )x h x e x x x a x x =-+--+, 因为()()()()cos sin 22sin cos 222sin x x h x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--, 令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增.因为(0)0,m = 所以 当0x >时,()0,m x >当0x <时,()0m x <(1)当0a ≤时,x e a -0>当0x <时,()0h x '<,()h x 单调递减,当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是 ()021h a =--;(2)当0a >时,()()()ln 2sin x a h x e e x x '=--由 ()0h x '=得 1ln x a =,2=0x ①当01a <<时,ln 0a <,当(),ln x a ∈-∞时,()ln 0,0x a e e h x '-<>,()h x 单调递增; 当()ln ,0x a ∈时,()ln 0,0x a e e h x '-><,()h x 单调递减;当()0,x ∈+∞时,()ln 0,0x a e e h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是 ()021h a =--;②当1a =时,ln 0a =, 所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值; ③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln 0x a e e -<,()()0,h x h x '>单调递增; 当()0,ln x a ∈时,ln 0x a e e -<,()()0,h x h x '<单调递减;当()ln ,x a ∈+∞时,ln 0x a e e ->,()()0,h x h x '>单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【考点】1.导数的几何意义.2.应用导数研究函数的单调性、极值.3.分类讨论思想.【名师点睛】1.函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y −y 0=f ′(x 0)(x −x 0).注意:求曲线切线时,要分清在点P 处的切线与过点P的切线的不同. 2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.【2021北京,理19】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-.【解析】(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减. 所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<.所以函数()f x 在区间π[0,]2上单调递减. 因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【考点】1.导数的几何意义;2.利用导数求函数的最值. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为()f x '不能判断函数的单调性,所以需要再求一次导数,设()()h x f x '= ,再求()h x ',一般这时就可求得函数()h x '的零点,或是()h x '恒成立,这样就能知道函数()h x 的单调性,根据单调性求最值,从而判断()y f x =的单调性,求得最值. 2021年高考全景展示1. 【2021高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x =(C )e x y = (D )3y x = 【答案】A【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A. 考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.2. 【2021年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)【答案】A【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PAB A B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A .考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2021高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______________.【答案】21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2021年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值;(2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.。
2024绵阳一诊理数12题解析
2024绵阳一诊理数12题解析2024年绵阳一诊理数考试第12题是一道综合性的数学题,需要运用多个概念和方法进行解答。
下面我将从问题的背景、解题思路和详细解析三个方面进行讲解,希望对大家有所帮助。
首先,让我们来看一下题目的背景。
题目是关于一个垂直悬挂的半圆形金属环的热膨胀问题。
在温度发生变化时,物体的尺寸也会发生变化,这就是热膨胀现象。
我们需要利用这一现象来解决这道题目。
接下来,我们来分析解题思路。
首先,我们需要知道热膨胀系数的定义和计算方法。
热膨胀系数表示单位温度变化时物体长度的相对变化。
对于金属而言,热膨胀系数大致可近似为常数。
其次,我们需要知道半圆形金属环的周长、直径和半径之间的关系式。
最后,我们需要运用三角函数的知识来解决问题。
接下来是具体的解题过程。
首先,我们设半圆形金属环的半径为R,温度变化为Δt。
根据题目条件可知,当温度上升Δt时,半圆形金属环的直径增加Δl,其中Δl与Δt之间存在线性关系。
即Δl =αΔtR,其中α为热膨胀系数。
我们可以将Δl代入半圆形金属环的周长和直径的关系式中,得到新的周长和直径的关系式:2(R+Δl) =π(R+Δl)。
化简后可得:2R + 2αΔtR = πR + παΔtR,整理后可得:(2+2παΔt)R = πR。
由于R不能为0,所以我们可以将等式两边的R消掉,得到:2+2παΔt = π。
然后我们将该等式两边移项,可得:2παΔt = π-2,继续化简得到:Δt = (π-2)/(2πα)。
最后,我们需要计算Δt的数值。
根据题目给出的条件可知:热膨胀系数α = 1.4×10^-5/℃,π取近似值3.14。
将这些数值代入上述公式中,可得:Δt = (3.14-2)/(2×3.14×1.4×10^-5) ≈0.0000715/1.748×10^-4 ≈ 0.408 ℃。
综上所述,2024年绵阳一诊理数第12题是一道关于热膨胀的综合运用题。
精品解析:2023年高考全国乙卷数学(理)真题(解析版)
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N M ðC.()U M N ðD.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1x ax x f x =-是偶函数,则=a ()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA的倾斜角不大于π4的概率为()A.18 B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率13π143π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.2【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO 的底面半径为O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于4,则该圆锥的体积为()A.πB.C.3πD.【答案】B【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==,取AB 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,,232OC AB BC ===,由PAB 的面积为4,得1324PC ⨯⨯=,解得2PC =,于是PO ===,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯=.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.25 C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CEAB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,3CE DE ==,在CDE 中,由余弦定理得:2232cos 13213()72CD CE DE CE DE CED =+-⋅∠=+-⨯⨯⨯-=由正弦定理得sin sin DE CDDCE CED=∠∠,即3sin1503sin 727DCE ∠=,显然DCE ∠是锐角,2235cos 1sin 1()2727DCE DCE ∠=-∠-,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)(333n a a n n a =+-⋅=+-,显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos(3θθ=+,即有2π(2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(πcos[(π]cos(πcos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫ ⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2AB k k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x=由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若PO =PA PD ⋅的最大值为()A.12B.12+C.1D.2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅ 12sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅ 12sin 2224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,2OA OP ==,则由题意可知:45APO ∠= ,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222cos sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭1cos 4παα⎛⎫=- ⎪⎝⎭22cos 22ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+1sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122.综上可得,PA PD ⋅的最大值为12.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】1,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故5112a ≤<,结合题意可得实数a 的取值范围是51,12⎫-⎪⎪⎣⎭.故答案为:1,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC =57cos 14B =,最后由同角三角函数基本关系可得21sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-==,21sin 14B ===.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则111321sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD ,则66,2AO DO ==,得3052AD DO ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且13FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又13FH AH =,即有32DH GF =,231544622cos 6226222ABD +-∠==⨯⨯⨯⨯14PA =,同理得62BE =,于是2223BE EF BF +==,即有BE EF ⊥,则22216653223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,13615,,2222OH BF OD DH ====,于是63152444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln 2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax-++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()0,g x g x '''>在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()1201g x a x ''=-=+可得1=12x a -,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+ ⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x -+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+< ⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x -++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()ln n x x =,则()122n x x x=-=',则函数()ln n x x =-()0,4上单调递增,在()4,+∞上单调递减,所以()()4ln 420n x n ≤=-<,所以ln x <,所以2222244441=11ln 12141a g a a a a a a a ⎡⎤⎢⎥-⎛⎫⎛⎫⎛⎫⎛⎫++-+--+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥+⎣⎦22444>1ln 1121a a a a a a ⎡⎤⎛⎫⎛⎫++-++--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222444441ln 11a a a a a ⎛⎡⎤⎛⎫⎛⎫⎛⎫=+-+>+ ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝22222164121144110a a a a a ---⎛⎛>+=+> ⎝⎝,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【点睛】【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)8.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。
重庆理工大学高数理工类习题册答案(1)
4、
原式=
习题二十四
一、1、 2、
二、1、C 2、C
三、1、原式=
2、
原式=
3、
原式=
四、(1)
原式=
(2) 外侧法向量
原式=
习题二十五
一、1、 2、
3、
二、1、原式=
=
2、原式=
3、原式=
三、1、
2、
3、
第十一章复习题
一、1、 2、 3、 4、
二、B
三、1、 2、 3、
四、
五、
习题二十六常数项级数的概念与性质
一、× × √ ×
二D B A
三1、1
2、 ;
3、
4、2
四发散;发散;发散;发散;发散
五 级数 收敛
存在
而 ,得到级数 的部分和收敛,得到此级数收敛.
习题二十七正项级数及审敛法
一×√ √
二1、p<-2;
2、
3、
三1、 ,此级数发散;
2、 ,此级数收敛;
3、 ,此级数收敛;
4、 时收敛, 时发散
四、1发散; 2收敛; 3收敛
习题一
一. √√√√
二.ADC
三.xoy面(-2,3,0) -2 yoz坐标面
四. ( )
五.(1)(-1,3,3) (2) (3)
习题二
一. √
二.CD
三.1.(-4,2,-4)2.-10, 2
3. 74. 5.
四.
五. (5,-8,2)
习题三
一. √
二.CDDCC
三.1. 2. 3. 4.
四.1.由xoz面上的曲线 绕z轴旋转得到的
2. 3.
五、
重庆理工大学高等数学C1习题解答19-25答案
习题十九 不定积分总习题一.选择题:1.若()()df x dg x =⎰⎰,则有( A 、B 、C ) A .()()f x g x = B .'()'()f x g x =C .()()df x dg x =D .'()'()d f x dx d g x dx =⎰⎰2.下列等式正确的是( A ) A .⎰=)()(x f dx x f dxdB .⎰=')()(x f dx x fC .⎰=)()(x f x dfD .⎰=)()(x f dx x f d 3.若()f x 的导函数是sin x ,则()f x 有一个原函数为( D ) A .1sin x + B .1sin x - C .1cos x + D .1cos x - *4.若)(x f 连续,)(x F 是)(x f 的一个原函数,则( A )A .当)(x f 是奇函数时)(x F 必为偶函数B .当)(x f 是偶函数时)(x F 必为奇函数C .当)(x f 是周期函数时)(x F 必为周期函数D .当)(x f 是单调函数时)(x F 必为单调函数二.填空题:1.设3x是()f x 的一个原函数,则()f x dx =⎰3x C +。
2.设'(ln )1f x x =+,则()f x =xx e C ++ 3.设)(t f 连续,()sin ()cos df t d t f t t dt =⎰4*.222(1)ln 2x f x x -=-,且:[()]ln f g x x =,则()g x dx =⎰2ln 1x x C +-+三.计算题:1.求下列不定积分:(1)(2)3(1)x dx x -⎰解:2=⎰ 解:3(1)x dx x -⎰311(1)(1)x d x x -+=---⎰C =- 2311(1)(1)(1)(1)d x d x x x =-----⎰⎰ 211112(1)C x x =-+⋅+-- (3)4sin cos 1sin x x dx x+⎰(4)742(1)x dx x +⎰解:4sin cos 1sin x x dx x+⎰ 解:742(1)x dx x +⎰444214(1)x dx x =+⎰ 4sin sin 1sin xd x x=+⎰ 44421(1)1(1)4(1)x d x x +-=++⎰ 2411sin 21sin d x x=+⎰ 444421111(1)(1)4(1)4(1)d x d x x x =+-+++⎰⎰ 21arctan(sin )2x C =+ 44111ln(1)44(1)x C x =++++ (5) ⎰xdx x 3cos 2(6) 224x x dx x -+⎰ 解:⎰xdx x 3cos 221sin 33x d x =⎰ 解:原式22244x x dx dx x x =-++⎰⎰ 212sin 3sin 333x x x xdx =-⎰ 222211(4)4(4)244x d x dx x x +-=+-++⎰⎰ 212sin 3cos339x x xd x =+⎰ 2214ln(4)24x x dx x =+-++⎰ 2122sin 3cos3cos3399x x x x xdx =+-⎰ 2211ln(4)21()2x x dx x =+-++⎰2122sin 3cos3sin 33927x x x x x C =+++ 21ln(4)2arctan 22xx x C =+-++ (7)221(1)dx x x +⎰ (8)215dx x x --⎰解:原式22111dx dx x x =-+⎰⎰ 解:原式211()1212()24d x x =---⎰1arctan x C x =--+x C -=2.设22'(sin )cos ,(0)1f x x f ==,求()f x 。
苏州大学理工类高等数学(课次练习)下习题及解答
´1
0
ex2
0=y
dx
=
−
´y
0
f
(s)ds
+
´ xy
0
f
(xy),
∂F ∂y
=
− f (y) +
f
f (s)ds+ (xy)x +
0 = x f (xy) − f (y).
√
3. f (x, y) = x + (y − 1) arcsin
x y
.
√
解
因为 f (x, y) = x+(y−1) arcsin
=
y
−
x2−y2
(x2+y2)2
,
∂ ∂
f y
=
∂ ∂y
(xy
+
x x2+y2
)
=
x−
x×2y (x2+y2)2
=
x−
2xy
(x2+y2
)2
,
故
fx′(0, 1)
=
∂ ∂
f x
|(0,1)
=
(y −
x2−y2
(x2+y2)2
)
x=0,y=1
=
2,
fy′(0, 1)
=
∂ ∂
f y
|(0,1)
=
(x −
x + 1)d x + xxyzxz(ln
x)d y +
xxyzxy(ln x)dz.
3 多元复合函数的求导法则
8
√
3.
z= 解
ln
1 + x2
+ y2, √
高数课本大连理工第四章习题答案
高数课本大连理工第四章习题答案在高等数学的学习过程中,解决课本习题是巩固知识点和提高解题能力的重要环节。
以下是大连理工大学出版的高等数学教材第四章习题的一些参考答案,请注意,这些答案仅供参考,解题思路和方法才是学习的关键。
第一章:极限与连续1. 求极限:对于函数f(x),当x趋近于某一点a时,如果存在一个确定的实数L,使得f(x)的值无限接近于L,则称L为f(x)在x=a处的极限。
2. 极限存在准则:如果函数f(x)在x=a的邻域内连续,那么f(x)在x=a处的极限存在。
3. 连续性:如果函数f(x)在x=a处的极限与f(a)相等,则称f(x)在x=a处连续。
第二章:导数与微分1. 导数的定义:函数f(x)在x=a处的导数定义为极限\[ \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \],如果该极限存在,则称f(x)在x=a处可导。
2. 基本导数公式:例如,\( (x^n)' = nx^{n-1} \),\( (\sin x)' = \cos x \),\( (\ln x)' = \frac{1}{x} \) 等。
3. 复合函数的导数:链式法则的应用,\( (f(g(x)))' = f'(g(x))\cdot g'(x) \)。
第三章:微分中值定理及其应用1. 罗尔定理:如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一点c在开区间(a,b)内,使得f'(c)=0。
2. 拉格朗日中值定理:如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则至少存在一点c在开区间(a,b)内,使得\( f'(c)= \frac{f(b)-f(a)}{b-a} \)。
3. 柯西中值定理:如果函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且g'(x)不为0,则存在一点c在开区间(a,b)内,使得\( \frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)} \)。
2023年物理课堂点睛沪粤版九年级下册答案
2023年物理课堂点睛沪粤版九年级下册答案
一、单选题
1. 在一个恒定的温度下,某物质的体积和它的质量成正比,这种物质是()
A. 气体
B. 液体
C. 固体
答案:A. 气体
2. 在一个恒定的温度下,某物质的体积和它的压强成反比,这种物质是()
A. 气体
B. 液体
C. 固体
答案:A. 气体
3. 在一个恒定的温度下,某物质的体积和它的温度成正比,这种物质是()
A. 气体
B. 液体
C. 固体
答案:A. 气体
4. 在一个恒定的温度下,某物质的体积和它的比热容成正比,这种物质是()
A. 气体
B. 液体
C. 固体
答案:A. 气体
5. 在一个恒定的温度下,某物质的体积和它的熵成正比,这
种物质是()
A. 气体
B. 液体
C. 固体
答案:A. 气体
二、多选题
1. 在一个恒定的温度下,某物质的体积和它的物理量成正比
的物质有()
A. 压强
B. 温度
C. 比热容
D. 熵
答案:A. 压强 B. 温度 C. 比热容 D. 熵
2. 在一个恒定的温度下,某物质的体积和它的物理量成反比的物质有()
A. 压强
B. 温度
C. 比热容
D. 熵
答案:A. 压强
三、判断题
1. 在一个恒定的温度下,某物质的体积和它的质量成正比。
答案:正确
2. 在一个恒定的温度下,某物质的体积和它的压强成正比。
答案:错误。
数学课堂点睛九下答案人教版
数学课堂点睛九下答案人教版数学课堂点睛九下答案人教版一、第一单元函数的概念与性质1.1 函数的概念1. 什么是函数?函数是一种具有特定性质的特殊映射关系,即可由一个自变量唯一确定一个因变量的规律性对应关系。
2. 函数的表示通常用字母表述函数,用函数表格、函数公式、函数图象等来展示函数的特点和性质。
1.2 函数的性质1. 函数的奇偶性若对于自变量的变化,函数值随之正负变化,则称该函数是奇函数。
若对于自变量的变化,函数值随之不变或变为相反数,则称该函数是偶函数。
2. 函数的单调性若函数沿着自变量增大(或减小)时,函数值也单调增大(或减小),则称该函数具有单调性。
3. 函数的周期性若存在一个常数 k,使得对于所有的 x,有 f(x+k)=f(x),则称该函数具有周期性,k 是函数的周期。
二、第二单元平面向量2.1 平面向量的概念1. 什么是平面向量?平面向量是一个有大小、有方向的几何对象,可以用有向线段来表示。
2. 平面向量的表示平面向量通常用字母加箭头表示,如向量 AB 表示起点为 A,终点为 B 的平面向量。
3. 向量的模和方向角向量的模是指向量的长度,用 |u| 表示。
向量的方向角是指向量与 x 轴的夹角,用α 表示。
2.2 平面向量的运算1. 平面向量的加、减法平面向量的加法满足向量加法的运算律和交换律。
平面向量的减法可以转化为向量加法,即 u-v=u+(-v)。
2. 数乘一个向量乘以一个数,称为数乘,此时向量的方向不变,只改变其长度。
三、第三单元空间几何基础3.1 空间中的直线和平面1. 直线的表示在空间中,一条直线可以用两点确定。
如果已知一点和方向向量,则同样可以确定一条直线。
2. 平面的表示在空间中,一个平面可以用三个不共线的点来确定。
如果已知一个点和法向量,则等价于确定一个平面。
3.2 空间中的向量1. 什么是空间向量?空间向量是具有大小和方向的几何实体,用有向线段来表示。
2. 空间向量的加减法空间向量的加法满足向量加法的运算律和交换律。
《高等数学(理工类一)-1》的作业
1、[判断题]A对B错参考答案: A 2、[判断题]A对B错参考答案: A 3、[判断题]A对B错参考答案: B 4、[判断题]A对B错参考答案: A 5、[判断题]A对B错参考答案: B 6、[判断题]A对B错参考答案: A 7、[判断题]A对B错参考答案: A 8、[判断题]A对B错参考答案: A 9、[判断题]A对B错参考答案: A 10、[判断题]A对B错参考答案: B 1[单选题]/参考答案: C 2[单选题]参考答案: D3[单选题]下列数列为单调递增数列的有()0.9 ,0.99,0.999,0.9999参考答案: A 4[单选题]参考答案: A5[单选题]记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )1440种960种720种480种参考答案: B6[单选题]f(x)在点x=x0处有定义是f(x)在x=x0处连续的( )必要条件充分条件充分必要条件无关条件参考答案: A7[单选题]5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()10种20种25种32种参考答案: D 8[单选题]是连续的无界函数有最大值与最小值无最小值参考答案: A9[单选题]在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()6121824参考答案: B10[单选题]下列有跳跃间断点x=0的函数为()arctan1/xtan1/xcos1/x参考答案: B 11[单选题]参考答案: B12[单选题]甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()36种48种96种192种参考答案: C13[单选题]5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()150种180种200种280种参考答案: A14[单选题]121/2参考答案: C15[单选题]数列有界是数列收敛的()充分条件必要条件充要条件既非充分也非必要参考答案: B16[单选题]用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )48个36个24个18个参考答案: B17[单选题]f(x)在点x=x0处有定义是f(x)在x=x0处连续的()必要条件充分条件充分必要条件无关条件参考答案: A18[单选题]数列有界是数列收敛的( )充分条件必要条件充要条件既非充分也非必要参考答案: B19[单选题]某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )16种36种42种60种参考答案: D20[单选题]用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()288个240个144个126个参考答案: B21[单选题]1261/6参考答案: C 22[单选题]从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )40种60种100种120种参考答案: B23[单选题]满足{0,1}⊆a{0,1,2,3}的集合a的个数为( )1234参考答案: C24[单选题]在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有36个24个18个6个参考答案: B25[单选题]下列命题正确的是()发散数列必无界两无界数列之和必无界两发散数列之和必发散两收敛数列之和必收敛参考答案: D26[单选题]偶函数奇函数单调函数无界函数27[单选题]设集合{1,2,3,4,5}。
高等数学下册黄立宏黄云清答案详解
习题九答案1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。
解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcos cos cos 5.(2)()(3)343xy xz y yz z xy =++=---2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。
解:{4,3,12},13.AB AB ==AB 的方向余弦为4312cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xyz∂==∂∂==∂∂==∂ 故4312982105.13131313u l ∂=⨯+⨯+⨯=∂ 3. 求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。
解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为2222220,x y b x y y a b a y''+==-所以在点处切线斜率为2.b y a a '==-法线斜率为cos a bϕ=.于是tan sin ϕϕ==∵2222,,z z x y x a y b∂∂=-=-∂∂∴2222z la b ⎛∂=--=∂⎝ 4.研究下列函数的极值: (1)z =x 3+y 3-3(x 2+y 2); (2)z =e 2x (x +y 2+2y ); (3)z =(6x -x 2)(4y -y 2); (4)z =(x 2+y 2)22()ex y -+;(5)z =xy (a -x -y ),a ≠0.解:(1)解方程组22360360x yz x x z y y ⎧=-=⎪⎨=-=⎪⎩ 得驻点为(0,0),(0,2),(2,0),(2,2).z xx =6x -6, z xy =0, z yy =6y -6在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点.在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8.(2)解方程组222e (2241)02e (1)0x x xy z x y y z y ⎧=+++=⎪⎨=+=⎪⎩ 得驻点为1,12⎛⎫-⎪⎝⎭. 22224e (21)4e (1)2e x xx x xy xyy z x y y z y z =+++=+=在点1,12⎛⎫-⎪⎝⎭处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ⎛⎫=-- ⎪⎝⎭.(3) 解方程组22(62)(4)0(6)(42)0x y z x y y z x x y ⎧=--=⎪⎨=--=⎪⎩ 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y ) Z yy =-2(6x -x 2)在点(3,2)处,A =-8,B =0,C =-18,B 2-AC =-8×18<0,且A <0,所以函数有极大值z (3,2)=36.在点(0,0)处,A =0,B =24,C =0,B 2-AC >0,所以(0,0)点不是极值点. 在点(0,4)处,A =0,B =-24,C =0,B 2-AC >0,所以(0,4)不是极值点.在点(6,0)处,A =0,B =-24,C =0,B 2-AC >0,所以(6,0)不是极值点. 在点(6,4)处,A =0,B =24,C =0,B 2-AC >0,所以(6,4)不是极值点.(4)解方程组2222()22()222e(1)02e(1)0x y x y x x y y x y -+-+⎧--=⎪⎨--=⎪⎩得驻点P 0(0,0),及P (x 0,y 0),其中x 02+y 02=1,在点P 0处有z =0,而当(x ,y )≠(0,0)时,恒有z >0, 故函数z 在点P 0处取得极小值z =0.再讨论函数z =u e -u由d e (1)d u z u u-=-,令d 0d zu =得u =1, 当u >1时,d 0d z u <;当u <1时,d 0d zu>,由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有2222()1()e e xy z x y -+-=+≤.故函数z 在点(x 0,y 0)取得极大值z =e -1(5)解方程组(2)0(2)0x yz y a x y z x a y x =--=⎧⎨=--=⎪⎩得驻点为 12(0,0),,33a a P P ⎛⎫⎪⎝⎭z xx =-2y , z xy =a -2x -2y , z yy =-2x .故z 的黑塞矩阵为 222222ya x y H a x y x ---⎡⎤=⎢⎥---⎣⎦于是 122033(),().0233aa a H P H P a aa ⎡⎤--⎢⎥⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦ 易知H (P 1)不定,故P 1不是z 的极值点,H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭,H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭.5. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频点睛习题详细解答第一章 函数、极限、连续1、求下列函数的间断点并判别类型x xx x f n nn × + - = ¥ ® 2 2 1 1 lim ) ( 解. î í ì- = × + - = ¥ ® xx x x x x f n n n 2 2 1 1 lim ) ( 1 | | 1 | | < ³ x x 显然 1 ) 0 1 ( 1 ) 0 1 ( = - - = + f f , , 所以 x = 1 为第一类间断点;1 ) 0 1 ( 1 ) 0 1 ( = - - - = + - f f , , 所以 x = -1 为第一类间断点.2、 设 )] sin ( sin sin 1 [ sin 1 ) ( 22x x x xx f b a + - + + =, 且x = 0 是f(x)的可去间断点. 求 a , b .解. x = 0 是 f(x)的可去间断点, 要求xx x x x 2 2 0 sin ) sin ( sin sin 1 lim b a + - + + ® 存在. 所以 0 )] sin ( sin sin 1 [ lim 2 0= + - + + ® x x x x b a . 所以0 = )sin ( sin sin 1 ) sin ( sin sin 1 lim2 2 2 0x x x x x x x b a b a + + + + + - + + ® = aa ab a b ab a - = + - = + + + + - + - + - ® 1 1 1 )sin ( sin sin 1 sin ) 1 ( sin ) 2 1 ( ) 1 ( lim 2 2 2 2 2 0 x x x x x x 所以a = 1.xx x x x 2 2 0 sin )sin ( sin sin 1 lim b a + - + + ® = ))sin 1 ( sin sin 1 ( sin sin ) 1 ( sin ) 2 1 ( lim2 2 2 2 0x x x x x x x b b b + + + + × - + - ® 上式极限存在, 必须 21= b .3、设 [ ]b x x x ax = - + + ¥® ) 2 7 ( lim 4 5 , b ¹ 0, 求 a, b 的值.解. 上式极限存在, 必须 a =51(否则极限一定为无穷). 所以[ ]yy y xx x x x x y x a x 1 ) 2 7 1 ( lim1 1 )2 7 1 ( lim ) 2 7 ( lim 515 0 5 15 4 5 - + + = - + + = - + + ® ¥ ® ¥ ®= 5 7 ) 10 7 ( ) 2 7 1 (5 1 lim 4 5 450 = + + + - ® y y y y . 所以 57 = b . 第二章 导数与微分1、设 f(x)可导, F(x) = f(x)(1+|sin x|), 则 f(0) = 0 是 F(x)在 x = 0 处可导的 (a) 充分必要条件 (b) 充分但非必要条件 (c) 必要但非充分条件 (d) 既非充分又非必要条件 解. 必要性:) 0 ( ' F 存在, 所以 ) 0 ( ' + F = ) 0 ( ' - F , 于是) 0 ( ' + F = xf x x f x F x F x x )0 ( ) sin 1 )( ( lim 0 ) 0 ( ) ( lim0 0 - + = - - ++ ® ® = x x x f f x f x sin ) ( )) 0 ( ) ( ( lim 0 + - + ® = ) 0 ( ) 0 ( ' f f + ) 0 ( ' - F = xf x x f x F x F x x )0 ( ) sin 1 )( ( lim 0 ) 0 ( ) ( lim 0 0 - - = - - -- ® ® = xx x f f x f x sin ) ( )) 0 ( ) ( ( lim 0 - - - ® = ) 0 ( ) 0 ( ' f f - 所以) 0 ( ) 0 ( ' ) 0 ( ) 0 ( ' f f f f - = + , 2f(0) = 0, f(0) = 0充分性:已知 f(0) = 0, 所以) 0 ( ' + F = xf x x f x F x F x x )0 ( ) sin 1 )( ( lim 0 ) 0 ( ) ( lim0 0 - + = - - ++ ® ® = x x x f f x f x sin ) ( )) 0 ( ) ( ( lim 0 + - + ® = ) 0 ( ) 0 ( ' f f + = ) 0 ( ' f ) 0 ( ' - F = xf x x f x F x F x x )0 ( ) sin 1 )( ( lim 0 ) 0 ( ) ( lim 0 0 - - = - - -- ® ® = xx x f f x f x sin ) ( )) 0 ( ) ( ( lim 0 - - - ® = ) 0 ( ) 0 ( ' f f - = ) 0 ( ' f 所以 ) 0 ( ' ) 0 ( ' f F = 存在. (a)是答案.2、设 f(0) = 0, 则 f(x)在 x = 0 处可导的充要条件为 (a) cos 1 ( 1 lim2 0 - ® f h h h )存在. (b) ) 1 ( 1 lim 0 h h e f h- ® 存在.(c) sin ( 1 lim2 0 - ® h f h h h )存在. (d) )] ( ) 2 ( [ 1 lim 0 h f h f hh - ® 存在. 解. 由 ) 0 ( ' f 存在可推出(a)中的极限值为 ) 0 ( ' 21f , (b)中的极限值为 - ) 0 ( ' f , (d)中的极限值为 ) 0 ( ' f , 而(c)中的极限为:0 0 ) 0 ( ' sin sin ) sin ( lim ) sin ( 1lim2 0 2 0 = × = - - - = - ® ® f hh h h h h h f h h f h h h ; 反之(a) 及(c)中的极限值存在, 不一定 ) 0 ( ' f 存在, 举反例如下: y = |x|, ) 0 ( ' f 不存在, (a)、 (c)二表达式的极限都存在 排除(a)及(c). (d)中的极限存在, 不一定 ) 0 ( ' f 存在, 举反例如下:îíì+ = 0 1 2 ) ( x x f 0 0 = ¹ x x , 排除(d). 所以(b)是答案. 由(b)推出 ) 0 ( ' f 存在证明如下:= ) 0 ( ' f x x f x ) ( lim® = = - + ® ) 1 1 ( 1lim 0 x f x x )1 ln( ) 1 ln( ) 1 (1 lim ) 1 ln( 0 x x e f x x x - - × - - ® = x x x e f x x ) 1 ln( ) 1 ln( ) 1 ( lim ) 1 ln( 0 - - - - ® = )1 ln( )1 ( lim ) 1 ln( 0 x e f x x - - - - ® 所以 ) 0 ( ' f 存在.3、设函数 f(x)在(-¥, +¥)上可导, 则(a) 当 -¥ = -¥® ) ( lim x f x 时, 必有 -¥= -¥® ) ( ' lim x f x (b) 当 -¥ = -¥® ) ( ' lim x f x 时, 必有 -¥= -¥® ) ( lim x f x (c) 当 +¥ = +¥® ) ( lim x f x 时, 必有 +¥= +¥® ) ( ' lim x f x (d) 当 +¥ = +¥® ) ( ' lim x f x 时, 必有 +¥= +¥® ) ( lim x f x 解. (a)不正确. 反例如下: y = x; (b)不正确. 反例如下: 2x y = ; (c)不正确. 反例如下:x y = ; (d)是答案. 证明如下: 因为 +¥ = +¥® ) ( ' lim x f x , 所以对于充分大的x, ) (x f 单增. 如果 +¥ = +¥® ) ( lim x f x , 则证明结束, 否则 ) (x f 单增有上界, 则 k x f x = +¥® ) ( lim 存在(k 为有限数). 任取x, 在区间[x, x + 1]上用拉格朗日定理)( ' ) ( ) 1 ( x f x f x f = - + (x <x < x + 1)令 x ® +¥, 于是 0 = +¥, 矛盾. 所以 +¥ = +¥® ) ( lim x f x .4、设函数 f(x)在 x = a 处可导, 则函数|f(x)|在 x = a 处不可导的充分条件是 (a) f(a) = 0 且 0 ) ( ' = a f .(b) f(a) = 0 且 0 ) ( ' ¹ a f .(c) f(a) > 0 且 0 ) ( ' > a f . (d) f(a) < 0 且 0 ) ( ' < a f .解. (a) 反例 f(x) = 0, 取 a = 0. 排除(a); (c) 反例: 1 ) ( 2+ + = x x x f , 取 a = 0. f(0) = 1 > 0,0 1 ) 0 ( ' > = f , |f(x)| = f(x), 在 x = 0 可导. 排除(c); (d) 反例: 1 ) ( 2 - - - = x x x f , 取 a =0. 排除(d); 所以(b)是答案. 对于(b)证明如下: 在(b)的条件下证明 | ) ( ' | a f 不存在. 不妨假设 0 ) ( ' > a f . a x x f ax a f x f a f a x ax - = - - = ® ® )( lim ) ( ) ( lim) ( ' . 所以存在 d , 当 x Î (a -d , a +d ) 时0 )( > -ax x f . 所以当 x > a 时 , f(x) > 0. 于是 ) ( ' ) ( lim | ) ( | | ) ( | lim a f ax x f a x a f x f a x a x = - = - - ++® ® . 当 x < a 时 f(x) < 0. 于是 ) ( ' ) ( lim | ) ( | | ) ( | lim a f a x x f ax a f x f a x a x - = - - = - - --® ® . 所以 a x x f = | ' | ) ( | ) ( 不存在. 5、已知 ï îïí ì - = a xxx g x f cos ) ( ) ( 00 = ¹ x x , 其中 g(x)有二阶连续导数, 且 g(0) = 1(1) 确定 a 的值, 使 f(x)在 x = 0 点连续; (2) 求 ) ( ' x f . 解. (1) f(x)在 x = 0 点连续, 所以a xxx g x f x x = - = ® ® cos ) ( lim) ( lim 0 0,所以0 ) cos ) ( ( lim 0= - ® x x g x , 所以 g(0) = cos 0 = 1(这说明条件 g(0) = 1 是多余的). 所以x xg x g x x x g a x x cos 1 ) 0 ( ) ( limcos ) ( lim0 0 - + - = - = ® ® = ) 0 ( ' 0 ) 0 ( ' cos 1 lim ) 0 ( ) ( lim 0 0 g g xx x g x g x x = + = - + - ® ® (2) 方法 1:xax xx g x f x f f x x - - = - - = ® ® cos ) ( lim 0 ) 0 ( ) ( lim ) 0 ( ' 0 0= x x axx x g x - - ® cos ) ( lim 0 = 20 cos ) ( limx ax x x g x - - ® = 22 0 cos ) ( ' ' 2 1) 0 ( ' ) 0 ( limx axx x g x g g x - - + + ® x (0 < x < x)= ) 1 ) 0 ( ' ' (2 1 cos ) ( ' ' 2 1 1 lim 2 2 0 + = - + ® g x xx g x x 所以 ï ï î ï ï íì + - - + = ) 1 ) 0 ( ' ' (21 ] cos ) ( [ ] sin ) ( ' [ ) ( '2 g x x x g x x g xx f 00 = ¹ x x 方法 2:x ax xx g x f x f f x x - - = - - = ® ® cos ) ( lim 0 ) 0 ( ) ( lim ) 0 ( ' 0 0 = x x axx x g x - - ® cos ) ( lim 0 = 20 cos ) ( limx ax x x g x - - ® = x a x x g x 2 sin ) ( ' lim 0 - + ® = ) 1 ) 0 ( ' ' (21 2 cos ) ( ' ' lim 0 + = + ® g x x g x 第三章 一元函数积分学(1)1、设当 x ¹ 0时, ) ( ' x f 连续, 求ò + - dx e x x f x x xf x2 )( ) 1 ( ) ( ' . 解. ò ò ò - - = + - dx xex f dx e x x f x xf dx e x x f x x xf x x x ) ( ) ( ) ( ' ) ( ) 1 ( ) ( ' 2 2 = ò ò - - dxxe x f x x f d e x x) ( ) ( = x x f e x ) ( - + ò dx xe x f x ) ( - ò dx xe x f x ) ( = xx f e x ) ( - +c. 2、设 x x x f 22tan sin ) 2 (cos ' + = + , 求 f(x). 解.令 , 2 cos + = x t 2 cos - = t x , 所以222 2)2 ( 1 ) 2 ( 1 cos 1 cos 1 ) ( ' - - - - = - +- = t t x x t f 所以ò + - - - - = ú û ù ê ëé - + - - = c x x dx x x x f 2 1 ) 2 (3 1 ) 2 ( 1 ) 2 ( ) ( 32 2第三章 一元函数积分学(2)1、设 f(x)在[a, b]上具有二阶连续导数, 且 0 ) ( ' ) ( ' = = b f a f , 证明: 在(a, b)内存在一点x , 使)( ' ' ) (612 ) ( ) ( )( ) ( 3 x f a b b f a f a b dx x f ba- + + - = ò证明: 对于函数 ò =xadu u f x F ) ( ) ( ,用泰勒公式展开:"t, x Î [a, b] 32 ) ( !3 )( ' ' ' ) ( ! 2 ) ( ' ' ) )( ( ' ) ( ) ( t x F t x t F t x t F t F x F - + - +- + = x = 3 2 ) ( ! 3 )( ' ' ) ( ! 2 ) ( ' ) )( ( ) ( t x t f t x t f t x t f t F - + - + - + (1)(1)中令 x = a, t = b, 得到 3 1 ) ( 6 ) ( ' ' ) )( ( ) ( 0 b a f b a b f b F - + - + = x (2) (1)中令 x = b, t = a, 得到 3 2 ) ( 6)( ' ' ) )( ( ) ( a b f a b a f b F - + - = x (3)(3)-(2)得到 ))( ' ' ) ( ' ' ( 6)( ) ))( ( ) ( ( ) ( 2 1 2 3x x f f a b a b b f a f b F + - + - + = 于是2) ( ' ' ) ( ' ' 6 ) ( 2 ) ( ) ( ) ( ) ( ) ( 1 2 3x x f f a b b f a f a b b F dx x f ba+ ×- + + - = = ò= )( ' ' ) (6 12 ) ( ) ( )( 3 x f a b b f a f a b - + + - 注: 因为需要证明的等式中包含 ) ( ' ' ) (613 x f a b - , 其中二阶导数相应于(b -a)的三次幂,所以将ò xadu u f ) ( 泰勒展开; 若导数的阶数和幂指数相同, 一般直接将 f(x)泰勒展开.2、设 f 连续, 证明: òò = 2) (sin ) (sin ppp dxx f dx x xf 证明:ò ò - - - - = ppp p p 0)( )) (sin( ) ( ) (sin t d t f t t x dx x xf 令 =ò ò òò ò - + = - pp p ppp p p p 0220) (sin ) (sin ) (sin ) (sin ) (sin dx x xf dt tf dt t f dt t tf dt t f 所以 2ò ò òò = - - + = 222) (sin 2 ) ( )) (sin() (sin ) (sin pp ppp p p p dx x f u d u f dx x f dx x xf 即òò = 20) (sin ) (sin ppp dxx f dx x xf 第四章 微分中值定理与泰勒公式1、设 f (x )在[a , b ]上连续, 在(a ,b )内有二阶连续导数, 试证: 至少存在一个 x Î (a , b ), 使) ( ' ' 4 ) ( ) ( 2 2 ) ( 2 x f a b af b a f b f - = + ÷ øöç è æ + - 证明: "x , t Î [a ,b ], 有 2 ) ( !2 )( ' ' ) ( ! 1 ) ( ' ) ( ) ( t x f t x t f t f x f - + - += x 取 t =2ba + , 分别取 x =b ,x = a , 得到 4 ) ( ! 2 ) ( ' ' 2 2 ' 2 ) ( 2 1 a b f a b b a f b a f b f - + - ÷ø ö ç è æ + + ÷ ø ö ç è æ + = x 4 ) ( ! 2 ) (' ' 22 ' 2 ) ( 2 2 a b f a b b a f b a f a f - + - ÷ø ö ç è æ + - ÷ ø ö ç è æ + = x 二式相加, 得 ú ûù ê ë é + - +÷ ø ö ç è æ + = + 2 ) ( ' ' 2 ) ( ' ' 4 ) ( 2 2 ) ( ) ( 2 1 2 x x f f a b b a f a f b f 所以存在 x Î (a , b ), 使得) ( ' ' 4 ) ( ) ( 2 2 ) ( 2 x f a b af b a f b f - = + ÷ øöç è æ + - 2、设 f (x )在[a , b ]上连续, 在(a ,b )内可导, 且 f (a ) = f (b ) = 1, 证明: 存在x 、h Î (a , b ), 使得1)] ( ' ) ( [ = + -h h x h f f e 证明: 对于 ) ( ) ( x f e x F x= 在[a , b ]上使用拉格朗日定理, 在(a , b )内存在h , 使得)]( ' ) ( [ ) ( ) ( h h hf f e ab a f e b f e a b + = - - 所以在(a ,b )内存在x , 使得= - - = a b e e e a b x)]( ' ) ( [ ) ( ) ( h h hf f e ab a f e b f e a b + = - - 即是1)] ( ' ) ( [ = + -h h x h f f e 第五章 常微分方程1、 求 x0y 平面上一曲线, 使其过每点的切线同该点的向径及 oy 轴一起构成一个等腰三角形. 解. 设所求的曲线为 ) (x f y = . 曲线上点 ) , ( y x 处的切线方程为))( ( ' x X x f y Y - = - 令 X = 0,A 点坐标 )) ( ' , 0 ( x xf y - i) AO =ACA所以 22 2 )) ( ' ( )) ( ' ( x xf x x xf y + = - 得到 2 2 2 x dxdyxyy = - 令 2 y u = , 得到方程 2 x dxduxu = - 为一阶线性方程 得解cx x u + - = 2 , 即 02 2 = - + cx x y ii) AC = OC 所以22 22 )] ( ' [ y x x xf x + = + xy x f ± = ) ( ' ,x dx y dy± = , x cyln ln ± = 所以cx y = (舍), cxy = iii) AO =OC 所以2 2 2 )) ( ' ( y x x xf y + = - , 得到 xx f x x yf = + - 2)] ( ' [ ) ( ' 2 所以1 2 4 4 2 ) ( ' 22 2 + ÷ ø ö ç è æ ± = + ± = x y x y x x y y x f , 即 = dx dy 12+ ÷ øö ç è æ ± x y x y 令u x y = 则 dxdux u dx dy + = , 得到以下方程 1 2 + ± = u dxdux 若 1 2 + = u dx du x, 则 xdx u du = +1 2 , cxu u ln ) 1 ln( 2 = + + cx xy x x y= + + 2 2 , 即 2 2 2 cx y x y = + + ; 若 1 2 + - = u dx du x, 则 x dx u du - = +12 , x cu u ln ) 1 ln( 2 = + + xc x y x x y = + + 2 2 , 即 c y x y = + + 2 2 . 2、有一盛满水的圆锥形漏斗, 高 10cm, 顶角 060 = a , 漏斗尖处有面积 0.5m 2的小孔, 求水流出时漏斗内水深的变化规律, 并求出水全部流出所需的时间(提示: 水从深处为 h 的孔流 出的速度 s cm gh v / 2 6 . 0 = )解. 假设在 dt 时间内圆锥中水的体积变化为 dv高为 h 的圆锥的底圆半径为h 31, 于是可得以下方程: dt gh dh h 2 6 . 0 5 . 0 3 1 2× = ÷ øöç è æ -p ,dt gh dh h 2 3 . 0 32 = - p, 10 ) 0 ( = h dt dh h g = - 2 3 2 9 . p , 于是得通解: c t h g+ = - 25 2 9 4p . 由 10 ) 0 ( = h 得到 25 10 2 9 4 gc p -= . 所以满足初始条件的解为: 25 2 5 10 2 9 4 2 9 4 gt h g p p - = -. 当 h = 0 时, 得 » =2 5 10 2 9 4 gt p 10 (秒) 3、 设经过原点的曲线族上任一点 P 处的切线交x 轴于点 T , 从 P 点向 x 轴作垂线, 其垂足为 Q , 已知 PT , PQ 与 x 轴所围成的三角形的面积与曲边三角形 OPQ 的面积之比等于常数 k ,21> k , 试求该曲线族.解. 在 P 处的切线方程为 ) ( ' x X y y Y - = - . 令 0 = Y , 得 T 点的横坐标为 ' y y x X -= . Y PQ = , 'y yX x QT = - = PQT D 的面积为 '2 1 y yy S × = .曲边三角形OPQ 的面积为ò xdx x y 0) ( . 于是得方程ò = × x dxx y k y yy 0 ) ( '2 1 二边对 x 求导得到 î íì = - = 0 ) 0 (' ) 1 ( 2 ' ' 2y y k yy 令 dy dp p y p y= = ' ' , ' 则 , 于是 2 ) 1 ( 2 p k dydpyp- = i) p = 0y =c . 因为 0 ) 0 ( = y , 所以 0 º y (舍)ii) 0¹ p p k dydp y) 1 ( 2 - = , 1 ln ln ) 1 ( 2 ln c y k p + - = , )1 (2 1 k yc p - = )1 (2 1 k y c dxdy - = , ) )( 1 2 ( 2 1 1 2 c x c k y k + - = - .由 0 ) 0 ( = y , 得 0 2 = c . 所以解为:cx y k = -1 2 . ( 1 ) 1 2 ( c k c - = 为任意常数)4、有一房间容积为 100m 3 , 开始时房间空气中含有二氧化碳 0.12%, 为了改善空气质量, 用一台风量为 10m 3/分的排风扇通人含 0.04%的二氧化碳的新鲜空气, 同时以相同的风量将混 合均匀的空气排出, 求排出 10分钟后, 房间中二氧化碳的含量百分比?解. 假设在 t 时刻二氧化碳的含量百分比为 x %, 即房中二氧化碳含量为 x . 一分钟后二氧化碳为 10004 . 0 xx -+ . 又设 dt 时刻后二氧化碳含量改变量为 dx . 则 dt x dt x x x dx ) 04 . 0 ( 10 1 ) 10 004 . 0 ( - - = ú û ù ê ë é- + - - = 即 ï î ïí ì = - - = 12 . 0 ) 0 ( ) 04 . 0 ( 10 1 xx dt dx 得通解: 1004 . 0 tcex - + = . 由 12 . 0 ) 0 ( = x 得到 c = 0.08.所以方程的解为: 1008 . 0 04 . 0 tex - + = 当 t = 10 时, 得到 07 . 0 08 . 0 04 . 0 1= × + = - e x .第六章 一元微积分的应用 1、在抛物线y = x 2 上一点 P (a , a 2 )作切线, 问 a 为何值时所作切线与抛物线 y =-x 2 + 4x -1所围图形面积最小 解. 切线和抛物线的交点为î í ì - + - = - = - 14 )( 2 22 x x y a x a a y34 22 1 24 0 ) 1 ( ) 4 2 ( 2 1 2 2 21 2 1 2 2 + - = - - = - = + = - + - + a a x x a x x a x x a x a xò ò - + - + - = + - - + - = 2121) 1 ) 2 4 ( ( 2 1 4 ( 2 2 2 2 x x x x dxa x a x dx a ax x x s ) ( ) 10 4 4 0) 4 4 ( 3 4 2 2 3 3 4 ' ) 3 4 2 (34 68 4 3 4 2 321 )2 4 )( 2 ( ) 1 (3 1 ) 24 (3 1 3 4 2 2 ) 1 ( ) )( 2 ( 3 1 ) (3 1 ) ( ))( 1 ( ) )( )( 2 ( ) )( (31 ))( 1 ( ) )( 2 ( ) (3 1 )) 1 ( ) 2 ( 3( 2 232 2 2 2 2 2 2 212 2 1 2 2 1 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 21 2 2 3 1 3 2 122 2 3= = - = - + - ´ = + - = + - + - = ÷øöç è æ - + - - + - + - - + - = ÷ ø ö ç è æ - + + - + + + - - = - - + + - - + + + - - = - - + - - + - - = - + - + - = a a a a a s a a a a a a a a a a a a a a x x a x x x x x x x x a x x x x a x x x x x x x x a x x a x x x x x a x a x 2、求曲线y = x 3 -2x 与 y = x 2 所围阴影部分面积 S , 并将此面积绕 y 轴旋转, 求此旋转体体积. 解.-1 2面积 S =1237) 2 ( ) 2 ( 23 2 01 2 3 = + - + - - ò ò -dx x x x dx x x x 旋转体体积: 由例 7.33i. 平面图形 0 £a £ x £ b , 0 £ y £f (x )绕y 轴旋转所成旋转体体积为ò = badxx xf V ) ( 2p ii. (使用相同方法可以证明)平面图形 a £ x £ b £0, 0 £y £ f (x )绕y 轴旋转所成旋转体体积为ò - = badxx xf V ) ( 2p 由图知ò ò + - + - - - = -23 2 2 0 1 3 ) 2 ( 2 ) 2 ( 2 dxx x x x dx x x x x V p p =1063 30 189 15 88 30 13 p p p p = = + 6. 已知圆(x -b ) 2+ y 2 = a 2 , 其中 b >a > 0, 求此圆绕 y 轴旋转所构成的旋转体体积和表面积. 解. 体积ò ò - + - + = - - - ´ = 2 222 22cos ) sin ( 4 sin ) ( 2 2 ppp p tdt a t a b t a b x dx b x a x V ab ab 令 = 22 2 2222 48 cos 8 ba ba dt t bap pp p p= ×= ò表面积: y = f (x )绕x 轴旋转所得旋转体的表面积为S = ò+ badxx f x f ) ( ' 1 ) ( 2 2p (x -b ) 2 + y 2 = a 2 绕 y 轴旋转相当于(y -b ) 2+ x 2 = a 2 绕x 轴旋转. 该曲线应分成二枝:22 x a b y - ± = 所以旋转体的表面积ò ò - - - - - + - - + = aaaadxxa a x ab dx xa a x ab S 222 2 2222 )( 2 )( 2 p p = ab dt ab x a dx abaa22 022 4 8 4 p p p p= = - òò- . 3、设 f (x )在[a , b ]上连续, 且 f (x ) > 0, 又 òò+ = xbxadt t f dt t f xF )( 1) ( ) ( . 证明: i. , 2 ) ( ' ³ x F ii. F(x) = 0 在(a , b )内有唯一实根.证明. i. 2 )( 1) ( 2 ) ( 1 ) ( ) ( ' ³ × ³ += x f x f x f x f x F ii. F (a ) =òabdt t f )( 1, F (b ) = ò b a dt t f ) ( . 因为 f (x ) > 0, 所以 F (a )和 F (b )异号, 所以在(a ,b )中存在x , 使得 F(x ) = 0. 又因为 2 ) ( ' ³ x F , F (x )单增, 所以实根唯一.第七章 无穷级数1、判断下列级数的敛散性å ¥= + - 1 ! )! 2 2 (! )! 1 2 ( n n n 解. 拉阿伯判别法: r = - + ¥® ) 1 (lim 1n nn u u n 设 , 发散 收敛, 1 1 < > r r . 2 3 1 2 3 lim 1 ! )! 4 2 ( ! )! 1 2 ( ! )! 2 2 ( ! )! 1 2 ( lim ) 1 ( lim 1= + = ÷ ÷ ÷ ÷øö ç ç ç ç è æ - + + + - = - ¥ ® ¥ ® + ¥ ® n n n n n n n u u n n n n n n > 1, 所以级数收敛.2、求级数的和å å ¥= - ¥= - - + + 1 1 1 1 1 2 )1 (2 ) 1 ( n n n n n n n x n n 并求 解. 2 | | , 1 2|| | | 2 ) 1 ( lim 1 1< < = + - - ¥® x x x n n nn n n . 当 2 ± = x 时得到的数项级数发散, 所以收敛 区域为(-2, 2).3 '' 2 '' 1 1' '1 1 1 1 1 1 )2 ( 16 2 2 2 4 2 2 ) 1 ( x x x x x x n n n n n n n n n n - = ÷ ÷ ø ö ç ç è æ - = ÷ ÷ øö ç ç è æ ÷ ø ö ç è æ = ÷ ÷ øö ç ç è æ + å å å ¥ = + ¥= - + ¥ = - - 积分二次 , (-2, 2) 所以16 ) 1 2 ( 162 ) 1 ( 311 = - = + å ¥= - n n n n 3、把下列函数分别展成正弦函数和余弦函数:2 ) ( x x f = , ( p 2 0 < < x )解. 1. 偶展拓38 3 1 13 2 0 3 2 020 p p p pp== =ò x dx x a ú ú ûùê ê ë é - = = = ò ò ò p pp p p p p 2 0 2 0 2 2 0 2 2 0 2 2 sin 2 2 sin 2 2 sin 2 2 cos 1 dx nx x nx x n nx d x n dx nx x a n= ú ú ûùê ê ë é - = = - ò ò ò p pp p p p p 2 0 2 0 2 2 0 2 2 0 2 cos 2 cos 8 2 cos 8 2 sin 4 dx nx nx x n nx xd n dx nx x n = 22 16 ) 1 ( 2 2 cos 2 8 n n n n- = × p p p . 于是å å ¥ = ¥= - + = + = = 12 2 1 022 cos 16 ) 1 (34 2 cos 2 ) ( n n n n nx n nx a a x x f p , [0, 2p ]2. 奇展拓ú ú ûùê ê ë é - - = - = = ò ò ò p pp p p p p 2 0 2 0 2 2 0 2 2 0 2 2 cos 2 2 cos 2 2 cos 2 2 sin 1 dx nx x nx x n nx d x n dx nx x b n = ò + - - p p p p 2 0 2 2 2sin8 ) 1 ( 4 2 nx xd n n npp p p p p p 2 0 3 1 2 0 2 0 2 1 2 cos16 8 ) 1 ( 2 sin 2 sin 8 8 ) 1 ( nxn n dx nx nx x n n n n + - = ú ú ûù ê ê ë é - + - = + + ò = ] 1 ) 1 [( 168 ) 1 ( 3 1- - + - + n n n n p p . 当 k n 2 = ,kk b k k pp 4 2 8 ) 1 (1 2 2 - = - = + 当 1 2 + = k n ,ú ûùê ë é + - + = + - + = +3 2 3 1 2 ) 1 2 (4 1 2 8 ) 1 2 ( 32 1 2 8 k k k k b k p p p p å ¥= = = 122sin) ( n n nxb x x f , (0, 2p ) 第八章 向量代数与空间解析几何1、求曲线 î í ì = = + + z y z y x 42 2 2 在各坐标面上的投影方程.解. 在 xoy 平面上的投影: î íì = = + 0 42 2 2 z y x 在 xoz 平面上的投影: î íì = = + 042 2 2 y z x在 yoz 平面上的投影: î íì = = 0x z y , 当 x = 0, y = z 时, 4 2 2£ y , 2 | | £ y 2、求准线为 î í ì + = = + + 2 2 2 2 2 2 14 zy x z y x 母线 // z 轴的柱面方程.解. 因为母线平行于 z 轴, 所以只要消去 z . 得到13 5 2 2 = - y x 为所求.第九章 多元函数微分学及应用1、已知 ò += = xydt t p u u u z z ) ( ) ( ) ( j ,且 , 1 ) ( ' ) ( ' ) ( ¹ u u u z j j 连续,且可微, , p (t )连 续, 试求 yz x p x z y p¶ ¶ + ¶ ¶ ) ( ) ( . 解.) ( ) ( ' x p x uu x u + ¶ ¶ = ¶ ¶ j , ) ( ' 1 ) ( u x p x u j - = ¶ ¶ ) ( ) ( ' y p y u u y u - ¶ ¶ = ¶ ¶ j , )( ' 1 )( u y p y u j - - = ¶ ¶ yu u z x p x u u z y p y z x p x z y p ¶ ¶ + ¶ ¶ = ¶ ¶ + ¶ ¶ )( ' ) ( ) ( ' ) ( ) ( ) ( )( ' 1 )( ) ( ' ) ( ) ( ' 1 ) ( ) ( ' ) ( u y p u z x p u x p u z y p j j - - - == 02、设 0 ) , ( 2 = ¶ ¶ ¶ = + y x u ey x u z yx , a , 试确定常数a , 使 0 2 = + ¶ ¶ - ¶ ¶ - ¶ ¶ ¶ z yzx z y x z . 解.yx y x x ue e u xz + + + = ¶ ¶ a a a ' yx y x y ue e u yz + + + = ¶ ¶ a a ' yx y x x y x y y x xy ue e u e u e u yx z + + + + + + + = ¶ ¶ ¶ a a a a a a ' ' ' ' 2 = yx y x x y x y uee u e u + + + + + a a a a a ' '所以 z yz x z y x z + ¶ ¶ - ¶ ¶ - ¶ ¶ ¶ 2 = yx y x x y x y uee u e u + + + + + a a a a a ' ' yx y x x uee u + + - - a a a ' yx y eu + - a ' y x ue+ - a + yx ue+ a = yx y yx y e u eu + + - a a a ' ' = 0于是a = 1.3、若 ) ( 22y x f z + = 满足 0 2 2 2 2 = ¶ ¶ + ¶ ¶ yzx z , 其中 f (u )有连续的二阶导数, 求 z .解. 2 2 ' yx xf x z + = ¶ ¶ ,÷ ÷ øö ç ç è æ + - + + + = ¶ ¶ - 2 2 3 2 2 2 2 2 2 2 2 2 ) ( 1 ' ' ' x y x y x f yx x f x z 同理 ÷ ÷ øö ç ç è æ + - + + + = ¶ ¶ - 2 2 3 2 2 2 2 22 2 2 2 ) ( 1 ' ' ' yy x y x f y x y f y z 所以 0 1' ' ' 2 2 2 2 2 2 = + + = ¶ ¶ + ¶ ¶ yx f f y z x z .令 22y x u + = , 得常微分方程0 )( ' ) ( ' ' = +uu f u f 于是0 ) ( ' ) ( ' ' = + u f u uf . 0))' ( ' ( = u uf 1 ) ( ' c u uf = ,uc u f 1) ( ' =, 21 ln ) ( c u c u f + = 即222 1 ln c y x c z + + = 4、当 0 , 0 , 0 > > > z y x 时, 求函数 z y x u ln3 ln 2 ln + + = 在球面 22 2 2 6r z y x = + + 上 的最大值, 并证明对任意的成立不等式632 6 108 ÷øöç è æ + + £ c b a c ab 解. 构造函数 )6 ( ln 3 ln 2 ln ) , , , ( 2 2 2 2 r z y x z y x z y x F - + + - + + = l lï ï ï ï î ï ï ïï íì = + + = - = = - = = - = 2 2 2 2 60 2 3 ' 0 22 ' 0 2 1 ' r z y x z z F y y F x x F zy x l l l , 解得 rz r y r x 3 2 = = = , , 因为在球面上当 ¥ - + +趋于 时, 趋于 , 趋于 u x r z y 0 6 2 22. 所以当 r z r y r x 3 2 = = = , , 时, u 达到最大值.6 max 3 6 ln 3 ln 3 2ln 2 ln r r r r u = + + = 对于任意正实数 c b a , , , 令 c z b y a x = = = , , . 原题条件极值问题转化为ï îïí ì = + + + + = 2 6 ) ln 3 ln 2 (ln 2 1r c b a c a u 条件 注意到 216 ÷ øö ç è æ + + = c b a r . 于是3max32 63 6 ln ln ÷ øöç è æ + + = £ = c b a u c ab u 即63 2 6 108 ÷ øöç è æ + + £ c b a c ab .第十章 重积分1、求解下列二重积分òòDdxdy x xy sin D: 由 x = y 2及 2 1 1 y x - + = 所围成. 解.因为 yxyy xf sin ) , ( = 满足 ) , ( ) , ( y x f y x f - = - , 且积分区域关于 x 轴对称, 所以该二重 积分等于 0.2、设 p (x )是[a , b ]上的非负连续函数, f (x ),g (x )在[a , b ]上连续且单调递增, 证明:ò ò b abadx x g x p dx x f x p ) ( ) ( ) ( ) ( £ò ò b abadxx g x f x p dx x p ) ( ) ( ) ( ) ( 证明: 令 = ) (x F ò ò x axadt t g t p dt t f t p ) ( ) ( ) ( ) ( - ò ò xaxadtt g t f t p dx t p ) ( ) ( ) ( ) ( F (0) = 0, 且ò = xadt t g t p x f x p x F ) ( ) ( ) ( ) ( ) ( ' + ò xadtt f t p x g x p ) ( ) ( ) ( ) ( - òxadt t g t f t p x p ) ( ) ( ) ( ) ( - òxadtt p x g x f x p ) ( ) ( ) ( ) ( =)] ( ) ( )][ ( ) ( )[ ( ) ( £ - - ò xadt x g t g t f x f x p t p 上面不等式成立是由于 p (x )是[a , b ]上的非负连续函数, f (x ), g (x )在[a , b ]上连续且单调递增. 所以 F (x )单减. 于是ò ò babadx x g x p dx x f x p ) ( ) ( ) ( ) ( £ò ò b abadxx g x f x p dx x p ) ( ) ( ) ( ) ( 3、有一半径为 R , 高为 H 的均匀圆柱体, 其中心轴上低于下底为a 处有一质量为m 的质点, 试求此柱体对该点的引力.解. 取坐标系如图. 因为圆柱关于x 轴、 y 轴对称, 所以引力关于x 轴、 y 轴方向的投影为0. 关 于 z 轴方向的投影为dva z y x a z m dF z 232 22)) ( ( )( + + + + =r m òòò W + + + + = dv a z y x a z m F 2 32 2 2 ) ) ( ( )( r m = dz a z y x dxdya z m xy D Hú ú ûù ê ê ë é + + + òò ò 23 2 2 2 0 ) ) ( ( ) ( r m -a柱坐标 dz dr a z r ra z m R Hú ú ûù ê ê ë é + + + ò ò 0 23 2 2 0 ) ) ( ( 2 ) ( p r m = ò+ + + - HRdz a z r a z m2 12 2 ) ) ( ( 1) ( 2 r pm= òú ú ûù ê ê ë é + + + - + + Hdz a z R az a z a z m 02 2 ) ( 2 rpm = ]) ( [ 2 2222a R a H R H m + + + + - r pm 4、 设半径为R 的球面S 的球心在球面 ) 0 ( 2 2 2 2 > = + + a a z y x 上, 问当 R 为何值时, 球面 S 在定球面内部的那部分面积最大?解. 该二个球面的交线为î í ì = - + + = + + 22 2 2 22 2 2 ) ( Ra z y x a z y x , 解得 ï ï îï ï í ì -= + - = 2 42 2 2 2 4 2 a R R y x a R a z 2 22 2 ) ( R a z y x = - + + 在球面 2 2 2 2 a z y x = + + 内的方程为22 2 y x R a z - - - = 2 2 2 y x R x x z - - = ¶ ¶ , 22 2 y x R yy z - - = ¶ ¶ 所以òò òò- - + - - + = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ÷ ø ö ç è æ ¶ ¶+ = xyxyD D dxdy y x R y y x R x dxdy y z x z S 2 2 2 2 2 2 2 2 221 1 = òòò - - = - - 242 4 0222222 aR R D rR rdr R yx R dxdy Rxyp = aR R 322 p p -0 3 4 2 = - = a R R dR dS p p , a R 34= . a R dR S d p p 6 4 2 2 - = . 当 a R 3 4 = , 0 4 22 < - = p dR Sd . 所以 S 达到极大值, 因为只有一个驻点, 所以达到最大值. 即 a R 34= 时, 面积最大.。