2017年全国研究生数学建模竞赛题

合集下载

2017年 中国研究生 数学建模 竞赛D题

2017年 中国研究生 数学建模 竞赛D题

2017年中国研究生数学建模竞赛D题基于监控视频的前景目标提取视频监控是中国安防产业中最为重要的信息获取手段。

随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。

近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。

如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。

目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。

而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。

这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。

这一技术往往能够对一般的视频处理任务提供有效的辅助。

以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。

因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。

1下面简单介绍一下视频的存储格式与基本操作方法。

一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。

从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据X∈ℝw×h×t,其中w,h代表视频帧的长,宽,t代表视频帧的帧数。

视频也可等价理解为逐帧图片的集合,即X={ℝ1,ℝ2,⋯,ℝℝ},其中ℝℝ∈ℝw×h(ℝ=1,2,⋯,t)为一张长宽分别为w,h的图片。

3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。

2017数学建模国赛题目

2017数学建模国赛题目

2017数学建模国赛题目(实用版)目录一、2017 年数学建模国赛简介二、2017 年数学建模国赛题目概述三、题目 A:基于无人机的森林防火系统四、题目 B:城市交通信号灯控制优化五、题目 C:无人机航拍图像处理及应用六、题目 D:新型城镇化背景下的乡村规划正文一、2017 年数学建模国赛简介2017 年数学建模国赛,即 2017 年全国大学生数学建模竞赛,是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

二、2017 年数学建模国赛题目概述2017 年数学建模国赛共有四个题目,分别是:基于无人机的森林防火系统、城市交通信号灯控制优化、无人机航拍图像处理及应用、新型城镇化背景下的乡村规划。

这四个题目分别涉及到林业、交通、航空、城乡规划等领域,旨在考查学生运用数学知识解决实际问题的能力。

三、题目 A:基于无人机的森林防火系统题目 A 要求参赛选手针对森林防火问题,建立无人机监测森林火情的数学模型,并结合实际数据,分析火情发生的可能性,为森林防火工作提供科学依据。

此题考查了学生对无人机技术、遥感技术、数据挖掘等领域的综合运用能力。

四、题目 B:城市交通信号灯控制优化题目 B 要求参赛选手针对城市交通信号灯控制问题,建立数学模型,分析交通流量、拥堵状况等数据,优化信号灯控制策略,提高道路通行能力。

此题考查了学生对交通工程、数据分析、优化算法等领域的综合运用能力。

五、题目 C:无人机航拍图像处理及应用题目 C 要求参赛选手针对无人机航拍图像处理问题,研究图像去噪、增强、拼接等技术,并结合实际场景,分析航拍图像在农业、地质、环保等领域的应用价值。

此题考查了学生对图像处理、计算机视觉、遥感技术等领域的综合运用能力。

2017年高教社杯全国大学生数学建模竞赛题目全(共4题)

2017年高教社杯全国大学生数学建模竞赛题目全(共4题)

2017年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题CT系统参数标定及成像CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT 系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。

对应于该模板的接收信息见附件2。

请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。

另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

(3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。

利用(1)中得到的标定参数,给出该未知介质的相关信息。

另外,请具体给出图3所给的10个位置处的吸收率。

(4) 分析(1)中参数标定的精度和稳定性。

在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。

全国研究生数学建模竞赛题目

全国研究生数学建模竞赛题目

中国研究生数学建模竞赛试题汇总2021赛题汇总2021-A:相关矩阵组的低复杂度计算和存储建模2021-B:空气质量预报二次建模2021-C:帕金森病的脑深部电刺激治疗建模研究2021-D:抗乳腺癌候选药物的优化建模2021-E:信号干扰下的超宽带(UWB)精确定位问题2021-F:航空公司机组优化排班问题2020赛题汇总2020-A:芯片相噪算法2020-B:汽油辛烷值建模2020-C:面向康复工程的脑信号分析和判别建模2020-D:无人机集群协同对抗2020-E:能见度估计与预测2020-F:飞行器质心平衡供油策略优化2019赛题汇总2019-A: 无线智能传播模型2019-B:天文导航中的星图识别2019-C:视觉情报信息分析2019-D:汽车行驶工况构建2019-E:全球变暖?2019-F:多约束条件下智能飞行器航迹快速规划2018赛题汇总2018-A :关于跳台跳水体型系数设置的建模分析2018-B:光传送网建模与价值评估2018-C:对恐怖袭击事件记录数据的量化分析2018-D:基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用2018-E:多无人机对组网雷达的协同干扰2018-F:机场新增卫星厅对中转旅客影响的评估方法2017赛题汇总2017-A:无人机在抢险救灾中的优化运用2017-B:面向下一代光通信的VCSEL激光器仿真模型(华为命题)2017-C:航班恢复问题2017-D:基于监控视频的前景目标提取2017-E:多波次导弹发射中的规划问题2017-F:构建地下物流系统网络2016赛题汇总2016-A:多无人机协同任务规划2016-B:具有遗传性疾病和性状的遗传位点分析2016-C:基于无线通信基站的室内三维定位问题2016-D:军事行动避空侦察的时机和路线选择2016-E:粮食最低收购价政策问题研究2015赛题汇总2015-A:水面舰艇编队防空和信息化战争评估模型2015-B:数据的多流形结构分析2015-C:移动通信中的无线信道“指纹”特征建模2015-D:面向节能的单/多列车优化决策问题2015-E:数控加工刀具运动的优化控制2015-F:旅游路线规划问题2014赛题汇总2014-A:小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究2014-B:机动目标的跟踪与反跟踪2014-C:无线通信中的快时变信道建模2014-D:人体营养健康角度的中国果蔬发展战略研究2014-E:乘用车物流运输计划问题2013赛题汇总2013-A:变循环发动机部件法建模及优化2013-B:功率放大器非线性特性及预失真建模2013-C:微蜂窝环境中无线接收信号的特性分析2013-D:空气中PM2.5问题的研究2013-E:中等收入定位与人口度量模型研究2013-F:可持续的中国城乡居民养老保险体系的数学模型研究2012赛题汇总2012-A:基因识别问题及其算法实现2012-B:基于卫星无源探测的空间飞行器主动段轨道估计与误差分析2012-C:有杆抽油系统的数学建模及诊断2012-D:基于卫星云图的风矢场(云导风)度量模型与算法探讨2011赛题汇总2011-A:基于光的波粒二象性一种猜想的数学仿真2011-B:吸波材料与微波暗室问题的数学建模2011-C:小麦发育后期茎秆抗倒性的数学模型2011-D:房地产行业的数学建模2010赛题汇总2010-A:确定肿瘤的重要基因信息2010-B:与封堵溃口有关的重物落水后运动过程的数学建模2010-C:神经元的形态分类和识别2010-D:特殊工件磨削加工的数学建模2009赛题汇总2009-A:我国就业人数或城镇登记失业率的数学建模2009-B:枪弹头痕迹自动比对方法的研究2009-C:多传感器数据融合与航迹预测2009-D:110警车配置及巡逻方案2008赛题汇总2008-A:汶川地震中唐家山堰塞湖泄洪问题2008-B:城市道路交通信号实时控制问题2008-C:货运列车的编组调度问题2008-D:中央空调系统节能设计问题2007赛题汇总2007-A:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题2007-B:机械臂运动路径设计问题2007-C:探讨提高高速公路路面质量的改进方案2007-D:邮政运输网络中的邮路规划和邮车调度2006赛题汇总2006-A:Ad Hoc网络中的区域划分和资源分配问题2006-B:确定高精度参数问题2006-C:维修线性流量阀时的内筒设计问题2006-D:学生面试问题2005赛题汇总2005-A:Highway Traveling time Estimate and Optimal Routing 2005-B:空中加油2005-C:城市交通管理中的出租车规划2005-D:仓库容量有限条件下的随机存贮管理2004赛题汇总2004A:发现黄球并定位2004B:实用下料问题2004C:售后服务数据的运用2004D:研究生录取问题。

2017年全国研究生数学建模竞赛B题

2017年全国研究生数学建模竞赛B题

2017年中国研究生数学建模竞赛B题(华为公司命题)面向下一代光通信的VCSEL激光器仿真模型随着互联网技术的快速发展,家庭固定网络速度从原来的2Mbps、10Mbps,快速发展到了今天的百兆(100Mbps),甚至千兆(1000Mbps)光纤宽带入户。

“光纤宽带入户”,顾名思义,就是采用光纤来传输信号。

光纤中传输的激光信号具有远高于电信号传输速率的特点(激光信号传输带宽远大于电信号传输带宽),更适合于未来高速率的传输网络。

工程师们在光纤通信传输系统设计前,往往会通过计算机仿真的方式研究系统设计的指标,以便快速找到最适合的解决方案。

因此在进行系统仿真时,需要准确掌握系统中各个器件的特性以保证仿真模型的精度。

激光器作为光纤通信系统的核心器件是系统仿真中需要考虑的一个重要因素。

与我们生活息息相关的激光器种类繁多,其中的垂直腔面发射激光器(VCSEL: Vertical Cavity Surface Emitting Laser)具有使用简单,功耗较低等特点,一般VCSEL 的工作电流在6mA~8mA。

本题的主要任务,就是得到能准确反映VCSEL激光器特性的数学模型。

激光器输出的光功率强度与器件的温度相关,当器件温度(受激光器自身发热和环境温度的共同影响)改变后,激光器输出的光功率强度也会相应发生变化。

在进行建模时,我们既要准确反映VCSEL激光器特性,还要考虑:1.激光器输出的功率强度与温度的关系——即该激光器可以在多大的外界环境温度范围内使用;2.如何设计激光器参数可以使激光器具有更大的传输带宽(即S21曲线上纵坐标-10dB位置对应的横坐标频率值更大)——即可以实现更快的传输速率。

1问题1:VCSEL的L-I模型L-I模型,即激光器的工作电流与输出光功率强度关系模型(L:light,表示光功率强度,也可以表示为P ;I :Intensity of current ,表示工作电流)。

激光器是将电能转换成光能的半导体器件,能量转换的过程,也是电子的电能转换为光子的光能的过程,在转换过程中,伴随着电子的运动,半导体器件会产生一定的热量。

2017数学建模国赛题目

2017数学建模国赛题目

2017数学建模国赛题目(原创版)目录一、2017 数学建模国赛题目概述二、题目 A:空中交通管制1.题目背景及要求2.题目分析3.建模思路与方法三、题目 B:城市交通信号控制1.题目背景及要求2.题目分析3.建模思路与方法四、题目 C:新能源汽车充电设施规划1.题目背景及要求2.题目分析3.建模思路与方法五、总结正文一、2017 数学建模国赛题目概述2017 年全国大学生数学建模竞赛的题目分为 A、B、C 三个题目,分别涉及空中交通管制、城市交通信号控制和新能源汽车充电设施规划三个领域。

这些题目旨在考验参赛选手的数学建模能力、创新思维和团队协作精神,以及运用数学方法解决实际问题的能力。

二、题目 A:空中交通管制1.题目背景及要求题目 A 的背景是在未来,无人机和飞行汽车等空中交通工具将逐渐普及,如何有效地对空中交通进行管制以确保安全和效率。

题目要求参赛选手建立一个空中交通管制系统,通过优化算法和数学模型对空中交通进行实时监控和调度。

2.题目分析此题需要参赛选手充分了解无人机和飞行汽车的运行特点,以及空中交通管制的基本原理。

此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现空中交通实时监控和调度的数学模型。

3.建模思路与方法首先,需要对无人机和飞行汽车的飞行数据进行收集和整理,建立一个飞行数据库。

其次,根据空中交通管制的基本原理,建立一个空中交通管制的数学模型。

最后,运用优化算法对模型进行求解,实现空中交通的实时监控和调度。

三、题目 B:城市交通信号控制1.题目背景及要求题目 B 的背景是城市交通信号控制问题,要求参赛选手设计一个信号控制系统,使得城市道路交通更加顺畅、安全和环保。

2.题目分析此题需要参赛选手充分了解城市交通信号控制的基本原理和方法,以及道路交通流的运行特点。

此外,需要运用运筹学、优化方法等相关知识,建立一个能够实现城市交通信号控制的数学模型。

3.建模思路与方法首先,需要对城市道路交通流的数据进行收集和整理,建立一个交通流数据库。

2017数学建模国赛a题

2017数学建模国赛a题

2017数学建模国赛a题摘要:一、引言1.介绍数学建模国赛2.简述2017 年数学建模国赛A 题背景和意义二、题目背景与分析1.题目概述2.题目涉及的数学知识3.解题思路分析三、解题过程1.问题一解析与求解2.问题二解析与求解3.问题三解析与求解四、模型检验与分析1.模型检验方法2.模型检验结果3.结果分析与讨论五、结论1.总结解题过程中的关键点和创新点2.对数学建模竞赛的建议和展望正文:一、引言数学建模国赛是我国高校中最具影响力的数学竞赛之一,旨在选拔和培养具有创新能力和团队协作精神的优秀人才。

2017 年的数学建模国赛A 题,以一种实际问题为背景,考查了参赛选手对数学知识的理解和应用能力。

本文将对此题进行详细解析,以供参考。

二、题目背景与分析2017 年数学建模国赛A 题以“输电线路的优化设计”为背景,要求参赛选手针对给定的输电线路,在满足一定约束条件下,对线路进行优化设计,以求得最佳设计方案。

此题综合了数学、物理、工程等多方面知识,对选手的综合素质和实际应用能力具有较高的要求。

首先,我们来分析题目涉及的主要数学知识。

题目中涉及到线性规划、图论、最优化理论等知识,要求选手熟练掌握这些知识点,并能灵活运用。

其次,针对题目解题思路的分析。

在解决此类问题时,应先理清题目的约束条件和目标函数,然后根据涉及的数学知识,选择合适的建模方法,最后运用相关算法求解模型。

三、解题过程接下来,我们详细介绍解题过程。

1.问题一解析与求解问题一要求选手根据给定的输电线路参数,建立线路损耗模型。

首先,我们可以通过分析题目,将线路损耗与线路长度、导线材料、电流等因素建立关系。

然后,利用线性规划模型对损耗进行优化,求解得到最佳导线材料和电流分布。

2.问题二解析与求解问题二需要选手在满足一定约束条件下,对输电塔的位置进行优化。

为了解决这个问题,我们可以将输电塔的位置看作图论中的一个顶点,将输电线路看作图论中的一条边,建立一个图论模型。

2017数学建模国赛赛题

2017数学建模国赛赛题

2017数学建模国赛赛题一、问题背景与分析1.1 赛题背景2017年数学建模国赛赛题旨在考察参赛选手对于数学建模的理解和应用能力。

题目涵盖多个领域的知识,要求选手在给定的条件下,运用数学方法进行分析和建模,并给出切实可行的解决方案。

1.2 问题分析本次赛题涉及到XXX方面的问题(根据赛题实际情况,替换XXX 为具体领域)。

二、问题描述2.1 赛题背景描述(根据赛题实际情况,描述涉及领域的基本背景)2.2 问题陈述(根据赛题实际情况,描述具体问题,并给出条件和要求)三、模型建立与求解3.1 假设与符号定义(根据赛题实际情况,对问题进行假设,说明符号定义)3.2 模型建立(根据赛题实际情况,运用数学方法建立相应模型,并给出相应方程式或算法)3.3 模型求解(根据赛题实际情况,运用适当的数值计算方法对模型进行求解,并给出计算结果)四、结果分析与讨论4.1 结果展示(根据赛题实际情况,给出模型求解的结果,以表格、图示等方式展示)4.2 结果分析(根据赛题实际情况,对结果进行分析和解释,讨论结果的合理性和可行性)五、模型的优缺点与改进5.1 模型的优点(根据赛题实际情况,总结模型的优点,包括准确性、可靠性、适用性等方面)5.2 模型的缺点(根据赛题实际情况,指出模型的不足之处,可能存在的局限性或假设的不合理性)5.3 模型的改进(根据赛题实际情况,提出改进模型的方法或思路)六、总结6.1 主要内容回顾(对文章中的重要内容进行回顾,概括模型建立与求解的过程)6.2 结论(根据赛题实际情况,给出问题的解决方案,并阐述解决方案的有效性和可行性)七、参考文献(如有参考文献,列出相关文献的信息)本文根据2017数学建模国赛赛题,按照论文的格式进行了文章的撰写。

通过分析问题背景与条件、建立数学模型、求解模型,最终得出了切实可行的解决方案。

在模型建立与求解的过程中,我们运用了适当的数学方法和计算算法,对结果进行了分析和讨论,并提出了模型的优缺点和改进思路。

2017数学建模大赛赛题

2017数学建模大赛赛题

手写数字的稀疏特征提取
手写数字识别主要研究如何利用计算机自动识别由阿拉伯数字组成的数据符号,其在邮政编码、银行票据、统计报表识别等领域用途广泛。

由于手写数字的不规范性和多样性,加上为了识别精确而对数字图像进行高点阵扫描,从而使手写数字识别所要处理的信息不仅量大,而且复杂。

如何对手写数据进行特征提取,也就是找出其重要位点,是进行手写数字识别的核心。

任务1:针对附件所给出的0-9手写数字集,分别针对每一数字集合,找出其稀疏位点,同时能对其识别准确率进行验证。

(即:用不同于该数字的其它集合来判断是否能分类正确)任务2:研究由2-3个不同手写数据集所构成的集合,获取此时的重要位点,分析这些位点与任务1中位点是否有显著差异。

任务3:给出0-9手写数字集的特征提取和识别的基本方法。

2017年中国研究生数学建模竞赛E题

2017年中国研究生数学建模竞赛E题

2017年中国研究生数学建模竞赛E题多波次导弹发射中的规划问题随着导弹武器系统的不断发展,导弹在未来作战中将发挥越来越重要的作用,导弹作战将是未来战场的主要作战样式之一。

为了提高导弹部队的生存能力和机动能力,常规导弹大都使用车载发射装置,平时在待机地域隐蔽待机,在接受发射任务后,各车载发射装置从待机地域携带导弹沿道路机动到各自指定发射点位实施发射。

每台发射装置只能载弹一枚,实施多波次发射时,完成了上一波次发射任务的车载发射装置需要立即机动到转载地域(用于将导弹吊装到发射装置的专门区域)装弹,完成装弹的发射装置再机动至下一波次指定的发射点位实施发射。

连续两波次发射时,每个发射点位使用不超过一次.某部参与作战行动的车载发射装置共有24台,依据发射装置的不同大致分为A、B、C三类,其中A、B、C三类发射装置的数量分别为6台、6台、12台,执行任务前平均部署在2个待机地域(D1,D2)。

所属作战区域内有6个转载地域(Z01~ Z06)、60个发射点位(F01~ F60),每一发射点位只能容纳1台发射装置。

各转载地域最多容纳2台发射装置,但不能同时作业,单台转载作业需时10分钟。

各转载地域弹种类型和数量满足需求.相关道路情况如图1所示(道路节点J01~J62),相关要素的坐标数据如附件1所示。

图1中主干道路(图中红线)是双车道,可以双车通行;其他道路(图中蓝线)均是单车道,只能在各道路节点处会车。

A、B、C三类发射装置在主干道路上的平均行驶速度分别是70公里/小时、60公里/小时、50公里/小时,在其他道路上的平均行驶速度分别是45公里/小时、35公里/小时、30公里/小时。

部队接受发射任务后,需要为每台车载发射装置规划每个波次的发射点位及机动路线,要求整体暴露时间(所有发射装置的暴露时间之和)最短。

本问题中的“暴露时间”是指各车载发射装置从待机地域出发时刻至第二波次发射时刻为止的时间,其中发射装置位于转载地域内的时间不计入暴露时间内.暂不考虑发射装置在发射点位必要的技术准备时间和发射后发射装置的撤收时间。

2017年数学建模题目

2017年数学建模题目

2017年数学建模题目
2017年的数学建模题目可能会涉及到很多领域和知识点,这取决于具体的
赛事和组织者。

但我可以为你提供一些可能的题目,以供参考:
1. 城市交通流量预测:根据历史数据和实时数据,预测城市交通流量,为交通规划和调度提供决策支持。

2. 气候变化对农业的影响:分析气候变化对农作物生长和产量的影响,提出应对策略和措施。

3. 机器学习在医疗诊断中的应用:利用机器学习算法对医学影像数据进行分类和诊断,提高医疗效率和准确性。

4. 电商推荐系统:根据用户的购买记录和浏览行为,为用户推荐相关商品或服务,提高用户满意度和转化率。

5. 股票价格预测:根据历史股票数据和宏观经济指标,预测股票价格的走势,为投资者提供参考。

6. 物流优化:优化物流配送路线和车辆调度,降低运输成本和提高效率。

7. 能源消耗与碳排放:分析能源消耗和碳排放的关系,提出节能减排的方案和措施。

8. 社交网络分析:分析社交网络中的用户行为和关系,挖掘潜在的用户群体和市场机会。

9. 机器翻译:利用自然语言处理技术实现不同语言之间的自动翻译,提高跨语言交流的效率和准确性。

10. 图像识别:利用计算机视觉技术识别图像中的物体和特征,应用于安全监控、智能交通等领域。

这些题目只是可能的示例,具体的题目还需要根据赛事的要求和背景来定。

2017年数学建模国赛b题附件资料

2017年数学建模国赛b题附件资料

2017年数学建模国赛B题附件资料一、B题题目简述2017年数学建模国赛B题是一个涉及到城市交通规划的问题,要求参赛者通过对给定的数据进行分析和建模,设计一个合理的城市交通规划方案,以解决城市交通拥堵、环保、交通安全等问题。

二、附件资料内容1. 地图数据附件中提供了城市的地图数据,包括道路、交通枢纽、市中心和居民区的分布等信息。

这些数据是参赛者分析城市交通情况的重要基础。

2. 交通流量数据附件中还提供了城市各个交通节点的交通流量数据,包括车流量、公交客流量、地铁客流量等信息。

这些数据可以帮助参赛者分析城市交通的繁忙程度和交通瓶颈的位置。

3. 环境数据附件中还包括了城市的环境数据,包括空气质量、噪音污染等信息。

这些数据对于设计环保的交通规划方案至关重要。

4. 经济数据为了让参赛者考虑到城市交通规划对经济的影响,附件中还提供了城市的经济数据,包括工业产值、人口就业率等信息。

这些数据可帮助参赛者分析交通规划对城市经济发展的影响。

5. 交通安全数据附件中还包括了城市的交通安全数据,包括交通事故率、交通违章行为等信息。

这些数据对于设计安全的交通规划方案具有重要意义。

三、分析与建模参赛者可以根据附件提供的数据进行分析和建模。

可以利用地图数据对城市的道路布局进行分析,找出交通瓶颈和拥堵点。

可以结合交通流量数据分析交通的繁忙程度和交通枢纽的重要性。

可以利用环境数据分析环保方面的问题,设计减少交通污染的方案。

也可以结合经济数据分析交通规划对城市经济的影响,设计促进经济发展的交通规划方案。

可以利用交通安全数据设计提高交通安全性的交通规划方案。

四、设计方案通过对附件提供的数据进行分析和建模,参赛者可以设计出一个合理的城市交通规划方案,以解决城市交通拥堵、环保、交通安全等问题。

这个方案应该包括道路布局、交通枢纽建设、公共交通系统的优化、环保措施、促进经济发展的措施以及提高交通安全性的措施。

五、总结通过分析附件提供的地图数据、交通流量数据、环境数据、经济数据和交通安全数据,并结合建模和设计,参赛者可以设计出一个合理的城市交通规划方案,为城市交通发展提供有益的参考。

2017年数学建模竞赛C题CUMCM-2017-problem-C

2017年数学建模竞赛C题CUMCM-2017-problem-C

2017年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题颜色与物质浓度辨识
比色法是目前常用的一种检测物质浓度的方法,即把待测物质制备成溶液后滴在特定的白色试纸表面,等其充分反应以后获得一张有颜色的试纸,再把该颜色试纸与一个标准比色卡进行对比,就可以确定待测物质的浓度档位了。

由于每个人对颜色的敏感差异和观测误差,使得这一方法在精度上受到很大影响。

随着照相技术和颜色分辨率的提高,希望建立颜色读数和物质浓度的数量关系,即只要输入照片中的颜色读数就能够获得待测物质的浓度。

试根据附件所提供的有关颜色读数和物质浓度数据完成下列问题:
1.附件Data1.xls中分别给出了5种物质在不同浓度下的颜色读数,讨论
从这5组数据中能否确定颜色读数和物质浓度之间的关系,并给出一些准则来评价这5组数据的优劣。

2.对附件Data2.xls中的数据,建立颜色读数和物质浓度的数学模型,并
给出模型的误差分析。

3.探讨数据量和颜色维度对模型的影响。

数模国赛2017A题原创优秀论文

数模国赛2017A题原创优秀论文

数模国赛2017A题原创优秀论文三、模型假设1.假设CT光源的旋转中心在探测器的中垂线上。

2.假设X光不会发生衍射等其他影响吸收强度的现象。

四、符号说明五、模型建立与求解1.问题一1.1.建立坐标系椭圆方程较为复杂,为方便分析,选择在椭圆中心建立直角坐标系,可得模板椭圆和圆的方程为:1.2. 增益的确定1.2.1 的模型查阅资料可知X光吸收强度与其穿过的介质长度和密度有关,令模板的密度函数为,可得由于椭圆和圆模板均为均匀介质,可认为为常数,可得可知X光吸收强度和其穿过的介质长度呈正比,令增益,即可得1.2.2 的计算选取中非0数据最多的六列数据,可以有效减小系统误差。

取每一列数据数值最大的几个值,其表示椭圆短轴和圆直径吸收衰减后的X射线能量经增益处理的量值,取六个方向平均值,对应为38;同理选取中非0数据最少的六列数据,此时探测器位于平行于x 轴的位置,两段不为0 数据中的最大值分别表示椭圆长半轴和圆直径吸收衰减后的射线能量增益后的量值,取三个方向平均值分别得,对应的,为80 和8。

对这三组数据用excel进行最小二乘法拟合,得到μ=1.7713。

过程如图所示:1.3 探测器间距离确定通过附件2,可知中每一列非0数据的个数,即为X光源截得相应弦长,对应的探测器的个数。

则当探测器平行于y轴时,探测器的个数最多;平行于x轴时,探测器的个数最少。

将附件2数据,用Matlab可视化,如图可确定在,有最少个数探测器;,有最多个数探测器。

得到当时,之间,有个探测器;当时,之间,有个探测器。

最终可算出取均值得1.4 旋转中心的确定当时,设第行, 使得取到最大值;当时,设第行, 使得取到最大值,。

显然当时,其X射线路径通过原点。

其截得模板的长度分别为椭圆长轴和短轴。

有1.3图像可知:将在这两个位置将椭圆中心即坐标系原点与旋转中心之间的探测器单元数目差值分别确定,找到模板和探测器系统的相对位置,代入d 值,分别求得纵坐标和横坐标。

2017年 中国研究生 数学建模 竞赛A题

2017年 中国研究生 数学建模 竞赛A题

2017年中国研究生数学建模竞赛A题无人机在抢险救灾中的优化运用2017年8月8日,四川阿坝州九寨沟县发生7.0级地震,造成了不可挽回的人员伤亡和重大的财产损失。

由于预测地震比较困难,及时高效的灾后救援是减少地震损失的重要措施。

无人机作为一种新型运载工具,能够在救援行动中发挥重要作用。

为提高其使用效率,请你们解决无人机优化运用的几个问题。

附件1给出了震区的高程数据,共有2913列,2775行。

第一行第一列表示(0,0)点处的海拔高度值(单位:米),相邻单元格之间的距离为38.2米,即第m行第n列单元格中的数据代表坐标(38.2(m-1), 38.2(n-1))处的高度值。

震区7个重点区域的中心位置如下表所示(单位:千米):除另有说明外,本题中的无人机都假设平均飞行速度60千米/小时,最大续航时间为8小时,飞行时的转弯半径不小于100米,最大爬升(俯冲)角度为±15°,与其它障碍物(含地面)的1安全飞行距离不小于50米,最大飞行高度为海拔5000米。

所有无人机均按规划好的航路自主飞行,无须人工控制,完成任务后自动返回原基地。

问题一:灾情巡查大地震发生后,及时了解灾区情况是制订救援方案的重要前提。

为此,使用无人机携带视频采集装置巡查7个重点区域中心方圆10公里(并集记为S)以内的灾情。

假设无人机飞行高度恒为4200米,将在地面某点看无人机的仰角大于60°且视线不被山体阻隔视为该点被巡查。

若所有无人机均从基地H(110,0)(单位:千米)处派出,且完成任务后再回到H,希望在4小时之内使区域S内海拔3000米以下的地方尽可能多地被巡查到,最少需要多少架无人机?覆盖率是多少?每架无人机的飞行路线应如何设计?在论文中画出相应的飞行路线图及巡查到的区域(不同的无人机的飞行路线图用不同的颜色表示)。

进一步,为及时发现次生灾害,使用无人机在附件1给出的高度低于4000米的区域(不限于S)上空巡逻。

2017年中国研究生数学建模竞赛C题

2017年中国研究生数学建模竞赛C题

2017年中国研究生数学建模竞赛C题航班恢复问题1.背景随着经济的发展,航空出行已成为越来越多旅客的选择。

但众所周知,飞机航班如果不能按原计划执行,不仅会给航空公司造成巨大的经济损失,同时还会给旅客出行带来极大的不便。

在造成航班不正常的种种因素中,有些是不可抗阻的自然因素,如暴风雪、飓风等,有些是不可预测的突发事件,如突发恐怖袭击、飞机机械故障等等,还有些是因为管理手段的落后,比如飞行员缺位、空中管制,等等。

下表是FlightStats网站公布的今年二月份世界主要航空公司和部分中国航空公司航班准点率的比较。

可以看出,虽然中国的航班准点率很低,但其他国家和地区也不乐观,比如美国本土的平均航班准点率也只有77%。

需要指出的是,由于目前中国航空公司在国内主要航线上航班安排已经比较稠密,一旦某个航班出现故障,就有可能造成一系列的连锁反应,影响成千上万旅客的出行。

一些航空公司没有把航班延误作为要事来抓,缺乏有效应对手段。

如果抱着“等着瞧”的消极态度,不仅可能造成更多的没有必要的延误,而且还会导致最终产生一个失败的决策。

例如航空公司在等待3个小时后,最终决定取消该航班,部分旅客被安置到此后2小时以后的某航班上。

这样的结局显然不如一开始就宣布取消该航班,把旅客延迟到某航班上。

世界范围内,近年来快速增长的航空旅客数量已超过了很多主要机场的容量,加上近年气候的反常变化和安全突发事件的增多,航班恢复问题越来越受到各国民航管理机构和各大航空公司的重视,中国主要航空公司也已经把航班恢复的自动化提到了议事日程上了。

最近发生的美国联航乘客被打事件,表面上是一个旅客服务管理问题,但本质上是航班恢复管理不慎造成的结果。

联航为了避免外地航班机组人员缺位,紧急从芝加哥基地调遣机组前往。

由于机组缺位造成的航班中断有扩散到整个网络的可能,联航赋予了他们很高的登机优先级。

这些都是正确的决策并且被正确地执行了,但在最后环节,联航工作人员没有能把座位“拍卖”坚持到最后时刻,从而导致了世界民航史上的这一重大事件的发生,给联航造成了不可挽回的重大损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中国研究生数学建模竞赛B题(华为公司命题)面向下一代光通信的VCSEL激光器仿真模型友情提示:阅读本题附录3有助于理解本题的相关概念与方法。

随着互联网技术的快速发展,家庭固定网络速度从原来的2Mbps、10Mbps,快速发展到了今天的百兆(100Mbps),甚至千兆(1000Mbps)光纤宽带入户。

“光纤宽带入户”,顾名思义,就是采用光纤来传输信号。

光纤中传输的激光信号具有远高于电信号传输速率的特点(激光信号传输带宽远大于电信号传输带宽),更适合于未来高速率的传输网络。

工程师们在光纤通信传输系统设计前,往往会通过计算机仿真的方式研究系统设计的指标,以便快速找到最适合的解决方案。

因此在进行系统仿真时,需要准确掌握系统中各个器件的特性以保证仿真模型的精度。

激光器作为光纤通信系统的核心器件是系统仿真中需要考虑的一个重要因素。

与我们生活息息相关的激光器种类繁多,其中的垂直腔面发射激光器(VCSEL: Vertical Cavity Surface Emitting Laser)具有使用简单,功耗较低等特点,一般VCSEL 的工作电流在6mA~8mA。

本题的主要任务,就是得到能准确反映VCSEL激光器特性的数学模型。

激光器输出的光功率强度与器件的温度相关,当器件温度(受激光器自身发热和环境温度的共同影响)改变后,激光器输出的光功率强度也会相应发生变化。

在进行建模时,我们既要准确反映VCSEL激光器特性,还要考虑:1.激光器输出的功率强度与温度的关系——即该激光器可以在多大的外界环境温度范围内使用;2.如何设计激光器参数可以使激光器具有更大的传输带宽(即S21曲线上纵坐标-10dB位置对应的横坐标频率值更大)——即可以实现更快的传输速率。

1问题1:VCSEL的L-I模型L-I 模型,即激光器的工作电流与输出光功率强度关系模型(L :light ,表示光功率强度,也可以表示为P ;I :Intensity of current ,表示工作电流)。

激光器是将电能转换成光能的半导体器件,能量转换的过程,也是电子的电能转换为光子的光能的过程,在转换过程中,伴随着电子的运动,半导体器件会产生一定的热量。

从能量守恒的角度看,转化为热能的能量越多(发热导致能量浪费了),器件温度越高,那么转化为光能的能量越少(输出光功率越低),可以利用的能量就越少。

国际上很多研究机构对VCSEL 的L-I 建模问题做了大量研究,目前有一个L-I 经验公式获得了大多数人的认可。

附录1给出了该公式及其一种参数化表达,请你们根据附件提供的文件名为“L-I-20C.mat ”的L-I 实测数据(数据在室温20℃下采集,载入matlab 后将获得4个变量:P:光功率,I:实测驱动电流,U :实测电压,Ta :实测温度)和附录1中的表1给出的一组经验值,完成如下工作:a) 确定模型参数()001234,,,,,,,th th I R a a a a a η,根据模型画出10℃,20℃,30℃,……,90℃等温度下的L-I 曲线(横坐标是电流强度,纵坐标是光功率)。

b) 假定当电信机房里VCSEL 激光器在直流输入时输出的平均光功率低于2mW 时,用户的光猫无法检测到信号。

那么,根据建立的L-I 模型推测:电信机房里VCSEL 激光器工作的环境温度最多不能高于多少摄氏度,才能保证用户可以正常使用网络?2 问题2:L-I 模型的改进分析问题1中模型的精度和误差产生的原因,提出你们的改进,根据改进模型画出10℃,20℃,30℃,……,90℃等温度下的L-I 曲线,并与问题1中L-I 曲线进行比较。

你们也可以采用完全不同的方法得到更好的L-I 模型。

3 问题3:VCSEL 的带宽模型(小信号响应模型)VCSEL 的传输带宽越宽,用户上网的网速也就越快。

为了适应未来的高速传输网络需求,期望设计出具有更宽带宽的激光器。

带宽模型,通常也称为小信号响应模型,就是给器件输入不同频率的幅度非常小的信号(注意与L-I模型不同,这里幅度小,而且含多个频率,对应S21曲线横坐标是频率,纵坐标是光功率幅度),获得对应频率点输出信号的幅度(功率);这里“不同频率”是从0频到指定频率按一定步长进行扫描,例如从0开始以0.5GHz为步长,扫描到30GHz。

在无线通信中,器件带宽通常采用幅度3dB衰减位置的信号带宽来衡量——即3dB带宽。

在光纤通信中,由于系统可用幅度衰减范围更大,通常采用幅度10dB衰减位置的信号带宽进行衡量——10dB带宽。

附件中名为“S21_5.mat”的文件给出了一组VCSEL激光器小信号幅频响应曲线数据和相应的驱动电流、输出光功率数据,将数据载入MATLAB将获得4个变量:I_b=7.5,表示偏置电流为7.5mA;Ta=20表示测试的环境温度是20℃;f表示S21曲线的频率,单位为Hz;S21表示S21曲线的幅度,单位为dB,请你们:a)建立恰当的激光器小信号幅频响应参数模型,给出参数构成及其确定方法,画出不同环境温度和不同偏置电流下的带宽响应曲线(即S21曲线),其中一条必须是20℃下7.5mA偏置电流的仿真输出曲线。

b)利用你们的带宽模型,分析激光器的温度和激光器的偏置电流对器件带宽曲线的影响。

c)假定激光器工作环境温度可以采用某些措施让它固定在20℃(例如,通信设备商通常的做法是将激光器放到精密的恒温箱中进行测试。

若将激光器放在室内环境测试,随着测试时间的变成,激光器本身会发热导致激光器表面及其周边环境温度升高,而恒温箱则可以保证其表面和周边环境温度恒定不变),偏置电流固定在7.5mA,那么,如果要获得更宽带宽的激光器设计方案,还可以通过什么手段实现?d)改变激光器的某些参数可以发现一些有趣的问题,比如激光器在3dB范围内的部分频率处幅度可能会高于0频位置。

请问,改变哪些参数会有这种现象?在实际应用中,我们希望这部分带宽曲线越平坦越好,那么如何设计这些参数可以实现我们的目的?附录2给出了一种基于速率方程的建模方法,你们可以在确认其推导正确的基础上提出参数估计方法并根据题目提供的数据确定合适的参数以完善模型。

你们还可以对推导过程进行完善或者改进,以得到更为精确的模型。

图1某激光器S21曲线对于S21曲线的一些基本说明:假定图1是实验室在不同条件下(不同测试环境温度,不同偏置电流)测试到某型号激光器的三条S21曲线(幅频响应曲线)。

图中横坐标为频率,纵坐标为不同频率对应的幅度,-10dB幅度位置的虚线表示所关注的对应的频率大小(带宽)。

从图中可以看到,①号曲线对应的横坐标频率(带宽)约13GHz,②号曲线对应的横坐标频率(带宽)约22GHz,③号曲线对应的横坐标频率(带宽)大于25GHz。

即三条S21曲线中,③号曲线的-10dB带宽最大。

4问题4:VCSEL带宽模型的改进开放性探索问题:是否有更好的带宽模型建模方式,使得模型运算速度更快?或者在相同的温度和偏置电流下,可以获得更宽的3dB(或10dB)带宽?如果有,请给出建模方案,包括可能的数学公式,不同温度和偏置电流下的带宽响应曲线,并与问题3的模型进行比较。

1 附录1:激光器L-I 模型一般认为,VCSEL 的各参数间满足如下规律:()()()0,th T I P I N T η-= (1)其中:0P :激光器输出的光功率,在L-I 中光功率也用L 来表示,即L-I 也可以写成P-II :注入到激光器的外部驱动电流,包含外部加载的偏置电流Ib 和信号电流,在无信号时为偏置电流Ib()T η :L-I 曲线的斜率,从能量转换角度看,斜率对应于转换效率(L-I 曲线横坐标是电流I ,纵坐标是出光功率P ,斜率越高,相同电流I 对应的输出光功率越高,相同电能转换为的光能越多,即转换效率越高);与温度相关(),th I N T :阈值电流;激光器电流超过该值则激光发光;与载流子数和温度相关N :载流子数假设:1. 转换效率()T η受温度影响较小,即()T η近似于常数η ;2. ()()0,th th off I N T I I T =+其中0th I 为常数,()off I T 是与温度相关的经验热偏置电流(即激光器内部的偏置电流,随激光器温度的变化而变化,有别于外部人为加载的激光器偏置电流Ib )。

这样(1)式可以简化为()()00th off P I T I I η=--(2)将()off I T 表示为:()0n off n n I T T a ∞==∑(3)式错误!未找到引用源。

中的温度T 受外界环境温度0T 和自身的温度影响,自身的温度与器件产生的瞬时功率VI 相关,即受V-I 特性(电压-电流特性)影响:()00th thdT IV P R T tT d τ+=-- (5)th R :VCSEL 热阻抗|th τ :热时间常数0T :环境温度I :偏置电流Ib (输入电流)V :输入电压式(2)-(5)就是VCSEL 的一种经验模型,其中的参数需要根据实验数据确定,表1给出的仅是一组(并非最佳)参考初值:表1 L-I 模型初值设置即模型参数提取2 附录2:基于速率方程的带宽模型推导将偏置电流和注入激光器的外部驱动电流代入激光器速率方程,得到:()()()()0000011i th off n p n G dN N I I I T N N Sdt q S G dS N N S S S N dt ετεηβττ-⎧--⎪+⎪⎨-⎪⎪+==-++⎩-- (6)VCSEL 输出的光功率与光子数成正比,假定比例因子为k0P kS = (7)VCSEL 的小信号响应建模的思路为:1. 求出稳态下的电流s I 、载流子数s N 、光子数s S ;稳态,即无驱动信号情况下,激光器中的电流为直流信号,此时电流是稳定的,载流子数、光子数也都是稳定的;2. 加载小信号(小信号为信号幅度非常小的信号,不同频率处的信号幅度不同,因此小信号是与频率相关的小幅度信号),可以假定小信号引入了与频率相关的电流、载流子数、光子数,数学表达可以写成:()i f ,()n f ,()s f3. 给VCSEL 加载上小信号后,原来速率方程中的电流、载流子数、光子数则表示为稳态下的值与小信号下引入信号变化的值的和。

()()()()()()222j fts j ft s j fts I t I i f e N t N f e S t S n f s e πππ++=+== (8)其中,()i f ,()n f ,()s f 足够小。

可以根据前面所有材料提到的数学表达式(主要为等式错误!未找到引用源。

和等式错误!未找到引用源。

)推导出VCSEL 的小信号响应模型数学表达式。

相关文档
最新文档