七年级下册数学试题

合集下载

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。

真命题的逆命题都是真命题B。

无限小数都是无理数C。

0.720精确到了百分位D。

16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。

3B。

7C。

3或7D。

1或73.3(-1)²的立方根是()A。

-1B。

1C。

-4D。

44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。

-1B。

-1/2C。

3/2D。

25.若a=2,则a的值为()A。

2B。

±2C。

4D。

±46.下列计算中,错误的是()A。

30.125=0.5B。

3-273=-644C。

33/31=1/82D。

-3/8²=-125/577.下列说法正确的是()A。

实数分为正实数和负实数B。

3/2是有理数C。

0.9是有理数D。

30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有() A。

2个B。

3个C。

4个D。

5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。

4 cm~5 cm之间B。

5 cm~6 cm之间C。

6 cm~7 cm之间D。

7 cm~8 cm之间10.计算-4-|-3|的结果是()A。

-1B。

-5C。

1D。

5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。

15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .16二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 17.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 19.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.24.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.''',若B的对应点B'的25.ABC在如图所示的平面直角坐标系中,将其平移得到A B C坐标为(1,1).''';(1)在图中画出A B C(2)此次平移可以看作将ABC向________平移________个单位长度,再向________平''';移________个单位长度,得A B C'''的面积并写出做题步骤.(3)求A B C一、选择题1.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 6.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.24.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.25.如图,将△ABC 向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′. (1)请画出平移后的图形△A ′B ′C ′.(2)写出△A ′B 'C '各顶点的坐标.(3)求出△A ′B ′C ′的面积.一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)5.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .1611.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 14.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.15.如图点A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿x 轴向右平移,得到△CDE.已知点D 在的点B 左侧,且DB=1,则点C 的坐标为____ .16.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为_____.17.已知两点A(-2,m),B(n,-4),若AB//y轴,且AB=5,则m=_______;n=_______________.18.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.19.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.20.若点M(a-2,a+3)在y轴上,则点N(a+2,a-3)在第________象限.21.已知P(a,b),且ab<0,则点P在第_________象限.三、解答题22.如图,△ABC在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.23.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到△A 'B 'C '.请画出△A 'B 'C '并写出A ',B ′,C '的坐标;(2)在△ABC 内有一点P (a ,b ),请写出按(1)中平移后的对应点P ″的坐标. 24.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点”P '的坐标为____________; ②若点P 的“k 之雅礼点”P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________; (2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 25.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.。

人教七年级下册数学期末测试题(附答案)

人教七年级下册数学期末测试题(附答案)

人教七年级下册数学期末测试题(附答案) 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .9 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.下列算式,正确的是( )A .42±=±B .42±=C .382--=-D .()288-=- 7.如图,AB //CD ,∠EBF =2∠ABE ,∠ECF =3∠DCE ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是( )A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5九、填空题9.364--________.十、填空题10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______十一、填空题11.如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,∠BCE =40°,则∠ADB =_____.十二、填空题12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.十三、填空题13.如图,在△ABC 中,将∠B 、∠C 按如图所示的方式折叠,点B 、C 均落于边BC 上的点Q 处,MN 、EF 为折痕,若∠A=82°,则∠MQE= _________十四、填空题14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.十五、填空题15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________十六、填空题16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.十七、解答题17.计算:(1)3840.04--- (2)23(2)279-+-十八、解答题18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 十九、解答题19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF .分析:要证BE ∥DF ,只需证∠1=∠D .证明:∵AB ∥CD (已知)∴∠B +∠1=180°( )∵∠B +∠D =180°(已知)∴∠1=∠D ( )∴BE ∥DF ( )二十、解答题20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.二十一、解答题21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 二十二、解答题22.如图,用两个面积为28cm 的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm ;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm 的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105∠=︒,BAFDCF∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转65动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.二十五、解答题AB CD,E、F是AB、CD上的两点,直线l与AB、CD分别交于点25.如图,直线//G、H,点P是直线l上的一个动点(不与点G、H重合),连接PE、PF.(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.【参考答案】一、选择题1.A解析:A【分析】 819=,再计算9的算术平方根即可.【详解】 819=,993=故选A【点睛】 819是解题的关键.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A :翻开书中的每一页纸张,这是翻折现象;B :飞碟的快速转动,这是旋转现象;C :将一张纸沿它的中线折叠,这是轴对称现象;D :电梯的上下移动这是平移现象.故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B .【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.6.A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案.【详解】A.42±=±,计算正确,故该选项符合题意,B.42±=±,故该选项计算错误,不符合题意,C.38(2)2--=--=,故该选项计算错误,不符合题意,D.()288-=,故该选项计算错误,不符合题意,故选:A.【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.7.A【分析】由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=13ECF∠.由∠BEC=∠M+∠DCE,可得∠M=∠BEC﹣∠DCE.根据AB//CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°.【详解】解:如图,分别延长BE、CD并交于点M.∵AB//CD,∴∠ABE=∠M.∵∠EBF=2∠ABE,∠ABE=α,∴∠EBF=2α.∵∠EBF+∠BEC+∠F+∠ECF=360°,∴∠ECF=360°﹣(2α+β+γ).又∵∠ECF =3∠DCE ,∴∠DCE =11(3602)33ECF a βγ︒∠=---. 又∵∠BEC =∠M +∠DCE ,∴∠M =∠BEC ﹣∠DCE =β﹣1(3602)3a βγ︒---. ∴β﹣1(3602)3a βγ︒---=α. ∴4β﹣α+γ=360°.故选:A .【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.8.C【分析】列出部分An 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【解析:C【分析】列出部分A n 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A 2021的坐标为(﹣3,2),找出A 1的坐标,由此即可得出x 、y 的值,二者相加即可得出结论.【详解】解:∵A 2021的坐标为(﹣3,2),根据题意可知:A 2020的坐标为(﹣3,﹣2),A 2019的坐标为(1,﹣2),A 2018的坐标为(1,2),A 2017的坐标为(﹣3,2),…∴A 4n +1(﹣3,2),A 4n +2(1,2),A 4n +3(1,﹣2),A 4n +4(﹣3,﹣2)(n 为自然数).∵2021=505×4•••1,∵A 2021的坐标为(﹣3,2),∴A 1(﹣3,2),∴x +y =﹣3+2=﹣1.故选:C .【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.九、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.解析:2【分析】,再求出算术平方根即可.先求出【详解】,解:∵∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.十、填空题10.a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11.100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB解析:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是ABC的角平分线,∠BAC=60°.∠BAC=30°,∴∠BAD=∠CAD=12∵CE是ABC的高,∴∠CEA=90°.∵∠CEA+∠BAC+∠ACE=180°.∴∠ACE=30°.∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.∴∠ADB=40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.十二、填空题12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m 向上平移直线m 得到直线n ,∴m ∥n ,∴∠ACB =∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.十三、填空题13.【分析】根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.【详解】解:∵折叠,∴,,∵,∴,∴.故答案是:.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:82︒【分析】根据折叠的性质得到B MQN ∠=∠,C EQF ∠=∠,再根据A ∠的度数即可求出MQN EQF ∠+∠的度数,再根据()180MQE MQN EQF ∠=︒-∠+∠求解即可.【详解】解:∵折叠,∴B MQN ∠=∠,C EQF ∠=∠,∵82A ∠=︒,∴1808298MQN EQF B C ∠+∠=∠+∠=︒-︒=︒,∴()1801809882MQE MQN EQF ∠=︒-∠+∠=︒-︒=︒.故答案是:82︒.【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质.十四、填空题14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 十六、填空题16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、解析:()2021,2【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,202145051÷=⋯,故点2021A 坐标是(2021,2).故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.十七、解答题17.(1);(2).直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.解析:(1) 4.2-;(2)2.【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1220.2=---4.2=-(2233=+-2=【点睛】此题主要考查了实数运算,正确化简各数是解题关键.十八、解答题18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.十九、解答题19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.二十一、解答题21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<, ∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2x•x=14,解得:7x ,2x=27>4,∴不存在长宽之比为2:1且面积为214cm的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.二十五、解答题25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.。

七年级下册数学期末压轴难题试题及答案解答

七年级下册数学期末压轴难题试题及答案解答

七年级下册数学期末压轴难题试题及答案解答一、选择题1.如图,下列各组角中是同位角的是()A .∠1和∠2B .∠3和∠4C .∠2和∠4D .∠1和∠42.下列图案可以由部分图案平移得到的是()A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是()A .1B .2C .3D .45.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是()A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒6.下列说法正确的是()A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是23±7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是()A .35︒B .45︒C .50︒D .52︒8.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-二、填空题9.算术平方根等于本身的实数是__________.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.三、解答题17.计算下列各题:;18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ()∵∠2=∠DMN (等量代换)∴DB ∥EC ()∴∠DBC +∠C =180°().∵∠C =∠D (已知),∴∠DBC+()=180°(等量代换)∴DF∥AC()∴∠A=∠F()(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′.(2)写出点A′、O′的坐标.21.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2)2=17.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数.二十三、解答题23.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.24.如图1,//AB CD ,E 是AB 、CD 之间的一点.(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730.(1)求DAE ∠的度数;(2)如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.【详解】A.∠1和∠2是邻补角,不符合题意;B.∠3和∠4是同旁内角,不符合题意;C.∠2和∠4没有关系,不符合题意;D.∠1和∠4是同位角,符合题意;故选D .【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是旋转变换,不是平移,选项错误,不符合题意;B 、轴对称变换,不是平移,选项错误,不符合题意;C 、是平移,选项正确,符合题意;D 、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C .【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.B【分析】根据平行可得出∠DAB +∠CBA =180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE =21∠,∠CBF =22∠,∵//AD BC ,∴∠DAB +∠CBA =180°,∴∠DAE +∠CBF =180°,即2122180∠+∠=°,∴1290∠+∠=︒,故选:B .【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意,故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.A【分析】先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可.【详解】解:∵一个机器人从点出发,向正西方向走到达点,点A1在x 轴的负半轴上,∴A1(-2,0)从点A2解析:A【分析】先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:故答案为解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠= 360.ABC ADC CBM CDN ∠+∠+∠+∠= .CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时,()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠即:()1,2βαβ=+整理得:.αβ=故答案为.αβ=12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC沿直线AC翻折得到△ADC,∴S△ABC=S△ADC,BD⊥AC,BE=ED,∴S四边形ABCD=8,∴18 2AC BD⨯⨯=,∵BE=2,AE=3,∴BD=4,∴AC=4,∴CE=AC﹣AE=4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD的等面积法求解是解题的关键.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}=min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}=min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}=min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A 故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-×=-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解=-12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13.【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF ∥AC ,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC +∠D =180°即可判定DF ∥AC ,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN (对顶角相等),∴∠2=∠DMN (等量代换),∴DB ∥EC (同位角相等,两直线平行),∴∠DBC +∠C =180°(两直线平行,同旁内角互补),∵∠C =∠D (已知),∵∠DBC +(∠D )=180°(等量代换),∴DF ∥AC (同旁内角互补,两直线平行),∴∠A =∠F (两直线平行,内错角相等).(2)∵DB ∥EC ,∴∠DBC +∠C =180°,∠DEC +∠D =180°,∵∠C =∠D ,∴∠DBC =∠DEC .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)a =1,b =﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<∴4<<5,∴1﹣3<2,∴a=1,b﹣4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD的面积为4×4-4×12×3×1=10则正方形ABCD ;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴弧与数轴的左边交点为【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴P ,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴ ,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥ ,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴ ,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠-==∴︒,又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.24.(1),见解析;(2);(3)60°【分析】(1)作EF//AB ,如图1,则EF//CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,解析:(1)BAE CDE AED ∠+∠=∠,见解析;(2)12AFD AED ∠=∠;(3)60°【分析】(1)作EF //AB ,如图1,则EF //CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,根据角平分线的定义得到∠BAF =12∠BAE ,∠CDF =12∠CDE ,则∠AFD =12(∠BAE +∠CDE ),加上(1)的结论得到∠AFD =12∠AED ;(3)由(1)的结论得∠AGD =∠BAF +∠CDG ,利用折叠性质得∠CDG =4∠CDF ,再利用等量代换得到∠AGD =2∠AED -32∠BAE ,加上90°-∠AGD =180°-2∠AED ,从而可计算出∠BAE 的度数.【详解】解:(1)BAE CDE AED∠+∠=∠理由如下:作//EF AB ,如图1,//AB CD Q ,//EF CD ∴.1BAE ∴∠=∠,2CDE ∠=∠,BAE CDE AED ∴∠+∠=∠;(2)如图2,由(1)的结论得AFD BAF CDF ∠=∠+∠,BAE ∠ 、CDE ∠的两条平分线交于点F ,12BAF BAE ∴∠=∠,12CDF CDE ∠=∠,1()2AFD BAE CDE ∴∠=∠+∠,BAE CDE AED ∠+∠=∠ ,12AFD AED ∴∠=∠;(3)由(1)的结论得AGD BAF CDG ∠=∠+∠,而射线DC 沿DE 翻折交AF 于点G ,4CDG CDF ∴∠=∠,11422()22AGD BAF CDF BAE CDE BAE AED BAE ∴∠=∠+∠=∠+∠=∠+∠-∠=322AED BAE ∠-∠,901802AGD AED ︒-∠=︒-∠ ,390218022AED BAE AED ∴︒-∠+∠=︒-∠,60BAE ∴∠=︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵AD 平分∠BAC ,AE 平分∠BEC∴∠BAC=2∠BAD ,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD )=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。

人教版七年级下册数学测试题及答案

人教版七年级下册数学测试题及答案

人教版七年级下册数学测试题及答案七年级数学下册第五章测试题姓名:________ 成绩:_______一、单项选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、4.B、3.C、2.D、C3、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。

A、90°。

B、120°。

C、180°。

D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6②∠2=∠8③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()A、6 7 2 3 5 1.B、3 2 4 15、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°。

B、第一次右拐50°,第二次左拐130°。

C、第一次右拐50°,第二次右拐130°。

D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()A、ABCD。

B、DCBA。

C、AEDF。

D、FEAB7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4.B、5:8.C、9:16.D、1:28、下列现象属于平移的是()A、③。

B、②③。

C、①②④。

D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行。

B、垂直于同一条直线的两条直线互相垂直。

C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=8012、若AB∥CD,AB∥EF,则CDEF,其理由是同一条直线上的两个点到另一条直线的距离相等13、如图,在正方体中,与线段AB平行的线段有CD和EF。

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试卷一、单选题1.下列实数中,无理数是()A .0B .2C .0.5D .-92.已知21x y =⎧⎨=-⎩是方程1x ay +=的解,则a 的值为()A .2B .1-C .1D .2-3.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .4.为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是()A .1500B .300C .150D .505.如图,ABC 沿着BC 方向平移到DEF ,已知6BC =、2EC =,那么平移的距离为()A .2B .4C .6D .86.下列调查中,调查方式选择最合理的是()A .为了解柳州市中学生的课外阅读情况,选择全面调查B .调查七年级某班学生打网络游戏的情况,选择抽样调查C.为确保长征六号遥二火箭成功发射,应对零部件进行全面调查D.调查某种灯泡的使用寿命,选择全面调查7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.若x y>,且(3)(3)a x a y-<-,则a的值可能是()A.0B.3C.4D.59<8<;③5112<;④510.52->.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个10.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC二、填空题11.计算:=______.12.把方程21x y +=改写成用含x 的式子表示y 的形式,得y =__.13.若某个正数的平方根是3a -和5a +,则这个正数是__.14.某药品说明书上标明药品保存的温度是10±4∘,设该药品合适的保存温度为∘,则的取值范围是______.15.将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是__.16.将一个矩形纸片按如图所示折叠,若140 ∠=,则2∠的度数是______o .三、解答题17.解不等式:2(1)3x +<,并把它的解集在数轴上表示出来.18.解方程组:3223y x x y-=⎧⎨=-⎩19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点2,4,1,1,3,2.(1)将三角形B先沿着轴负方向平移6个单位,再沿轴负方向平移2个单位得到三角形111,在图中画出三角形111;(2)直接写出点1,1,1的坐标.20.某市数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评价调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中七年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将频数分布直方图补充完整;(3)如果全市有40000名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?21.如图,已知12180∠+∠= ,AED C ∠=∠,试判断3∠与B Ð的大小关系,并说明理由.22.某中学计划为学校科技活动小组购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用235元,购买4个A 型放大镜和6个B 型放大镜需用170元.(1)求每个A 型放大镜和每个B 型故大镜各多少元?(2)该中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1300元,那么最多可以购买多少个A 型放大镜?23.对于实数a ,b 定义两种新运算“※”和“*”:a ※b a kb =+,*a b ka b =+(其中k 为常数,且0)k ≠,若对于平面直角坐标系xOy 中的点(,)P a b ,有点P '的坐标(a ※b ,*)a b 与之对应,则称点P 的“k 衍生点”为点P '.例如:(1,3)P 的“2衍生点”为(123,213)P '+⨯⨯+,即(7,5)P '.(1)点(1,5)P -的“3衍生点”的坐标为;-,求点P的坐标;(2)若点P的“5衍生点”P的坐标为(9,3)(3)若点P的“k衍生点”为点P',且直线PP'平行于y轴,线段PP'的长度为线段OP长度的3倍,求k的值.参考答案1.B【解析】根据无理数的定义逐一判断即可得.【详解】A、0是有理数;B、2是无理数;C、12是分数,为有理数;D、-9是有理数;故选B.【点睛】本题主要考查无理数的定义,属于简单题.2.C【解析】把x与y的值代入方程计算即可求出a的值.【详解】把21xy=⎧⎨=-⎩代入方程得:21a-=,解得:1a=,故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l 的距离.故选A.4.B【解析】【分析】根据总体、个体、样本容量、样本的定义解答即可.【详解】∵为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,∴该调查中的样本容量是:300.故选B.【点睛】本题考查了总体、个体、样本容量、样本的定义,正确把握相关定义是解题关键.5.B【解析】【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离==-=,进而可得答案.BE624【详解】=-=-=,由题意平移的距离为BE BC EC624故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、为了解柳州市中学生的课外阅读情况,选择抽样调查,错误;B、调查七年级某班学生打网络游戏的情况,选择全面调查,错误;C、为确保长征六号遥二火箭成功发射,应对零部件进行全面调查,正确;D、调查某种灯泡的使用寿命,选择抽样调查,错误;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5 15 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A【解析】【分析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.9.C【解析】【分析】①两个正数,哪个数的越大,则它的算术平方根就越大,据此判断即可.②首先分别求出8的平方各是多少;然后根据两个正数,哪个数的平方越大,则这个数就越大,8的大小关系即可.③根据1-12所得的差的正负,判断出12、1的大小关系即可.④根据510.52--所得的差的正负,判断出512-、0.5的大小关系即可.【详解】810<,∴<,∴①正确;265=,2864=,6564>,∴8>,∴②不正确; 51533310222----=<=,∴112-<,∴③正确; 5152220.50222----=>=,∴510.52>,∴④正确.综上,可得大小关系正确的式子的个数是3个:①③④.故选:C .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0>>负实数,两个负实数绝对值大的反而小.解答此题的关键还要明确:两个正数,哪个数的平方越大,则这个数就越大.10.B【解析】【分析】根据平行线的判定定理分析即可.【详解】A 、错误.由∠BAD +∠ABC =180°应该推出AD ∥BC .B 、正确.C 、错误.由∠2=∠4,应该推出AB ∥CD .D 、错误.由∠BAD +∠ADC =180°,应该推出AB ∥CD ,故选:B.【点睛】考核知识点:平行线的判定.理解判定是关键.11.【解析】【分析】合并同类二次根式即可得出答案.【详解】(3-=-=故答案为:【点睛】此题考查了二次根式的加减运算,属于基础题,掌握同类二次根式的合并是关键.12.12x-.【解析】【分析】把x当成已知数,解关于y的方程即可.【详解】21x y+=,21y x=-,12xy-=,故答案为:12x-.【点睛】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.16.【解析】【分析】利用一个非负数的平方根互为相反数即可得到关于a的方程,解方程即可解决问题.【详解】一个正数的平方根是3a-和5a+,则350a a -++=,解得:1a =-,则34a -=-,所以这个正数是16.故答案为:16.【点睛】此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,它们互相为相反数.14.6≤≤14【解析】【分析】根据正数和负数的定义即可得出答案.【详解】某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.【点睛】此题考查了正负数在实际生活中的应用,解题关键是理解(10±4)℃的意义.15.(0,3).【解析】【分析】根据向右平移横坐标加,向上平移纵坐标加即可得解.【详解】将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是(11,12)-++,即(0,3).故答案为(0,3).【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.16.70【解析】【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【详解】如图,由题意可得:∠1=∠3=∠4=40°,由翻折可知:∠2=∠5=180402︒-︒=70°.故答案为:70.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.12x<,不等式的解在数轴上表示见解析.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】2(1)3x-<,223x∴+<,21x<12x<,不等式的解在数轴上表示为:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.11x y =⎧⎨=⎩.【解析】【分析】方程组利用加减消元法求出解即可.【详解】3223y x x y -=⎧⎨=-⎩①②,由①得:624y x -=③,由②得:23x y +=④,③+④得,77y =,解得:1y =,代入①解得,1x =,综上知原方程组的解为:11x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(1)详见解析;(2)1−4,2,1−5,−1,1−3,0【解析】【分析】(1)分别将点A,B,C向左平移6个单位,再向下平移2个单位,再首尾顺次连接即可得.(2)根据所作图形可得三顶点的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(-4,2),B1(-5,-1),C1(-3,0).【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.20.(1)560;(2)详见解析;(3)在试卷评讲课中,“独立思考”的七年级学生约有12000人.【解析】【分析】(1)由专注听讲的人数及其所占百分比可得总人数;(2)根据各项目人数之和等于总人数可得讲解题目对应的人数,从而补全图形;(3)利用样本估计总体思想求解可得.【详解】(1)在这次评价中,一共抽查学生为:224÷40%=560人,(2)“讲解题目”的人数是:5608416822484---=(人).作图如下:(3)1684000012000560⨯=(人)故在试卷评讲课中,“独立思考”的七年级学生约有12000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.3B ∠=∠,理由详见解析【解析】【分析】求出∠2=∠4,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出∠3=∠ADE ,根据平行线的判定得出DE ∥BC ,根据平行线的性质得出∠B=∠ADE ,即可得出答案.【详解】3B ∠=∠,理由如下:∵12180∠+∠= ,14180∠+∠=o ,∴24∠∠=,∴EF AB ∥,∴3ADE ∠=∠.∵AED C ∠=∠,∴DE BC ‖,∴ADE B ∠=∠,∴3B ∠=∠.【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,解题时注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)最多可以买35个A 型放大镜.【解析】【分析】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【详解】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得852*******x y x y +=⎧⎨+=⎩①②.解得:2015x y =⎧⎨=⎩,答:每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)设购买A 型放大镜a 个,根据题意可得:2015(75)1300a a +⨯-,解得:35a.答:最多可以买35个A 型放大镜.【点睛】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.23.(1)(14,2);(2)点(1,2)P -;(3)k=±3.【解析】【分析】(1)直接利用新定义进而分析得出答案;(2)直接利用新定义结合二元一次方程组的解法得出答案;(3)先由//PP y '轴得出点P 的坐标为(,0)a ,继而得出点P '的坐标为(,)a ka ,由线段PP '的长度为线段OP 长度的3倍列出方程,解之可得.【详解】(1)点(1,5)P -的“3衍生点”P '的坐标为(135,135)-+⨯-⨯+,即(14,2),故答案为:(14,2);(2)设(,)P x y 依题意,得方程组5953x y x y +=⎧⎨+=-⎩.解得12x y =-⎧⎨=⎩.∴点(1,2)P -;(3)设(,)P a b ,则P '的坐标为(,)a kb ka b ++.PP ' 平行于y 轴a a kb ∴=+,即0kb =,又0k ≠ ,0b ∴=.∴点P 的坐标为(,0)a ,点P '的坐标为(,)a ka ,∴线段PP '的长度为||ka .∴线段OP 的长为||a .根据题意,有3PP OP '=,3ka a ∴=.∴k=±3.【点睛】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.。

初一数学下册期末考试试题及答案

初一数学下册期末考试试题及答案

-初一数学下册期末考试试题满分:120分 时间:120分钟一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.—的绝对值的倒数是( ).(A ) (B )— (C )—3 (D ) 32.方程5—3x=8的解是( ).(A )x=1 (B)x=—1 (C )x= (D )x=-3.如果收入15元记作+15元,那么支出20元记作( )元。

(A)+5 (B)+20 (C )-5 (D )—204.有理数,,, ,—(-1),中,其中等于1的个数是( )。

(A)3个 (B )4个 (C )5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A ) (B ) (C) (D ) p=q6.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )。

(A )1。

68×104m (B )16。

8×103 m (C )0。

168×104m (D )1。

68×103m7.下列变形中, 不正确的是( ).(A) a +b -(-c -d )=a +b +c +d (B ) a +(b +c -d )=a +b +c -d(C ) a -b -(c -d )=a -b -c -d (D )a -(b -c +d )=a -b +c -d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a 〉0(B) a -b 〉0(C) ab >0(D ) a +9.按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( )。

(A )1022。

01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022。

010(精确到千分位)10.“一个数比它的相反数大—14",若设这数是x ,则可列出关于x 的方程为( )。

【必考题】七年级数学下期末试题(附答案)(1)

【必考题】七年级数学下期末试题(附答案)(1)

【必考题】七年级数学下期末试题(附答案)(1) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm3.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=04.2-的相反数是()A.2-B.2C.12D.12-5.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多6.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣37.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-38.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)9.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,410.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .11.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①② 二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.14.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案. 17.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 18.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 20. 5-的绝对值是______.三、解答题21.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图; (2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人? 22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?23.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.24.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.4.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.6.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.7.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A8.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.9.C解析:C 【解析】 【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标. 【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2), 即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1), 即D (7,4); 故选:C. 【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.11.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy 必需为整数可求出解解:设甲种运动服买了x 套解析:2【解析】设甲种运动服买了x 套,乙种买了y 套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x ,y 必需为整数可求出解.解:设甲种运动服买了x 套,乙种买了y 套,20x+35y=365 x=,∵x ,y 必须为正整数, ∴>0,即0<y <,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.17.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.18.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,22.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2. 解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434 答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++= ∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。

人教版七年级下册数学期末考试试题带答案

人教版七年级下册数学期末考试试题带答案

人教版七年级下册数学期末考试试卷一、单选题1.9的算术平方根是( )A .3B .3-C .3±D .2.下列命题正确的是( )A .相等的角是对顶角B .同旁内角相等C .经过一点,有且只有一条直线与已知直线平行D .内错角相等,两直线平行 3.为了了解商丘市中学生的体重情况,从某一中学任意抽取了100名中学生进行调查,在这个问题中,100名中学生的体重是( )A .个体B .样本C .样本容量D .总体 4.已知a b >,则下列不等式中,正确的是( )A .a b ->-B .44a b +>+C .33a b <D .2131a b ->-5.将方程112-+=x y 中的x 的系数变为整数,则下列结果正确的是( ) A .1x y -+= B .2x y -+= C .22x y -= D .22x y -=- 6.在数轴上表示不等式2x ﹣4>0的解集,正确的是( )A .B .C .D .7.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程ax+y =1的解,则a 的值等于( ) A .3 B .1 C .﹣1 D .﹣38.如图,∠1=∠2,∠3=30°,则∠4等于( )A .120°B .130°C .150°D .40°9.如图,有以下四个条件:∠∠B +∠BCD =180°,∠∠1=∠2,∠∠3=∠4,∠∠B =∠5,其中能判定AB∠CD 的条件的个数有( )A .1B .2C .3D .410.如图,在平面直角坐标系中,AB//EG//x 轴,BC//DE//HG//AP//y 轴,点D 、C 、P 、H 在x 轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),把一条长为2019个单位长度且没有弹性的细线(粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -E -F -G -H -P -A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )A .(1,2)B .(-1,2)C .(-1,-2)D .(1,1)二、填空题11.计算=___________12.不等式21x -≤的正整数解是______________ .13.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.14.已知点(2,36)P x x -+到两坐标轴的距离相等,则点P 的坐标为__________.15.如图所示,下列三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中m =____(用含n 的式子表示)16.苹果的进价是19元/千克,销售中估计有5%的苹果正常损耗,为了避免亏本,售价至少应定为________元/千克.17.如图,已知//AD BC ,//AB CD ,E 在线段BC 延长线上,AE 平分∠BAD .连接DE ,若∠ADC=2∠CDE ,∠AED=60°,则∠CDE=____.三、解答题18.计算:32019|2|(1)(1)---19.解方程组:3125x y x y +=-⎧⎨-=⎩20.解不等式组3(1)511242x x x x -<+⎧⎪⎨+≥-⎪⎩并把它的解集在数轴上表示出来. 21.将∠ABO 向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′,并写出点O′的坐标.(2)求∠ABO 的面积.22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A ,B ,C ,D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有8000人,请估计爱吃D粽的人数.23.完成下面的解题过程(在下面的横线上,填写相应的结论或推理的依据):已知:∠ABC,∠A、∠B、∠C之和为多少?为什么?解:∠A+∠B+∠C=180°理由:过C作CD//AB,并延长BC到E∠CD//________(已作)∠∠________=∠ACD(两直线平行,内错角相等)且∠B=∠___________(________________)而∠DCE+∠ACD+∠ACB=_________°∠∠________+∠B+∠ACB=180°(__________)24.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?25.如图,在长方形ABCD中,O为平面直角坐标系的原点,点的坐标分别为A(a,2)、B(a,-1),D(b,2).且a、b|4|0+=.点P从A点出发,以每秒1个单位长度的速b度A-B-C-D-A的线路移动,运动时间为t,当点P回到A点时运动停止(1)点C的坐标为_______________(2)当点P移动在线段BC上时,求三角形ACP的面积(用含t的代数式表示)(3)在移动过程中,当三角形ACP的面积是5时,直接写出点P移动的时间为几秒26.已知关于x ,y 的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数. (1)当a=2时,解此方程组;(2)求a 的取值范围;(3)已知a+b=4,且b>0,z=2a -3b ,求z 的取值范围.27.已知:如图所示,BAC ∠和ACD ∠的平分线交于E ,AE 交CD 于点F ,1290∠+∠=︒.(1)求证://AB CD ;(2)试探究2∠与3∠的数量关系,并说明理由.参考答案1.A【分析】根据算术平方根的定义即可得.【详解】由算术平方根的定义得:93故选:A .【点睛】本题考查了算术平方根的定义,熟记定义是解题关键.2.D【解析】【详解】解:A.相等的角不一定是对顶角,错误;B.两直线平行,同旁内角互补,错误;C.经过直线外一点,有且只有一条直线与已知直线平行,错误;D.内错角相等,两直线平行,正确.故选D.3.B【解析】【详解】∠个体是指每个中学生的体重,总体是指我市中学生的体重的全体,样本是指100名中学生的体重,样本容量是100,∠在这个问题中,100名中学生的体重是样本,故选B.4.B【解析】【分析】利用不等式的性质判断即可.【详解】由a>b,得到−a<−b,故选项A不合题意;得到a+4>b+4,故选项B符合题意;得到3a>3b,故选项C不合题意;得到2a−1>2b−1,故选项D不合题意.故选:B.【点睛】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.5.D【解析】【分析】方程两边乘以2即可得到结果.【详解】方程两边乘以2得:−x+2y=2,即x−2y=−2,故选:D.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.6.A【解析】【详解】不等式的解集为:x>2,故选A7.A【解析】【分析】把解代入方程进行求解即可;【详解】解:将12xy=⎧⎨=-⎩是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.【点睛】本题主要考查了二元一次方程的根,准确计算是解题的关键.8.C【解析】【详解】∠∠1=∠2,∠a∠b,∠∠5=∠3=30°,∠∠4=180°−∠5=150°,故选C9.C【解析】【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:∠∠∠B+∠BCD=180°,∠AB∠CD;∠∠∠1=∠2,∠AD∠BC;∠∠∠3=∠4,∠AB∠CD;∠∠∠B=∠5,∠AB∠CD;∠能得到AB∠CD的条件是∠∠∠.故选:C.【点睛】本题考查平行线的判定定理:1.同旁内角互补,两直线平行;2.同位角相等,两直线平行;3.内错角相等,两直线平行.10.D【解析】【分析】先求出“凸”形ABCDEFGHP的周长为20,得到2019÷20的余数,进而可得答案.【详解】解:∠A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),∠“凸”形ABCDEFGHP的周长为20,∠2019÷20的余数为19,∠细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).【点睛】本题考查了坐标系中点的坐标规律,解题的关键是找出规律、求出“凸”形的周长,根据规律解答.11【解析】【分析】直接合并同类二次根式即可.【详解】=-=(3【点睛】此题主要考查了二次根式的加减法,知道二次根式的加减法实质是合并同类二次根式,熟练掌握合并同类二次根式的法则是解答此题的关键.12.1、2、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【详解】移项,得:x∠1+2,合并同类项,得:x∠3,则不等式的正整数解为1、2、3;故答案为1,2,3.【点睛】此题考查了求一元一次不等式的整数解的方法,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.13.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力,物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 14.(6,6)-或(3,3)【解析】【分析】根据点到坐标轴的距离的定义,分点的横坐标与纵坐标相等和互为相反数列式子求出x 的值,然后求解即可.【详解】点(2,36)P x x -+到两坐标轴的距离相等,则∠2360x x -++=解得:4x =-,∴点P 的坐标为(6,6)-∠236x x -=+,解得:1x =-,∴点P 的坐标为(3,3),综上:点P 的坐标为(3,3),(6,6)-,故答案为:(6,6)-或(3,3).【点睛】本题考查了点的坐标,是基础题,难点在于分两种情况求解.15.22n n +【解析】【分析】由题意可得左上边三角形中数字的规律,右上边三角形中数字的规律,从而发现下边三角形的数字规律,继而求得答案.【详解】解:∠观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,,2,n •••下边三角形的数字规律为:1×2+2,2n+,222⨯+, (22)则m=22nn+.故答案为:22nn+.【点睛】此题考查了规律型:数字的变化类问题.注意根据题意找到规律m=22nn+是关键.16.20【解析】【分析】设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果x-,根据题意列出不等式即可.损耗后的价格为(15%)【详解】解:设商家把售价应该定为每千克x元,x-,根据题意得:(15%)19x,解得:20故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价进价”列出不等式即可求解.17.15°【解析】【分析】设∠CDE=x°,则∠ADC=2x°,∠BAE=∠DAE=a°,根据平行线的性质得出∠BAD+∠ADC=180°,求出a=90-x,根据三角形内角和定理求出60+2x+x+90-x=180,求出x即可.【详解】解:设∠CDE=x°,则∠ADC=2x°,∠AE平分∠BAD,∠∠BAE=∠DAE,设∠BAE=∠DAE=a°,∠AB∠CD,∠∠BAD+∠ADC=180°,∠a+a+2x=180,解得:a=90-x ,∠在∠AED 中,∠AED+∠ADE+∠DAE=180°,∠60+2x+x+90-x=180,解得:x=15,即∠CDE=15°,故答案为:15°.【点睛】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义等知识点,能求出a=90-x 是解此题的关键.18.2【解析】【分析】先去绝对值、根号,计算立方,开立方根,再计算2019次方,最后进行加减法即可.【详解】解:原式22(1)2(1)2=+---+-=.【点睛】本题主要考查了实数的综合运算能力,解题的关键是掌握算术平方根、绝对值等知识点的运算.19.21x y =⎧⎨=-⎩【解析】【分析】根据代入消元法解答即可.【详解】解:对方程组3125x y x y +=-⎧⎨-=⎩①②, 由∠,得13x y =--∠,把∠代入∠,得()2135y y ---=,解得:1y =-,把1y =-代入∠,得()1312x =--⨯-=,所以原方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,属于应知应会题型,熟练掌握代入消元法和加减消元法解方程组的方法是解题关键.20.23x -<【解析】【分析】分别解两个一元一次不等式,再取解得公共部分,即为一元一次不等式组的解集,将其解集在数轴上表示出来.【详解】 原式:3(1)511242x x x x -<+⎧⎪⎨--⎪⎩①②, 由∠可得,3351x x -<+,移项得24x -<,解得2x >-;由∠可得,+148x x -,移项得39x ≤,解得3x故原不等式组的解集为23x -<,在数轴上表示如图所示:【点睛】本题主要考查一元一次不等式组的解法.21.(1)作图见解析(2)6【解析】【分析】(1)画出A、B、O三点平移后的对应点A1、B1、O1即可解决问题;(2)利用分割法求三角形的面积即可;【详解】解:(1)平移后的三角形A'B' O',如图所示.O'(4,-1).(2)111442224246222S ABO=⨯-⨯⨯-⨯⨯-⨯⨯=【点睛】本题考查的是平移变换和正方形与三角形的面积,理解平移变换并能够熟练的掌握坐标系以及灵活运用正方形与三角形的面积是解决本题的关键.22.(1)见解析;(2)600人;(3)3200人【解析】【分析】(1)求出C类的人数(总人数减去其它各组的人数);求出C类、A类所占的百分数,画出图形可得;(2)利用总人数=B类的人数÷其所占的百分比可求得;(3)利用8000乘以对应的百分比可求得.【详解】(1)本次参加抽样调查的居民的人数是:60÷10%=600(人)∠C类的人数是:600﹣180﹣60﹣240=120(人),所占的百分比是:120600×100%=20%,故A类所占的百分比是:180600×100%=30%.如图,补全统计图如下:(2)由(1)可得本次参加抽样调查的居民的人数是600(人)答:本次参加抽样调查的居民有600人;(3)解:8000×40%=3200(人)答:估计爱吃D粽的人数有3200人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.23.AB;A;DCE,两直线平行,同位角相等;180;A;等量代换.【解析】【分析】依据平行线的性质∠A=∠ACD,∠B=∠DCE,再根据平角为180°,即可得到∠A+∠B+∠ACB=180°.【详解】解:∠A+∠B+∠C=180°理由:过C作CD∠AB,并延长BC到E∠CD∠AB(已作)∠∠A=∠ACD(两直线平行,内错角相等)且∠B=∠DCE(两直线平行,同位角相等)而∠DCE+∠ACD+∠ACB=180°∠∠A+∠B+∠ACB=180°(等量代换)故答案为:AB;A;DCE,两直线平行,同位角相等;180;A;等量代换.【点睛】本题主要考查了平行线的性质,三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.24.(1)1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)A 种盆花最多购进66盆.【解析】【分析】(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据:“1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元”列方程组求解即可;(2)首先根据“A 种盆花的数量不超过B 种盆花数量的2倍”确定m 的取值范围,然后得出最值即可.【详解】解:(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据题意可得: 213211,x y x y +=⎧⎨+=⎩解得:35.x y =⎧⎨=⎩答:1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)设购进A 种花m 盆,依据题意可得:()2100,m m ≤- 解得:266,3m ≤ 而m 为正整数, ∠m 最多=66,答:A 种盆花最多购进66盆.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.25.(1)()4,1C --;(2)()()39=392ACP t St -≤≤;(3)当三角形ACP 的面积是5时,53t =、173、323. 【解析】【分析】(1|4|0b +=可得到2a =,4b =-,由矩形的性质可得C 点的横坐标与D 点的相等,纵坐标与B 点相同,即可得到结论;(2)因为点P 从A 点出发,以每秒1个单位长度的速度A -B -C -D -A 的线路移动,且当点P 移动在线段BC 上时,可得BP=t ,根据三角形面积公式即可得到结果;(3)分类讨论,当P 在AB 上运动和BC 上运动进行讨论;【详解】(1|4|0b +=可得:20a -=和40b +=,解得2a =,4b =-,∠A(2,2)、B(2,-1),D(-4,2),∠四边形ABCD 是矩形,∠C 的横坐标坐标-4,纵坐标为-1,∠()4,1C --.(2)由题可知BP=t ,由(1)可知,AB=3,BC=6,且点P 从A 点出发,以每秒1个单位长度的速度A -B -C -D -A 的线路移动,∠当t=3时,P 点运动到点B ,当t=9时,点P 运动到C 处,根据图形可得∠ACP 的面积=12CP AB ⨯⨯, ∠BP=t -3,∠9CP t =-, ∠()()39-11=9-3=222t CP AB t ⨯⨯⨯⨯, ∠39t ≤≤.故()()39=392ACP t S t -≤≤.(3)当点P 在AB 边上运动时,△11=6=322ACP S AP BC t t ⨯⨯=⨯⨯, 当角形ACP 的面积是5时,可得35t =, 解得53t =; 当点P 在AB 边上运动时,由(1)得()()△39=3<92ACP t S t -≤,当角形ACP 的面积是5时,可得()39=52t -, 解得:173t =, 当点P 在CD 上运动时,9<12t ≤,()()△11=96=3922ACP S CP AD t t ⨯⨯=⨯-⨯- 当角形ACP 的面积是5时,可得()39=5t -, 解得:323t =; 当点P 在DA 上运动时,12<18t ≤,∠DP=t -12,∠AP=18-(t -12)=30-t ,()()△33011=303=222ACP t S AP CD t -⨯⨯=⨯-⨯, 当角形ACP 的面积是5时,可得()330-=52t , 解得:803t =(舍去); 故当三角形ACP 的面积是5时,53t =、173、323. 【点睛】 本题主要考查了矩形性质应用与利用坐标系求点的应用,能够准确判断动点的特征是解题的关键.26.(1)14x y =⎧⎨=⎩;(2)1a >;(3)78z -<<. 【解析】【分析】(1)将a 代入得到一个二元一次方程组,再利用加减消元法解方程组即可得;(2)先利用加减消元法求出方程组的解,再根据“解都为正数”建立不等式组,然后解不等式组即可得;(3)先根据0b >求出a 的取值范围,再根据4b a =-化简z ,由此即可得.【详解】(1)当2a =时,方程组为3129x y x y -=-⎧⎨+=⎩①②∠2⨯+∠得:629x x +=-+解得1x =将1x =代入∠得:31y -=-解得4y =则此方程组的解为14x y =⎧⎨=⎩; (2)325233x y a x y a -=-⎧⎨+=+⎩③④ ∠2⨯+∠得:641033x x a a +=-++解得1x a =-将1x a =-代入∠得:3325a y a --=-解得2y a =+则此方程组的解为12x a y a =-⎧⎨=+⎩ 方程组的解都为正数1020a a ->⎧∴⎨+>⎩解得1a >;(3)4a b +=,且0b >40b a ∴=->解得4a <结合(2)的结论得:14a <<将4b a =-代入23z a b =-得:23(4)512z a a a =--=-14a <<75128a ∴-<-<故78z -<<.【点睛】本题考查了利用加减消元法解二元一次方程组、解一元一次不等式组等知识点,熟练掌握方程组和不等式组的解法是解题关键.27.(1)见解析;(2)3290∠+∠=︒,理由见解析【解析】【分析】(1)由角平分线的定义及1290∠+∠=︒可得180BAC ACD ∠+∠=︒,根据同旁内角互补,可得两直线平行.(2)由平行线的性质及角平分线的概念分析求解.【详解】(1)证明:BAC ∠与ACD ∠的角平分线相交于点E21BAC ∠∠∴=,22ACD ∠=∠21222120(8)1BAC ACD ∴∠+∠=∠+∠=∠+∠=︒//AB CD ∴(2)解:3290∠+∠=︒由(1)知,//AB CD3BAF ∴∠=∠ AF 平分BAC ∠1BAF ∴∠=∠31∴∠=∠又∠1290∠+∠=︒3290∴∠+∠=︒【点睛】此题主要考查了角平分线的性质以及平行线的判定和性质,难度不大,掌握相关概念及性质正确推理论证是解题关键.。

初一下册数学试题

初一下册数学试题

七年级下册数学试题姓名:班级:(答题时间:90分钟)一.选择题(每小题3分,共30分)1.多项式3x2y+2y-1的次数是()A、1次B、2次C、3次D、4次2.棱长为a的正方形体积为a3,将其棱长扩大为原来的2倍,则体积为()A、2a3B、8a3C、16 a3D、a33.2000年中国第五次人口普查资料表明,我国人口总数为1295330000人,精确到千万位为()A、1.30×109B、1.259×109C、1.29×109D、1.3×1094.下列四组数分别是三根木棒的长度,用它们不能拼成三角形的是()A、3cm,4cm,5cmB、12cm,12cm,1cmC、13cm,12cm,20cmD、8cm,7cm,16cm5.已知△ABC三内角的度数分别为a,2a,3a。

这个三角形是()三角形。

A、锐角三角形B、直角三角形C、钝角三角形D、不能确定6.国旗是一个国家的象征,下面四个国家的国旗不是轴对称图形的是()A、越南B、澳大利亚C、加拿大D、柬埔寨7.下面哪一幅图可大致反映短跑运动员在比赛中从起跑到终点的速度变化情况()A、 B、 C、D、8.如图,已知,△ABD≌△CBE,下列结论不正确的是()A、∠CBE=∠ABDB、BE=BDC、∠CEB=∠BDED、AE=ED9. 将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴。

A、一条B、二条C、三条D、四条10.房间铺有两种颜色的地板,其中黑色地板面积是白色地板面积的二分之一,地板下藏有一宝物,藏在白色地板下的概率为()A、1B、C、D、二.我会填。

(每小题3分,共15分)11.22+22+22+22=____________。

12.三角形的两边长分别为5cm,8cm,则第三边长的范围为___________。

13.三角形的高是x,它的底边长是3,三角形面积s与高x的关系是____________。

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试题(考试时间:100分钟满分:120分)一、选择题(本题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P (-1,-4)的位置在()A .第一象限B .第二象限C .第三象限D .第四象限2.下列实数中,是无理数的是()A .0B .21C .4D .53.若⎩⎨⎧==12y x 是二元一次方程3=-y kx 的解,则k 的值为()A .2B .3C .4D .54.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2的大小是()A .20°B .50°C .70°D .110°5.不等式组1020x x +≥⎧⎨-<⎩的解集在数轴上表示为()A .B .C .D .6.如图是某班一次数学成绩统计图.下列说法错误的是()A .得分在70~80分之间的人数最多B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(≥60分)人数是267.若a <b ,则下列式子一定成立的是()A .a +3>b +3B .a −1<b −1C .22a b >D .3a >3b8.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正确的个数是()A .1B .2C .3D .49.一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是()A .602503y x y x =+⎧⎨=-⎩B .602350y x x y-=⎧⎨=-⎩C .602503y x y x -=⎧⎨-=⎩D .602503y x y x =-⎧⎨=+⎩10.如果关于x 为不等式2≤3x ﹣7<b 有四个整数解,那么b 的取值范围是()A .﹣11≤b ≤﹣14B .11<b <14C .11<b ≤14D .11≤b <14二、填空题(本题共6小题,每小题4分,共24分)11.点A (2,-3)到x 轴的距离是12.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是13.如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O ,DM ∥AB ,若∠EOC =35°,则∠ODM =14.命题“如果22b a =,那么a =b ”是(填写“真命题”或“假命题”).15.如图,在ABC Rt ∆中,090=∠C ,4=AC ,将ABC ∆沿CB 向右平移得到DEF ∆,若平移距离为3,则四边形ABED 的面积等于16.如图,在平面直角坐标系中,A (1,1),B (-1,1),C (-1,-2)D (1,-2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是第13题第15题第16题三、解答题(一)(本题共3小题,每小题6分,共18分)17.计算:43-8-3-13++18.解方程组25432x y x y -=-⎧⎨+=⎩19.解不等式325153x x +-<-,并在数轴上表示解集四、解答题(二)(本题共3小题,每小题7分,共21分)20.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE21.如图,在平面直角坐标系中有三个点(32),(51),(20)A B C ---,,,,(,)P a b 是三角形AC 边上一点,三角形ABC 经平移后得到三角形C B A ''',点P 的对应点为)3,4(++'b a P .⑴画出平移后的三角形C B A ''',写出点A '、B '、C '三个点的坐标.⑵求四边形A C AC ''的面积.22.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:⑴本次调查中,一共调查了名同学;⑵条形统计图中,m =,n =;⑶扇形统计图中,艺术类读物所在扇形的圆心角是度;⑷学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?五、解答题(三)(本题共3小题,每小题9分,共27分)23.学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副一羽毛球拍共需116元,购买3副乒乓球拍和2副一羽毛球拍共需204元.⑴求购买1副乒乓球拍和1副一羽毛球各需多少元?⑵若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?24.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.⑴若∠O=40°,求∠ECF的度数;⑵求证:CG平分∠OCD;⑶当∠O为多少度时,CD平分∠OCF,并说明理由.25.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).⑴直接写出点E的坐标为;⑵在四边形ABCD中,点P从点B出发,沿“B→C→D”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①求点P在运动过程中的坐标(用含t的式子表示,写出过程);②当t=秒时,点P的横坐标与纵坐标互为相反数;③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)题号12345678910答案CDACBDBDAD二、填空题(本题共6小题,每小题4分,共24分)11.3;12.200;13.1250;14.假命题;15.12;16.(1,0);三、解答题(一)(本题共3小题,每小题6分,共18分)17.-2 2.......32.......4-1.......5=+=+=解:原式(分分分18.解:①×4-②,得-11y =-22,y =2,………3分将y =2代入①,得x-4=-5,x =-1,………5分∴12x y =-⎧⎨=⎩………6分19.解:去分母,得15)5253)x 3-->+x ((………2分解这个不等式,得7>x ∴不等式组的解集为7>x :………4分将不等式解集表示在数轴上(图略):………6分四、解答题(二)(本题共3小题,每小题7分,共21分)20.证明:∵∠1=∠2ECDB ||∴E ∠=∠∴4………4分∵∠3=∠E ,∴∠4=∠3………6分∴AD ∥BE .………7分21.解(1)图(略)………2分点A '、B '、C '三个点的坐标.(15),(14),(23)A B C '''-,,,………4分1111255214321432222ACC A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯()251616251411.......7=----=-=分22.解:⑴一共调查了:70÷35%=200人………2分⑵科普类人数为:n =200×30%=60人,m =200﹣70﹣30﹣60=40人………4分⑶艺术类读物所在扇形的圆心角是:×360°=72°………6分⑷由题意,得(册).答:学校购买其他类读物900册比较合理………7分五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:⑴设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意,得⎩⎨⎧=+=+2042y x 3116y x 2解得:⎩⎨⎧==6028x y 答:购买一副乒乓球拍28元,一副羽毛球拍60元.………5分⑵设可购买a 副羽毛球拍,则购买乒乓球拍(30-a )副,由题意得,60a+28(30-a )≤1480,解得:a ≤20,答:这所中学最多可购买20副羽毛球拍.…9分24.解:⑴∵DE ∥OB ,∴∠O =∠ACE ∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,∴∠ECF=70°+40°=110°;………3分⑵证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,即CG平分∠OCD.………6分⑶结论:当∠O=60°时,CD平分∠OCF.∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.………9分25.解:⑴∵点A的坐标是(1,0),∴点E的坐标是(-2,0);………2分⑵①∵点C的坐标为(-3,2).∴BC=3,CD=2,当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);………4分②∵点P的横坐标与纵坐标互为相反数;当点P在线段BC上时,-t+2=0,即t=2当点P在线段CD上时,t>3,5-t≠3,∴点P的横坐标与纵坐标不能互为相反数∴当t=2秒时,点P的横坐标与纵坐标互为相反数;………6分③能确定如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y………9分。

七年级下册数学试题及答案

七年级下册数学试题及答案

一、选择题: 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <22。

下列各式中,正确的是( ) A 。

=±4 B 。

±=4 C 。

=—3 D 。

=—43.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D ) 先右转50°,后左转50°5.解为的方程组是( )A 。

B 。

C. D 。

6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000 B .1100 C .1150 D .1200(1) (2) (3) 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3 C.2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4) B 。

(4,5) C.(3,4) D.(4,3)二、填空题11。

七年级下册数学第一单元测试题

七年级下册数学第一单元测试题

七年级下册数学第一单元测试题一、选择题(每题2分,共20分)1. 下列哪个选项是正确的整数和小数的混合运算结果?A. 3 × 0.5 + 0.2 = 1.7B. 4.5 + 2.6 ÷ 0.2 = 17C. 2 × (3 + 4.5) = 13D. 5.6 ÷ 1.1 × 2 = 102. 计算边长为5cm的正方形的面积,结果是多少平方厘米?A. 25B. 50C. 100D. 1253. 一个长方形的长是12cm,宽是8cm,那么它的周长是多少厘米?A. 40B. 48C. 56D. 644. 一个三角形的底边长为10cm,高为6cm,那么它的面积是多少平方厘米?A. 30B. 40C. 60D. 805. 一个圆的半径是7cm,求这个圆的周长(使用π≈3.14)。

A. 14.28cmB. 21.98cmC. 28.54cmD. 43.96cm6. 一个班级有40名学生,其中女生占60%,那么男生有多少人?A. 16B. 24C. 26D. 347. 一个数的三倍加上5等于17,这个数是多少?A. 2B. 3C. 4D. 58. 下列哪个分数是最简分数?A. 四分之六B. 三分之九C. 二分之一D. 五分之十9. 一个分数的分子是10,分母是它的三倍,这个分数化简后是什么?A. 五分之三B. 三分之五C. 一分之二D. 二分之五10. 一个比例的两个外项分别是8和12,两个内项分别是2和多少?A. 3B. 4C. 6D. 9二、填空题(每题2分,共20分)11. 一个长方形的长是15cm,宽是9cm,它的面积是________平方厘米。

12. 一个圆的直径是10cm,那么它的半径是________cm。

13. 一个班级有45名学生,女生占总数的40%,那么男生有________名。

14. 一个数除以4的结果是2.5,这个数是________。

15. 一个三角形的底边长为8cm,高为5cm,它的面积是________平方厘米。

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试题一、单选题1.在实数:3.14159,1.010010001,4.21 ,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列运算正确的是()A .3a+2a =5a 2B .2a 2b ﹣a 2b =a 2bC .3a+3b =3abD .a 5﹣a 2=a 33.下列调查中,最适合采用全面调查的是()A .对全国中学生睡眠时间的调查B .了解一批节能灯的使用寿命C .对“中国诗词大会”节目收视率的调查D .对玉免二号月球车零部件的调查4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A .90°B .110°C .108°D .100°5.不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A .3元B .5元C .8元D .13元6.将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是()A .()5,3B .()5,5-C .()1,5--D .()1,3-7.不等式组2−1<5<的解集是x <3,那么m 的取值范围是()A .m >3B .m ≥3C .m <2D .m ≤28.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0二、填空题9.16的平方根是.10.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.11.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.12.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.13.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是_____.14.如图,把“QQ”笑脸图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是____________.15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.16.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是__.三、解答题17.计算题:(1|1| --(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:513(1) 131722x xx x->+⎧⎪⎨-≤-⎪⎩①②18.已知5a+2的立方根是3,4b+1的算术平方根是3,ca+b+c的值.19.已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.20.如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移4格,再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B(,),B′(,).21.如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.22.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.23.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?24.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)25.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y 轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.参考答案1.A【解析】【分析】根据无理数的的定义解答即可.【详解】3.14159364=4,1.010010001,4.21 ,227是有理数;π是无理数.故选A.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断即可.【详解】A 、325a a a +=,故本选项错误;B 、222 2a b a b a b ﹣=,故本选项正确;C 、3a 与3b 不是同类项,不能合并,故本选项错误;D 、a 5与a 2不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项,正确理解同类项的意义是解题的关键.3.D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A 、对全国中学生睡眠时间的调查,应采用抽样调查,故此选项不合题意;B 、了解一批节能灯的使用寿命,应采用抽样调查,故此选项不合题意;C 、对“中国诗词大会”节目收视率的调查,应采用抽样调查,故此选项不合题意;D 、对玉免二号月球车零部件的调查,意义重大,应采用普查,故此选项符合题意;故选:D.【点睛】考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.D【解析】【分析】依据l1∥l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=100°.【详解】如图,∵l1∥l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-50°-30°=100°,故选:D.【点睛】考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.C【解析】【分析】设每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可【详解】设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得+314 3530x yx y=⎧⎨+=⎩.解得53xy=⎧⎨=⎩.所以x +y =5+3=8(元)故选C .【点睛】此题主要考查二元一次方程组的应用,难度不大,关键在于列出方程组6.D【解析】【分析】根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【详解】将点A (2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B (−1,3),故选:D .【点睛】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7.B【解析】【分析】由已知不等式组的解集确定出m 的范围即可.【详解】不等式组整理得:<3<,由解集为x <3,得到m 的范围为m≥3,故选:B .【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.D【解析】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.9.±4.【解析】【详解】由(±4)2=16,可得16的平方根是±4.10.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.11.120【解析】分析:先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=150°,求得答案.详解:如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.点睛:此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.12.250.【解析】【分析】设这件夹克衫的成本是x 元,根据售价=原价×(1+20%)×0.9,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设这件夹克衫的成本是x 元,依题意,得:(1+20%)×0.9x=270,解得:x=250.故答案是:250.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.0<a ≤1.【解析】【分析】不等式组整理后,由整数解共有3个,确定出a 的范围即可.【详解】不等式组整理得:3x a x ≥⎧⎨≤⎩,即a≤x≤3,由不等式组的整数解共有3个,即1,2,3,则a 的取值范围是0<a≤1,故答案是:0<a≤1.【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.(-1,1)【解析】【分析】根据左眼,右眼坐标,得到嘴唇C的坐标【详解】解:∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标是(-1,1),故答案为:(-1,1)【点睛】本题考查了坐标确定位置:直角坐标系内的点与有序实数对一一对应.记住平面内特殊位置的点的坐标特征:(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.15.340.【解析】【分析】用600乘以第3组和第4组的频率和可估计该校一分钟仰卧起坐的次数不少于25次的人数.【详解】600×125 310125++++=340,所以估计该校一分钟仰卧起坐的次数不少于25次的有340人.故答案是:340.【点睛】考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.2或3.【解析】【分析】根据题意得出经过1次运算结果不大于7及经过2次运算结果大于7,得出关于x的一元一次不等式组,解之即可得出结论.【详解】根据题意得:若运算进行了2次才停止,则有()21217217x x ⎧+⨯+⎨+≤⎩>,解得:1<x≤3.则x 可以取的所有值是2或3,故答案是:2或3.【点睛】考查了一元一次不等式组的应用,根据运算程序找出关于x 的一元一次不等式组是解题的关键.17.(1(2)31x y =⎧⎨=⎩;(3)24x <≤.【解析】【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)原式;(2)21239x y x y -⎧⎨+⎩=①=②,①×2-②得:y=1,代入①得:x=3,所以方程组的解为:31x y ⎧⎨⎩==;(3)解①得:x >2,解②得:x≤4,综合得:2<x≤4.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.10.【解析】【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,相加可得结论.【详解】由已知得:5a+2=27,4b+1=9,c=3,解得:a=5,b=2,c=3,所以:a+b+c=10.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.19.-1.【解析】【分析】分别求出每一个不等式的解集,根据口诀确定不等式组的解集,再结合-6<x<3得出关于m、n的方程组,解之可得.【详解】解x-1<2n得:x<2n+1,解2x+5>6m-1得:x>3m-3,所以,不等式组的解集为:3m-3<x<2n+1,由已知得:3m-3=-6,2n+1=3,解得m=-1,n=1所以:2m+n=-1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)见解析;(2)(1,2),(3,6).【解析】【分析】(1)根据平移方式作图即可;(2)首先以点A为坐标原点建立平面直角坐标系,然后写出点的坐标即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)如图,以点A为坐标原点建立平面直角坐标系,则B(1,2),B′(3,6).【点睛】本题考查了平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,左右平移改变点的横坐标.21.见解析.【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】∵∠ADE=∠B(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等);∵CD∥FG(已知),∴∠1=∠2(同位角相等,两直线平行),∴∠2=∠3.(等量代换).【点睛】考查平行线的性质和判定,解题的关键是熟练掌握基本知识.22.(1)样本容量是50;(2)m=16,n=30;(3)补全条形统计图见解析.【解析】【分析】(1)用答对6题的人数除以它所占的百分比得到调查的总人数,即本次抽查的样本容量;(2)用答对7题的人数除以总人数得到A所占的百分比,根据各组所占百分比的和等于单位1得到D所占的百分比,进而求出m、n;(3)用总人数乘以D所占的百分比,得到答对9题的人数,用总人数乘以E所占的百分比,得到答对10题的人数,据此补充条形统计图.【详解】(1)样本容量是:510%=50;(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如图,【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x 元/个,篮球的单价为y 元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个足球,则购买篮球(24-m )个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x 元,一个篮球需y 元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。

七年级数学下册第一章试题

七年级数学下册第一章试题

第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学试题作者:admin试题来源:本站原创点击数:526 更新时间:2009-4-22一.选择题(每小题3分,共30分)1.多项式3x2y+2y-1的次数是()A、1次B、2次C、3次D、4次2.棱长为a的正方形体积为a3,将其棱长扩大为原来的2倍,则体积为()A、2a3B、8a3C、16 a3D、a33.2000年中国第五次人口普查资料表明,我国人口总数为1295330000人,精确到千万位为()A、1.30×109B、1.259×109C、1.29×109D、1.3×1094.下列四组数分别是三根木棒的长度,用它们不能拼成三角形的是()A、3cm,4cm,5cmB、12cm,12cm,1cmC、13cm,12cm,20cmD、8cm,7cm,16cm5.已知△ABC三内角的度数分别为a,2a,3a。

这个三角形是()三角形。

A、锐角三角形B、直角三角形C、钝角三角形D、不能确定6.国旗是一个国家的象征,下面四个国家的国旗不是轴对称图形的是()A、越南B、澳大利亚C、加拿大D、柬埔寨7.下面哪一幅图可大致反映短跑运动员在比赛中从起跑到终点的速度变化情况()A、 B、 C、D、8.如图,已知,△ABD≌△CBE,下列结论不正确的是()A、∠CBE=∠ABDB、BE=BDC、∠CEB=∠BDED、AE=ED9. 将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴。

A、一条B、二条C、三条D、四条10.房间铺有两种颜色的地板,其中黑色地板面积是白色地板面积的二分之一,地板下藏有一宝物,藏在白色地板下的概率为()A、1B、C、D、二.我会填。

(每小题3分,共15分)11.22+22+22+22=____________。

12.三角形的两边长分别为5cm,8cm,则第三边长的范围为___________。

13.三角形的高是x,它的底边长是3,三角形面积s与高x的关系是____________。

14.如图,O是AB和CD的中点,则△OAC≌△OBD的理由是__________。

15.袋子里有2个红球,3个白球,5个黑球,从中任意摸出一个球,摸到红球的概率是________。

三.解答题(每小题6分,共24分)16.(2mn+1)(2mn-1)-(2m2n2+2)17.有这样一道题“计算(2x3-3x2y-2xy2)-(x3-2xy2+y2)+(-x3-3x2y-y2)的值,其中x=,y=-1。

”甲同学把x=错抄成x=-,但他计算的结果也是正确的,你说这是怎么回事呢?18.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF 交CD 于点G ,∠EFG =500,求∠BEG 的度数。

19.小林在帮姥姥做清洁时不小心打碎了装饰柜门上的一块三角形玻璃(碎后形状如图所示),小林决定用自己积攒的零花钱到玻璃店给买一块一样大小的玻璃,请父亲给安装好。

(1)请用尺规作图帮小林在下面的方框中作出与原三角形全等的图形。

(不写作法,保留作图痕迹)(2)小林拿着图纸找到一家玻璃店,售货员量出三角形的三边长分别为20厘米、15厘米、25厘米。

售货员说是玻璃是按平方卖的,请你再帮小林估计他要买一块同样大小的玻璃大约是多少平方米?四.解答题。

(每小题7分,共21分)20.下图是几个4×4的正方形方格图,请沿着格线画出四种不同的分法,把它分成两个全等图形。

21.如图,AB∥CD,AE=CF,ED∥BF,你认为图中△ABF≌△CDE吗?请说明理由。

22.注意,本小题提供了两个备选题,请你从下面的22—1和22—2题中任选一个予以解答,多做一个题不多计分。

22—1.如图是一只蝴蝶图案一部分,请你画出图案的另一部分,使它以L为对称轴图形,这时,你会得到一只美丽蝴蝶的完整图案。

试试看。

(不写作法)22—2.下图是电子钟所显示时间在镜子里所看到的图形,你认为实际时间应该是什么时间?把它画在后面。

五.解答题。

(每小题10分,共30分)23.下表为我国人口密度统计表,(人口密度为每平方公里人口数),请你画出统计图,尽量制作得形象一些。

并说说从图中你可以获得哪些信息。

二.我会填: 11. 16 12. 大于3小于13 13.S=x 14.两边及其夹角对应相等的两个三角形全等 15.三.填空:16.2m2n2-3 17.原式化简为:-6x2y-2y2,无论x为或-,x2都为,结果不变。

18.65019. 0.015平方米四.20.(答案不唯一)21. ED∥BF得到∠AFB=∠CED, AB∥CD得到∠A=∠C;AE=CF两边同时加上EF 可得AF=CE。

根据角角边定理可得两个三角形全等。

22.(1)(2)五.23.(答案不唯一)从图上可以看出,我们国家的人口在越来越多,自九九年后,在国家的控制下,人口增长缓慢。

(只要说得有道理就行)24.(答案不唯一)小明上学,走了一段时间后,看到了一个熟人,就和他说了一会儿话,他发现要迟到了,和熟人告别后,就加快速度上学去了。

25.(1)游戏不公平,小爱获胜的概率是。

(2)3D获奖的概率是,要想获奖,至少买1000注,从001一直到999。

一.选择题(每小题3分,共30分)1.多项式3x2y+2y-1的次数是()A、1次B、2次C、3次D、4次2.棱长为a的正方形体积为a3,将其棱长扩大为原来的2倍,则体积为()A、2a3B、8a3C、16 a3D、a33.2000年中国第五次人口普查资料表明,我国人口总数为1295330000人,精确到千万位为()A、1.30×109B、1.259×109C、1.29×109D、1.3×1094.下列四组数分别是三根木棒的长度,用它们不能拼成三角形的是()A、3cm,4cm,5cmB、12cm,12cm,1cmC、13cm,12cm,20cmD、8cm,7cm,16cm5.已知△ABC三内角的度数分别为a,2a,3a。

这个三角形是()三角形。

A、锐角三角形B、直角三角形C、钝角三角形D、不能确定6.国旗是一个国家的象征,下面四个国家的国旗不是轴对称图形的是()A、越南B、澳大利亚C、加拿大D、柬埔寨7.下面哪一幅图可大致反映短跑运动员在比赛中从起跑到终点的速度变化情况()A、 B、 C、D、8.如图,已知,△ABD≌△CBE,下列结论不正确的是()A、∠CBE=∠ABDB、BE=BDC、∠CEB=∠BDED、AE=ED9. 将一张矩形纸片对折,再对折,将所得矩形撕去一角,打开的图形一定有()条对称轴。

A、一条B、二条C、三条D、四条10.房间铺有两种颜色的地板,其中黑色地板面积是白色地板面积的二分之一,地板下藏有一宝物,藏在白色地板下的概率为()A、1B、C、D、二.我会填。

(每小题3分,共15分)11.22+22+22+22=____________。

12.三角形的两边长分别为5cm,8cm,则第三边长的范围为___________。

13.三角形的高是x,它的底边长是3,三角形面积s与高x的关系是____________。

14.如图,O是AB和CD的中点,则△OAC≌△OBD的理由是__________。

15.袋子里有2个红球,3个白球,5个黑球,从中任意摸出一个球,摸到红球的概率是________。

三.解答题(每小题6分,共24分)16.(2mn+1)(2mn-1)-(2m2n2+2)17.有这样一道题“计算(2x3-3x2y-2xy2)-(x3-2xy2+y2)+(-x3-3x2y-y2)的值,其中x=,y=-1。

”甲同学把x=错抄成x=-,但他计算的结果也是正确的,你说这是怎么回事呢?18.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠EFG=500,求∠BEG的度数。

19.小林在帮姥姥做清洁时不小心打碎了装饰柜门上的一块三角形玻璃(碎后形状如图所示),小林决定用自己积攒的零花钱到玻璃店给买一块一样大小的玻璃,请父亲给安装好。

(1)请用尺规作图帮小林在下面的方框中作出与原三角形全等的图形。

(不写作法,保留作图痕迹)(2)小林拿着图纸找到一家玻璃店,售货员量出三角形的三边长分别为20厘米、15厘米、25厘米。

售货员说是玻璃是按平方卖的,请你再帮小林估计他要买一块同样大小的玻璃大约是多少平方米?四.解答题。

(每小题7分,共21分)20.下图是几个4×4的正方形方格图,请沿着格线画出四种不同的分法,把它分成两个全等图形。

21.如图,AB∥CD,AE=CF,ED∥BF,你认为图中△ABF≌△CDE吗?请说明理由。

=x 15.三.填空:16.2m2n2-3 17.原式化简为:-6x2y-2y2,无论x为或-,x2都为,结果不变。

18.65019. 0.015平方米四.20.(答案不唯一)21. ED∥BF得到∠AFB=∠CED, AB∥CD得到∠A=∠C;AE=CF两边同时加上EF 可得AF=CE。

根据角角边定理可得两个三角形全等。

22.(1)(2)五.23.(答案不唯一)从图上可以看出,我们国家的人口在越来越多,自九九年后,在国家的控制下,人口增长缓慢。

(只要说得有道理就行)24.(答案不唯一)小明上学,走了一段时间后,看到了一个熟人,就和他说了一会儿话,他发现要迟到了,和熟人告别后,就加快速度上学去了。

25.(1)游戏不公平,小爱获胜的概率是。

(2)3D获奖的概率是,要想获奖,至少买1000注,从001一直到999。

Fantastic Baby - BIGBANG词:G-DRAGON/T.O.P/TEDDY曲:G-DRAGON/TEDDY编曲:TEDDY여기붙어라모두모여라WE GON’ PARTY LIKE 리리리라라라맘을열어라머릴비워라불을지펴라리리리라라라정답은묻지말고그대로받아들여느낌대로가ALRIGHT하늘을마주하고두손을다위로저위로날뛰고싶어OH나나나나나나나나나나WOW FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCE FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCEWOW FANTASTIC BABY이난장판에HEY 끝판왕차례HEY땅을흔들고3분으론불충분한RACE WAIT분위기는과열HUH CATCH ME ON FIRE HUH진짜가나타났다나나나나하나부터열까지모든게다한수위모래벌판위를미친듯이뛰어봐도거뜬한우리하늘은충분히너무나푸르니까아무것도묻지말란말이야느끼란말이야내가누군지네심장소리에맞게뛰기시작해막이끝날때까지YEI CAN’T BABY DON’TSTOP THIS오늘은타락해미쳐발악해가는거야WOW FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCE FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCEWOW FANTASTIC BABYBOOMSHAKALAKA BOOMSHAKALAKA BOOMSHAKALAKADAN DAN DAN DAN DANCEBOOMSHAKALAKA BOOMSHAKALAKA BOOMSHAKALAKADAN DAN DAN DAN DANCE날따라잡아볼테면와봐난영원한딴따라오늘밤금기란내겐없어Mama just let me be your lover이혼란속을넘어나나나나나머리끝부터발끝까지비쥬얼은쇼크내감각은소문난꾼앞서가는촉남들보다는빠른걸음차원이다른젊음얼음얼음얼음HOLD UP 나나나나나네심장소리에맞게뛰기시작해막이끝날때까지YEI CAN’T BABY DON’TSTOP THIS오늘은타락해미쳐발악해가는거야WOW FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCE FANTASTIC BABYDANCE I WANNA DAN DAN DAN DAN DANCE WOW FANTASTIC BABYBOOMSHAKALAKA BOOMSHAKALAKA BOOMSHAKALAKADAN DAN DAN DAN DANCE BOOMSHAKALAKA BOOMSHAKALAKA BOOMSHAKALAKADAN DAN DAN DAN DANCE다같이놀자YE YE YE 다같이뛰자YE YE YE 다같이돌자YE YE YE 다같이가자WOW FANTASTIC BABY。

相关文档
最新文档