九年级上册数学 旋转几何综合单元达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学 旋转几何综合单元达标训练题(Word 版 含答案)
一、初三数学 旋转易错题压轴题(难)
1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;
(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.
【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492
. 【解析】 【分析】
(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =
,1
2
PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;
(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出1
2
PM BD =
,1
2
PN BD =
,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;
(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)
点P ,N 是BC ,CD 的中点,
//PN BD ∴,1
2
PN BD =
, 点P ,M 是CD ,DE 的中点,
//PM CE ∴,1
2
PM CE =
, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,
DPN ADC ∴∠=∠, //PM CE ,
DPM DCA ∴∠=∠, 90BAC ∠=︒,
90ADC ACD ∴∠+∠=︒,
90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒, PM PN ∴⊥,
故答案为:PM PN =,PM PN ⊥;
(2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,
AB AC =,AD AE =,
()ABD ACE SAS ∴∆≅∆,
ABD ACE ∴∠=∠,BD CE =,
利用三角形的中位线得,12PN BD =,1
2
PM CE =,
PM PN ∴=,
PMN ∴∆是等腰三角形,
同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,
同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,
DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,
MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠
BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,
90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,
PMN ∴∆是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,
MN ∴最大时,PMN ∆的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,
连接AM ,AN ,
在ADE ∆中,4AD AE ==,90DAE ∠=︒,
22AM ∴=
在Rt ABC ∆中,10AB AC ==,52AN = 22522MN ∴=最大,
222111149(72)22242
PMN S PM MN ∆∴=
=⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,1
2
PM PN BD ==
, PM ∴最大时,PMN ∆面积最大, ∴点D 在BA 的延长线上,
14BD AB AD ∴=+=,
7PM ∴=,
2211497222
PMN S PM ∆∴=
=⨯=最大. 【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出
12PM CE =,1
2
PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键
是判断出MN 最大时,PMN ∆的面积最大.
2.阅读下面材料:
小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,
∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.
【答案】(1)∠B+∠D=180°(或互补);(2)∴
【解析】
试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即
∠B+∠D=180°.
(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED
得到DE=EG,由勾股定理即可求得DE的长.
(1)∠B+∠D=180°(或互补).
(2)∵ AB=AC,
∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
则∠B=∠ACG,BD=CG,AD=AG.
∵在△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.
∴ EC2+CG2=EG2.
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED .
∴DE=EG.
又∵CG=BD,
∴ BD2+EC2=DE2.
∴.
考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.
3.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.
【答案】(1);(2);(3)不变化,证明见解析.
【解析】
试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.
(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.
(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.
∴DA在旋转过程中所扫过的面积为.
(2)∵MN∥AC,∴,.
∴.∴.
又∵,∴.
又∵,∴.
∴.∴.
∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.
(3)不变化,证明如下:
如图,延长BA交DE轴于H点,则
,,
∴.
又∵.∴.
∴.
又∵, ,∴.
∴.∴.
∴.
∴在旋转正方形ABCD的过程中,值无变化.
考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.
4.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)点C的坐标为(,);
(2)若二次函数的图象经过点C.
①求二次函数的关系式;
②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]
③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理
由.
【答案】(1) ∴点C的坐标为(-3,1) .
(2)①∵二次函数的图象经过点C(-3,1),
∴.解得
∴二次函数的关系式为
②当-1≤x≤4时,≤y≤8;
③过点C作CD⊥x轴,垂足为D,
i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直
角三角形,过点作⊥轴,
∵=,∠=∠,∠=∠=90°,
∴△≌△,∴AE=AD=2,=CD=1,
∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;
ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证
△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上
综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△
是以AB为直角边的等腰直角三角形.
【解析】
(1)根据旋转的性质得出C点坐标;
(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;
③分二种情况进行讨论.
5.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =
1
2
m°.
【解析】
分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明
△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=
1
2
m°.
详(1)证明:如图1中,
∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
AD AE
DAB EAC
AB AC


∠∠







∴△DAB≌△EAC,
∴BD=EC.
(2)证明:如图2中,延长DC到E,使得DB=DE.
∵DB=DE,∠BDC=60°,
∴△BDE是等边三角形,
∴∠BD=BE,∠DBE=∠ABC=60°,
∴∠ABD=∠CBE,
∵AB=BC,
∴△ABD≌△CBE,
∴AD=EC,
∴BD=DE=DC+CE=DC+AD.
∴AD+CD=BD.
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.
由(1)可知△EAB≌△GAC,
∴∠1=∠2,BE=CG,
∵BD=DC,∠BDE=∠CDM,DE=DM,
∴△EDB≌△MDC,
∴EM=CM=CG,∠EBC=∠MCD,
∵∠EBC=∠ACF,
∴∠MCD=∠ACF,
∴∠FCM=∠ACB=∠ABC,
∴∠1=3=∠2,
∴∠FCG=∠ACB=∠MCF,
∵CF=CF,CG=CM,
∴△CFG≌△CFM,
∵ED=DM,DF⊥EM,∴FE=FM=FG,
∵AE=AG,AF=AF,
∴△AFE≌△AFG,
∴∠EAF=∠FAG=1
2 m°.
点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:
(1)求证:EP2+GQ2=PQ2;
(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;
(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).
【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【解析】
【分析】
(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到
EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证
△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.
(1)过点E作EH∥FG,连接AH、FH,如图所示:
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;
(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,
∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2.
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2.
(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.
【点睛】
本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.
7.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出
△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,
∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;
(2)①CD=BE ,
理由:∵△ABD 与△ACE 是等边三角形,
∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC ,
即∠CAD=∠EAB ,
在△CAD 与△EAB 中,
AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAD ≌△EAB ,
∴CD=BE ;
②∵线段BE 长的最大值=线段CD 的最大值,
由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,
则△APN 是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=2AP=22,
∴最大值为22+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴2,
∴22,
∴P(22).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
8.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
【答案】(1)2142
y x =-+;(2)2<m <223)m =6或m 17﹣3. 【解析】
【分析】
(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为
24y ax =+,把A (220)代入可得a =12
-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩
,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有
()
222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩
,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出
PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得
M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12
-
, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()21242
y x m =--,
由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩
, 消去y 得到222280x mx m -+-= ,
由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有
()
222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩
, 解得2<m <22,
∴满足条件的m 的取值范围为2<m <22.
(3)结论:四边形PMP ′N 能成为正方形.
理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .
由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得
PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142
y x =-+上,∴()212242
m m -=-
++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.
情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),
把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),
∴m =6时,四边形PMP ′N 是正方形.
综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.
9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是
FH=FG,FH⊥FG.
【解析】
试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1
2
AD,FH∥AD,FG=
1
2
BE,
F G∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:
(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=1
2
AD,FH∥AD,FG=
1
2
BE,FG∥BE,
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
故答案为相等,垂直.
(2)答:成立,
证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,
∴△ACD≌△BCE
∴AD=BE,
由(1)知:FH=
1
2
AD,FH∥AD,FG=
1
2
BE,FG∥BE,∴FH=FG,FH⊥FG,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG,FH⊥FG.
连接AD,BE,两线交于Z,AD交BC于X,
同(1)可证
∴FH=
1
2
AD,FH∥AD,FG=
1
2
BE,FG∥BE,
∵三角形ECD、ACB是等腰直角三角形,
∴CE=CD,AC=BC,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中
AC BC
ACD BCE
CE CD


∠∠







∴△ACD≌△BCE,
∴AD=BE,∠EBC=∠DAC,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°﹣90°=90°,
即AD⊥BE,
∵FH∥AD,FG∥BE,
∴FH⊥FG,
即FH=FG ,FH ⊥FG ,
结论是FH=FG ,FH ⊥FG.
【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.
10.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .
(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)
(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;
(3).①当BD=___________时,30DEC ∠=;(直接写出结果)
②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.
【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+
【解析】
【分析】
(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.
【详解】
解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,
ADE ∴∆是等边三角形,
故答案为等边三角形;
(2)AC CD CE +=,
证明:由旋转的性质可知,60,DAE AD AE ∠==,
ABC ∆是等边三角形
60AB AC BC BAC ∴∠︒==,=,
60BAC DAE ∴∠∠︒==,
BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,
在ABD ∆和ACE ∆中,
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
, ABD ACE SAS ∴∆∆≌()
BD CE ∴=,
CE BD CB CD CA CD ∴++===;
(3)①BD 为2或8时,30DEC ∠=,
当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,
90AEC ∴∠︒=,
ABD ACE ∆∆≌,
9060ADB AEC B ∴∠∠︒∠︒==,又=,
30BAD ∴∠︒=,
122
BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,
30AEC ∴∠︒=,
ABD ACE ∆∆≌,
3060ADB AEC B ∴∠∠︒∠︒==,又=,
90BAD ∴∠︒=,
28BD AB ∴==,
BD ∴为2或8时,30DEC ∠︒=;
②点D 在运动过程中,DEC ∆
的周长存在最小值,最小值为4+
理由如下:
ABD ACE ∆∆≌,
CE BD ∴=,
则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,
当CE 最小时,DEC ∆的周长最小,
ADE ∆为等边三角形,
DE AD ∴=, AD
的最小值为
DEC ∴∆
的周长的最小值为4+
【点睛】
本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

相关文档
最新文档