高等数学课件 第十一章 广义积分与含参变量的积分

合集下载

《广义积分的性质》课件

《广义积分的性质》课件
添加标题
应用:区间可加性在解决实际问题中具有广泛的 应用,例如在计算定积分、广义积分等问题时, 都可以利用区间可加性进行简化计算。
添加标题
性质:区间可加性是广义积分的一个重要性质,它 使得我们可以将复杂的积分问题分解为简单的积分 问题,从而简化计算。
添加标题
注意事项:在使用区间可加性时,需要注意函数的 连续性和可积性,以确保计算结果的正确性。
• 幂级数法:一种求解积分的方法,通过将积分转化为幂级数形式求解 • 典型例题:求解∫(x^2+1)^(-1/2)dx • 解题步骤: a. 将积分转化为幂级数形式:(x^2+1)^(-1/2)=∑(n=0,∞)(-1)^n(2n+1)x^2n b. 求解幂级数:
∑(n=0,∞)(-1)^n(2n+1)x^2n=x^2-3x^4+5x^6-7x^8+... c. 积分结果:∫(x^2+1)^(-1/2)dx=x^3-3x^5+5x^77x^9+... • a. 将积分转化为幂级数形式:(x^2+1)^(-1/2)=∑(n=0,∞)(-1)^n(2n+1)x^2n • b. 求解幂级数:∑(n=0,∞)(-1)^n(2n+1)x^2n=x^2-3x^4+5x^6-7x^8+... • c. 积分结果:∫(x^2+1)^(-1/2)dx=x^3-3x^5+5x^7-7x^9+... • 结论:幂级数法是一种有效的求解积分的方法,适用于求解某些特定类型的积分问题。
下节课预告
下节课我们将继续学习广义积分 的性质
学习目标:掌握广义积分的基本 概念和计算方法
添加标题
添加标题
添加标题

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。

微积分课程含参定积分

微积分课程含参定积分

0
0 1 cos x
后者是三角有理式,利用换元 t tan x 可以变为以 t 为自变量的有理函数的积分。当 0 时, 2
F( ) 2 arctan t t

t0
2

1 2 arctan
t
1 1 t t0
π
yk
yk


因此 G 可微,且是 C1 的。对 G((y), ( y), y) 用链索法则,得到

( y)
f (x, y)dx
( y) f
(x, y)dx f ( ( y), y) ( y) f (( y), y) ( y) 。■
yk ( y)
(2)
f yk
(x,
y)
关于
y

y0
U
处连续,且这连续性对积分变量
x [a,b]
一致。
则 F(y)
b a
f
(x,
y)dx
关于
yk

y0
U
处可导,且
yk
b
f (x, y)dx
a y y0
b a
f yk
(x,
y0 )dx

证明:对任意 0 ,当 t ( ) 时,对任意 x [a,b] 及任意 0 s 1 , y0 stek y0 st t ,
存 在 仅 由 决 定 的 正 数 ( ) 使 得 当 y U 满 足 y y0 ( ) 时 , 对 任 意 x [a,b] 都 有
f ( x, y) f ( x, 0y ) 。
则 F(y)
b a
f

含参变量广义积分

含参变量广义积分
若函数序列sn ( x) 在集合 X 上一致收敛,
n 1 k 1 n
则称函数项级数 un ( x) 在 X 上一致收敛。
n 1

即函数项级数在给定区间的一致收敛,是用级 数前n项部分和序列在相同区间的一致收敛来定义。
若函数项级数 un ( x) 在 X 上一致收敛,
n 1

则它也在 X 收敛,但反之不成立。
设二元函数 f ( x, y ) 在 (x,y) a x , c y d 上有定义,
固定y c , d , 若无穷积分 f ( x, y)dx收敛,

则在 c , d 上定义了一个函数

a
g ( y) a来自f ( x, y)dx ,
c yd ,
如果函数项级数 un ( x )在区间 I 上满足条件:

(1) (2)
un ( x ) a n
n 1
n 1
( n 1,2,3 ) ;
正项级数 a n 收敛,
n 1
则函数项级数 un ( x )在区间 I 上一致收敛.
注 : 如上判别法得出的级数收敛还是绝对收敛。 又级数 an 也称为函数级数 un ( x) 的强级数。

一切 y 都收敛, 若 0, N a, 使当 A N 时, 对一切 y Y , 都有


A
f x, y dx ,
则称含参变量的无穷积分 a f x, y dx 在 Y 上一致收敛.
命题: 设含参变量的无穷积分
f x, y dx
n 1 n 1
例1


0
e
x
sin x dx

高等数学ppt课件

高等数学ppt课件

05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

第十讲含参变量的积分

第十讲含参变量的积分

第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。

第十讲含参变量的积分

第十讲含参变量的积分

第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。

高等数学:第十一章 广义积分与含参变量的积分

高等数学:第十一章 广义积分与含参变量的积分
1x
因此积分 dx发散. y
1x
y 1 x
b dx
1x
01
bx
例3. 使两个带电粒子从初始距离a分开到距离b 所需能量由
E
b kq1q2 a r2
dr
给出, 其中q1, q2是电荷的数量, k为常数. 若q1, q2 的单位为库仑(C), a, b是米(m), E的单位为焦耳(J).
k = 9109.
a
X
即当A X时有
A
g(x)dx
g(x)dx
X
X
由已知条件:当x X a时,0 f (x) g(x).
所以 A f (x)dx
A
g(x)dx
g(x)dx
X
X
X
而 g(x)dx收敛,所以当A X时,A f (x)dx有界,因此 f (x)dx收敛。
X
X
X
由于 f (x)dx
一个氢原子由一个质子和一个电子组成, 它们 带有数值为1.610–19 C的相反电荷. 求使氢原子激 发(即使电子从其轨道移动到离质子无穷远处)的 能量. 假设电子和质子之间的初始距离为玻尔半径
RB = 5.310–11m.
解: 因为由初始距离RB移动到最终距离的能 量由广义积分表示为
E
a
例.
判断

1 x ln
x
dx(
0,
R) 的敛散性.
解:

1时, 2
1 x ln
x
dx

1 x ln x
dx
ln
ln
xA 2
.


1时,x
ln 1
x
1 ln x

《含参变量广义积分》课件

《含参变量广义积分》课件
对含参变量广义积分进行了系统的定义和性质研究,包括积分区间、积分变量、参变量等要素,以及积分的基本性质 和运算规则。
含参变量广义积分的计算方法
针对不同类型的含参变量广义积分,提出了多种计算方法,如换元法、部分分式法、留数法等,并给出了相应的计算 步骤和实例。
含参变量广义积分的应用
探讨了含参变量广义积分在数学、物理、工程等领域的应用,包括求解定积分、求解微分方程、求解积 分方程等,并给出了具体的应用实例。
信号处理
在信号处理中,含参变量广义积分被广泛应用于信号的滤 波、调制和解调等处理过程。通过广义积分,可以有效地 提取信号中的有用信息,并抑制噪声干扰。
优化设计
在工程优化设计中,含参变量广义积分可以用来描述系统 的性能指标和约束条件,从而进行更有效的优化设计。
在金融领域的应用
风险评估与管理
在金融领域中,含参变量广义积分被广泛应用于风险评估与管理。 通过引入广义积分,可以对金融市场的风险进行更准确的度量和控 制。
03
求解物理问题
含参变量广义积分在解决某些物理问题中具有重要应用,如求解电磁场
问题、流体动力学问题等。通过引入适当的广义积分,可以简化问题的
求解过程。
在工程领域的应用
控制系统设计
在工程领域中,控制系统设计是含参变量广义积分的一个 重要应用方向。通过引入广义积分,可以对系统的动态性 能进行更准确的描述和控制。
应用领域
物理学、工程学、经济学等众多领域中都有广泛的应 用。
含参变量广义积分的背景和重要性
背景
随着科学技术的发展,越来越多的实际 问题需要用到含参变量的广义积分。例 如,在控制工程中,需要用到含参变量 的广义积分来描述系统的动态行为。
VS

高等数学课件广义积分.ppt

高等数学课件广义积分.ppt

因此, 当 p >1 时, 广义积分收敛 , 其值为
a 1 p ;
p1
当 p≤1 时, 广义积分发散 .
©
例5. 计算广义积分
解: 原式 t e pt p
1 e pt d t
p0
1 p2
e pt
1 p2
©
2002年考研数学(一)填空3分
1
1.计算
e
x
ln 2
dx x

e
1 x ln2
2
d
(x
) x
1
arctan
x
1 x
22
2 0
©
2.

解:
积分.
I
0
11
f
( x) f 2(x)
d
x
的无穷间断点, 故 I 为广义
3
21
f
( x) f 2 (x)
d
x
f 1
( x) f 2(x)
d
x
1
d
f f
(x) 2 (x)
arctan
f
(x)
C
]
]
2
2
©
( x a)1q 1q
b
a
1q
,
,
q1 q1
(b a)1q
所以当 q < 1 时, 该广义积分收敛 , 其值为
; 1q
当 q ≥ 1 时, 该广义积分发散 .
©
例9. 计算广义积分
3 dx
0
x
2
13
解:
3 dx
0
x
2
13
1 dx
0
x

高等数学教材的目录部分

高等数学教材的目录部分

高等数学教材的目录部分高等数学教材目录:第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义1.2.1 数列极限1.2.2 函数极限1.3 极限的运算法则1.4 连续和间断第二章:导数与微分2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数2.4 隐函数与参数方程的导数2.5 微分的定义与性质2.6 导数的应用第三章:不定积分与定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分法3.3 定积分的概念与性质3.4 定积分的计算方法3.5 牛顿-莱布尼茨公式与定积分的应用第四章:微分方程4.1 微分方程的概念与基本术语4.2 一阶常微分方程4.3 二阶常微分方程4.4 高阶线性微分方程4.5 变量可分离的微分方程4.6 微分方程的应用第五章:无穷级数5.1 数列极限与无穷级数的概念5.2 级数的敛散性5.3 正项级数的审敛法5.4 幂级数的收敛域与常见函数展开第六章:多元函数与偏导数6.1 多元函数的概念与性质6.2 偏导数的定义与计算6.3 高阶偏导数与混合偏导数6.4 隐函数的偏导数6.5 多元函数的极值与条件极值第七章:重积分与曲线积分7.1 重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的计算方法7.4 曲线积分的概念与计算方法7.5 曲面积分的概念与计算方法7.6 广义积分的概念与收敛性第八章:多元函数的积分学8.1 多元函数的概念与性质回顾8.2 参数方程下的曲线积分8.3 曲面积分的参数化与计算8.4 向量场与格林公式8.5 散度与无源场8.6 旋度与无旋场8.7 斯托克斯公式与高斯公式第九章:常微分方程的数值解法9.1 常微分方程初值问题的数值解法概述9.2 欧拉方法与改进欧拉方法9.3 二阶龙格-库塔法9.4 多步法与预测校正法9.5 常微分方程边值问题的数值解法以上是高等数学教材的目录部分,这些章节覆盖了高等数学的核心内容,从函数与极限到常微分方程的数值解法等方面进行了全面而深入的讲述。

变量积分

变量积分

教案27含参变量有限积分一、含参变量有限积分定义设二元函数),(y x f 在区域{}I u b x a y x D ∈≤≤=,|),(有定义,I u ∈∀,一元函数),(u x f 在],[b a 可积,称⎰=ba dx u x f u ),()(ϕI u ∈为含参变量有限积分定义,u 为参变量。

二、含参变量有限积分性质 1、极限性质:如果二元函数),(u x f 在0u u =点关于x 一致连续,(即0>∀ε,0),(0>∃u εδ,当δ<-||0u u 时,],[b a x ∈∀,有ε<-|),(),(|0u x f u x f .)则 ⎰⎰⎰==→→bab a u u bau u dx ux f dx u x f dx u x f ),(),(),(0lim lim.2、连续性:若二元函数),(u x f 在区域{}I u b x a u x D ∈≤≤=,|),(连续,则⎰=ba dx u x f u ),()(ϕ在区间I 上连续,且⎰⎰⎰→→→====ba uu bau u bauu dx u x f dx u x f u u dx u x f ),(),()()(),(lim lim lim 0000ϕϕ.即可在积分号下取极限。

3、可微性(积分号下求导)若),(),,(u x f u x f u '在区域{}I u b x a u x D ∈≤≤=,|),(连续,则⎰⎰'='b au ub adx u x f dxu x f ),(),()(.4、莱布尼兹公式:若函数)(u a ϕ=与)(u b ψ=在区间],[d c 上连续,可导;函数),(u x f 与),(u x f u '在区域{})()(,|),(u x u d u c u x D ψϕ≤≤≤≤=内连续,则)(]),([)(]),([),(),()()()()()(u u u f u u u f dx u x f dxu x f u u u uu u ϕϕψψψϕψϕ'⋅-'⋅+'=⎰⎰'.5、可积性(积分号下求积分)若二元函数),(u x f 在区域{}d u c b x a u x D ≤≤≤≤=,|),(连续,则⎰⎰⎰⎰=dad cdcbadu u x f dx dx u x f du ),(),(.例1 设⎰⎰-=xxtr t d dr e x f 02][)(,求)(x f 、)(x f '.解:0>∀a ,设{}x t a x a t x D ≤≤≤≤-=0,|),(,则函数⎰-=xtr dr e t x g 2),(及2),(x x et x g -='在区域D 上连续,所以,222][)(xxxx xtrxedr et d dr ex f ---==='⎰⎰⎰.将上式从0到x 积分,)1(21)0()(22-=+=--⎰x xte f dt tex f . 例 2 在闭区间]3.1[上求一线性函数bx a +,用其近似代替函数2)(x x f =,使得⎰-+3122)(dx x bxa 最小。

数学分析-第十二章-广义积分与含参变量积分-PPT

数学分析-第十二章-广义积分与含参变量积分-PPT

f
(x)dx也相应成
立.
9
2.Cauchy收敛原理
定理 1.1. 设 f ( x)在[a, )有定义, 且在任意
闭区间[a, A]上可积.

a
f ( x)dx收敛的充要
条件是: 0,X a, 当 A/ , A// X 时,
A//
A/
f ( x)dx
.
推论 1.1.

a
f ( x) dx收敛,

a
f ( x)dx收敛.
10
定义.

a
f(x) dx
收敛,
则称
a
f
(x)dx
绝对收敛.

a
f
(x)dx
收敛,

a
f(x) dx发散,


a
f
(x)dx
条件收敛.
11
3. 比较判别法
定理 1.2. 设 f ( x)在[a, )有定义, 且在任意
闭区间[a, A]上可积. 又设存在 X0 a, 使得
31
2.Cauchy收敛原理
定理2.1. 设 f ( x ) 在( a , b ] 有定义, 且在任意闭
区间[a,b](0)可积, a 是瑕点. 则
b
a
f
( x)dx
收敛的充要条件是:
0, 0,
当 0,/ 时,
a/
f (x)dx . a
32
推论2.1. 设 a

f
(x)
的瑕点.

b
a
f (x) dx
x g( x)
那么得到下列结论
(1)当 0l时,

数学分析 第十一章 课件 广义积分

数学分析 第十一章 课件 广义积分
x 0 x 0
0, ,
p 0(此时可判断收敛 ) p 0(此时可判断发散)
p 1 对这样 p 的要求 : , 这样的 p 均能找到 1 p

1, 收敛 1, 发散
1
ln x ( ln x) 1时, x ln xdx = dx = 0 0 x 2
b
例2
判断积分

2
1 1
dx 1 x
2
的收敛性:

1 1
dx 1 x

定理11.8 (柯西收敛原理 ) 设瑕积分

b a
f ( x ) d x 只有唯一的瑕点 a ,则

b a
f ( x ) d x 收敛

, 0 : 0 , ,
有,

a a
K为任意正常数, 且
lim x p f ( x) l ,
x
()若0 l ,且p 1, 1
则 f ( x )dx收敛;
a
, (2)若0 l , 且p 1
则 f ( x )dx发散。
a
例6


1
arctan x dx x
arctan x 0, x [1, ) x

1
1 dx ,当 p 1 时收敛, p x
1 1 dx dx ln x 1 , (1) p 1, 1 证 1 xp x , p 1 1 p 1 x ( 2) p 1, dx p 1 , p1 1 x 1 p 1 p1 1 因此当 p 1 时广义积分收敛,其值为 ; p1 当 p 1 时广义积分发散.

高级数学中的积分学与定积分

高级数学中的积分学与定积分

计算实例:例如 计算圆、椭圆、 抛物线等平面图 形的面积
立体图形的体积计算
计算方法:利用定积分计算立体图 形的体积
计算公式:V=∫(a,b)A(x)dx,其 中A(x)为立体图形在xoy平面上 投影的面积,a、b为上下限
计算步骤:先求出立体图形在xoy 平面上投影的面积,然后乘以z轴 上高,最后对z轴上高积分得到体 积
应用实例:计算旋转体的体积、求 曲顶柱体的体积等
平面曲线的弧长计算
平面曲线的弧长计算公式
弧长计算在定积分中的应 用
弧长计算的几何意义
弧长计算在解决实际问题 中的应用
定积分的物理应 用
变速直线运动的路程计算
变速直线运动:速度随时间变 化的直线运动
平均速度:某段时间内的位移 与时间的比值
瞬时速度:某一时刻物体的运 动方向和速度大小
积分学是研究积分 概念的数学分支
积分学包括定积分、 不定积分、反常积 分等概念
积分学的基本思想 是通过无限逼近的 方式求解数学问题
积分学在数学、物 理、工程等领域有 广泛应用
积分学的应用领域
物理学:解决各 种物理问题,如 速度、加速度、 力等的计算。
工程学:广泛应 用于机械、航空、 土木等工程领域, 解决实际问题的 数学建模。
定积分的性质和定理
线性性质:定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对每个函数进行积分后再求和或求差。
积分中值定理:如果函数在闭区间[a, b]上连续,那么在开区间(a, b)内至少存在一点ξ,使得∫(b-a)f(x)dx=f(ξ)(b-a)。
积分第二中值定理:如果函数在闭区间[a, b]上非负且f(x)在(a, b)内至少有一个零点,那么在开区间(a, b)内至少存在 一点ξ,使得∫(b-a)f(x)dx=f(ξ)(b-a)。

广义含参变量积分

广义含参变量积分

第二章 含参变量积分第六节 含参变量的积分4-6-2 广义含参积分第十六讲 广义含参变量积分课后作业:阅读:第四章 第六节: 含参变量积分 pp.135---141 预习:第五章 第一节: 曲线积分 pp. 142---151 作业: 1. 证明下列积分在参变量的指定区间上一致收敛.(1)+∞-⎰x e dx s x ()a s b ≤≤;(2)dx x e n tx 202-+∞⎰()00<≤<+∞t t .2. 利用积分号下求导的定理及22+∞⎰+=dx y x yπ()y >0.证明21122212+∞+-+⎛⎝ ⎫⎭⎪⎰+=-dx y x n n y n n ()()!!()!!π()y >0 3. 利用积分号下求导的定理及tdx etx π212=-∞+⎰ ()t >0 计算积分.dx x entx 202-+∞⎰.4. 计算积分22+∞--⎰-e e xdx ax bx()a b >>00,.4-6-2 广义含参积分含参积分⎰∞adx y x f ),(或⎰badx y x f ),(中被积函数在[]b a ,上是无界函数时, 就称为广义含参变量积分。

由广义含参积分定义的函数在实际使用得以一般含参积分更广泛,但在研究其性质时复杂一点。

1) 广义含参变量积分的收敛性与一致收敛性逐点收敛概念 设函数f x y (,)在带域[)[]D a c d =+∞⨯,, 上有定义, 如果点在[]y c d 0∈,处, 广义积分cA aAf x y dx f x y dx +∞→+∞⎰⎰=(,)lim(,)00收敛, 就称无穷限含参量积分af x y dx +∞⎰(,)在点y 0处收敛, 否则就称它在y 0点发散; 如果在区间[]c d ,上每一点都收敛, 则称无穷限含参 变量积分在[]c d ,上收敛,这样就在[]c d ,定义了一个上的函数I y f x y dx a()(,)=+∞⎰.● 一致收敛概念 若∀>∃>εε000,() A , 当0A A >时, 恒有()ε<-⎰y I dx y x f Aa),(, []∀∈y c d ,,则称无穷限含变量积分af x y dx +∞⎰(,)在[]d c ,上一致收敛于()y I ;或简单地说: af x y dx +∞⎰(,) ( 关于[]y c d ∈, ) 一致收敛。

含参变量广义积分36页PPT

含参变量广义积分36页PPT
人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
含参变量广义积分
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1 xp
dx
发散,
当p>1时积分有值
1
1 xp
dx lim b
b1 0 xp
dx
lim ( 1 b p1 1 )
b p 1
p 1
( 1 ) 1 p 1 p 1
1.无穷积分
(2)无穷积分的性质
若两个无穷积分
f (x)dx 与
g(x)dx
都收敛,
a
a
则无穷积分
a [k1 f
第十一章 广义积分与含 参变量的积分
定积分条件
积分区间有限 被积函数有界
推广定积分
积分区间无限 被积函数无界
y 0a
b
a f (x)dx
y=f (x)
b
x
1 dx lim A 1 dx lim 1 1 lim (1 1 ) 1
1 x2
x A 1 2
x A
A
A
A
y 01
1
1 x2 dx
lim
a
0 a
f (x)dx

时存在,则称无穷积分
f (x)dx
收敛,并定义
f (x)dx lim
b
f (x)dx lim
0 f (x)dx;
b 0
a a
0
f (x)dx f (x)dx f (x)dx.
0
否则称无穷积分发散。
例4. 确定指数 p 的值,使积分
dx 1 xp
一个氢原子由一个质子和一个电子组成, 它们 带有数值为1.610–19 C的相反电荷. 求使氢原子激 发(即使电子从其轨道移动到离质子无穷远处)的 能量. 假设电子和质子之间的初始距离为玻尔半径
RB = 5.310–11m.
解: 因为由初始距离RB移动到最终距离的能 量由广义积分表示为
E
a
y y=f (x)
0
x
1.无穷积分
(4)无穷积分绝对收敛与条件收敛的定义
命题:若 a | f (x) | dx 收敛,则 a f (x)dx 也收敛。
A'
A'
A f (x)dx A | f (x) | dx.
1 y x2
A
x
§1 广义积分
1.无穷积分
(1)定义a:设函数f(x)在[a,+∞)上有定义,且对任意
A>a,
f(x)在[a,A]上可积。若
lim
A
A
a
f
(x)dx
存在,则称
无穷积分
f (x)dx
a
收敛,并定义
f (x)dx lim
A f (x)dx;
a
A a
否则称无穷积分发散。
例1. 求 exdx 0
1x
因此积分 dx发散. y
1x
y 1 x
b dx
1x
01
bx
例3. 使两个带电粒子从初始距离a分开到距离b 所需能量由
E
b kq1q2 a r2
dr
给出, 其中q1, q2是电荷的数量, k为常数. 若q1, q2 的单位为库仑(C), a, b是米(m), E的单位为焦耳(J).
k = 9109.
lim
A
A
f
(x)dx 存在,则称
无穷积分
b
f (x)dx
收敛,并定义
b f (x)dx lim
b f (x)dx;
A A
否则称无穷积分发散。
§1 广义积分
1.无穷积分
(1)定义c:设函数f(x)在(-∞,+∞)上有定义,且在任意
区间[a,b]上可积。若
lim
b
b 0
f (x)dx与
解:
exdx lim b exdx
0
b 0
lim ex b lim (1 eb ) = 1
b
0 b
y
1
y=e–x
0
x
例2. 无穷积分 dx 收敛还是发散. 1x
解: 考虑
b dx
b 1
ቤተ መጻሕፍቲ ባይዱ1b
1
x 2 dx 2x 2 2b2 2
1x 1
1
可以看出当b 时, b dx 增长且无界,
A'
| A f (x)dx | .
例.
判断
2
x(
1 ln
x)q
dx 的敛散性
(q
R).
解: 由于
A 2
x(
1 ln
x)q
dx
A d (ln x) 2 (ln x)q
ln ln x A ln ln A ln ln 2,
1 1 q
2
(ln
x)1q
A 2
1 1 q
[(ln
A)1q
(ln
2)1q
a
f (x)dx 条件收敛。 a
命题:若
|
f
(x) | dx
收敛,则
f (x)dx
也收敛。
a
a
若积分 0
f (x) dx 收敛,则称f (x) 在 [a,+)上的积分
绝对收敛;若积分 f (x) dx 发散而 f (x)dx 收敛,
0
0
则称f (x)在[a,+ )上的积分条件收敛.
kq1q2 r2
dr
kq1q2
lim
b
b 1 dr a r2
kq1q2
bl im
1 r
b RB
kq1q2
lim b
1 b
1 RB
kq1q2 RB
代入使用的单位(E的单位为J), 有
E
(9109 )(1.61019)2 5.31011
4.351018 J
这是移动一个微尘粒离开地面0.00000001cm 所需能量的量值, (换句话说不很大!)比较一下, 移动彼此相距无穷远的两个相同符号的1C的电 荷到相距1m以内所需要的能量大约等于使100万 头大象离开地面15cm所需要的能量.
(x) k2 g(x)]dx
也收敛,且
a [k1 f (x) k2g(x)]dx k1 a f (x)dx k2 a g(x)dx,
其中k1,k2为常数。
1.无穷积分
(3)无穷积分收敛的充要条件
柯西收敛原理:无穷积分a f (x)dx 收敛的充要条件是:
任给ε>0,存在正数A0>a,只要A>A0, A’>A0,便有
广义积分被用作分离氢原子所需能量的 模型是因为通过无穷大的距离与通过很大的 有限距离分离电子和质子所需能量之间的差 是可以忽略不计的. 而广义积分可以在不知 道最终距离的情况下计算出来.
§1 广义积分
1.无穷积分
(1)定义b:设函数f(x)在(-∞,b]上有定义,且对任意
b
A<b,
f(x)在[A,b]上可积。若
收敛或发散.
解:对 p 1,
b x pdx
1
b
1 x p1 p 1
1
(
1 b p1
p 1
1) p 1
若–p+1<0,即p>1则积分收敛,若p<1则积分发散.
若p=1时又怎么样呢?在这种情况下我们有
1 dx lim
1x
b
ln x |1b
lim ln b ln1 b
发散
我们得出结论:
当p 1时,
],
q 1, q 1.
2
x(
1 ln
x)q
dx
(ln 2)1q
q 1
q 1, q 1, q 1.
1.无穷积分
(4)无穷积分绝对收敛与条件收敛的定义

|
f
(x) | dx
收敛,则称
f (x)dx 绝对收敛;
a
a
若 f (x)dx 收敛,但
|
f
(x) | dx
发散,则称
a
相关文档
最新文档