人教版八年级数学上册 期末试卷测试与练习(word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册 期末试卷测试与练习(word 解析版)
一、八年级数学全等三角形解答题压轴题(难)
1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:
()1当a 为多少时,能使得图()2中//AB CD ?说出理由,
()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.
【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.
【解析】
【分析】
(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;
(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.
【详解】
()1当a 为15时,//AB CD ,
理由:由图()2,若//AB CD ,则30
BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,
所以,当a 为15时,//AB CD .
注意:学生可能会出现两种解法:
第一种:把//AB CD 当做条件求出a 为15,
第二种:把a 为15当做条件证出//AB CD ,
这两种解法都是正确的.
()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒
证明: ,30FEM CAM C C ∠=∠+∠∠=︒,
30FEM CAM ∴∠=∠+︒,
EFM BDC DBM ∠=∠+∠,
DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,
180,45EFM FEM M M ∠+∠+∠=∠=︒,
3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,
1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,
所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.
【点睛】
此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.
2.如图,已知△ABC 中,AB =AC =20cm ,BC =16cm ,点D 为AB 的中点.
(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?
【答案】(1)①△BPD ≌△CQP ,理由见解析;②V 7.5Q =(厘米/秒);(2)点P 、Q 在AB 边上相遇,即经过了
803秒,点P 与点Q 第一次在AB 边上相遇. 【解析】
【分析】
(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD ,再根据∠B =∠C 证得
△BPD ≌△CQP ;
②根据V P ≠V Q ,使△BPD 与△CQP 全等,所以CQ =BD =10,再利用点P 的时间即可得到点Q 的运动速度;
(2)根据V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程,设运动x 秒,即可列出方程
1562202
x x ,解方程即可得到结果. 【详解】
(1)①因为t =1(秒),
所以BP =CQ =6(厘米)
∵AB =20,D 为AB 中点,
∴BD =10(厘米)
又∵PC =BC ﹣BP =16﹣6=10(厘米)
∴PC =BD
∵AB =AC ,
∴∠B =∠C ,
在△BPD 与△CQP 中, BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩
, ∴△BPD ≌△CQP (SAS ),
②因为V P ≠V Q ,
所以BP ≠CQ ,
又因为∠B =∠C ,
要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,
故CQ =BD =10.
所以点P 、Q 的运动时间84663
BP t (秒), 此时107.54
3Q CQ V t (厘米/秒).
(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程
设经过x 秒后P 与Q 第一次相遇,依题意得1562202
x x ,
解得x=803
(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48,
所以点P 、Q 在AB 边上相遇,即经过了
803
秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】
此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.
3.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.
(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;
(2)如图2,若点A 的坐标为()
23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.
【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=
12
(EM-ON),证明见详解. 【解析】
【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;
(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定