中心镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)用不等式表示如图所示的解集,其中正确的是()
A.x>-2
B.x<-2
C.x≥-2
D.x≤-2
【答案】C
【考点】在数轴上表示不等式(组)的解集
【解析】【解答】解:图中数轴上表达的不等式的解集为:.
故答案为:C.
【分析】用不等式表示如图所示的解集都在-2的右边且用实心的圆点表示,即包括-2,应用“ ≥ ”表示。
2、(2分)在4,—0.1,,中为无理数的是()
A. 4
B. —0.1
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】解:这四个数中,4,—0.1,,是有理数
是无理数
故答案为:D
【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
3、(2分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔
A. 1
B. 2
C. 3
D. 4
【答案】D
【考点】一元一次不等式的应用
【解析】【解答】解:设可买x支笔
则有:3x+4×2≤21
即3x+8≤21
3x≤13
x≤
所以x取最大的整数为4,
她最多可买4支笔.故答案为:D
【分析】设出可买笔的数量,根据花费小于21元可列出一元一次不等式,解不等式即可求得买笔的最大数.
4、(2分)下列方程组中,是二元一次方程组的是()
A. B. C. D.
【答案】B
【考点】二元一次方程组的定义
【解析】【解答】解:A、方程组中含3个未知数,A不是二元一次方程组;
B、两个未知数,最高次数为是二元一次方程组;
C、两个未知数,最高次数为不是二元一次方程组;
D、两个未知数,一个算式未知数次数为不是二元一次方程组.
故答案为:B.
【分析】二元一次方程组满足三个条件;(1)只含有两个未知数,且未知数的最高次数都是1,且是整式方程。
5、(2分)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在射线0B上有一点P,从P 点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()
A. 60°
B. 80°
C. 100°
D. 120°
【答案】B
【考点】平行线的性质
【解析】【解答】解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;
∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),
∴∠PQR=180°﹣2∠AQR=100°,
∴∠QPB=180°﹣100°=80°.故答案为:B.
【分析】根据两直线平行,同位角相等,同旁内角互补,得出∠AQR=∠AOB=40°,∠PQR+∠QPB=180°,再根据平角是180°,得出∠PQR=100°,最后算出∠QPB=80°
6、(2分)下列说法:
①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,
用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】D
【考点】实数的运算,实数的相反数,实数的绝对值
【解析】【解答】①实数和数轴上的点是一一对应的,正确;
②无理数不一定是开方开不尽的数,例如π,错误;
③负数有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,
则其中错误的是3个,
故答案为:D
【分析】①数轴上的点一定有一个实数和它相对应,任何一个实数都可以用数轴上的点来表示,所以实数和数轴上的点是一一对应的;
②无理数是无限不循环小数;
③因为负数的平方是负数,所以负数有立方根;
④如果一个数的平方等于a,那么这个数是a的平方根。
根据定义可得16的平方根是±4,用式子表示是
=±4;
⑤因为只有0的相反数是0,所以绝对值,相反数,算术平方根都是它本身的数是0.
7、(2分)古代有这样一个“鸡兔同笼”的题目:“今有鸡兔同笼,上有三十五头,下有一百足.问鸡兔各几只?”其中正确的答案是()
A. 鸡23、兔12
B. 鸡21、兔14
C. 鸡20、兔15
D. 鸡19、兔16
【答案】C
【考点】解二元一次方程组,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【解答】解;设鸡有x只,兔子有y只,
由题意得,,
解得;,
答:鸡有20只,兔子有15只.故答案为:C.
【分析】将题中关键的已知条件转化为等量关系是:鸡的数量+兔子的数量=25;2×鸡的数量+4×兔子的数量=100(抓住每只鸡有2条足,每只兔有4条足);设未知数,列方程组求解即可。
8、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
9、(2分)下列各式中是二元一次方程的是()
A. x+y=3z
B. ﹣3y=2
C. 5x﹣2y=﹣1
D. xy=3
【答案】C
【考点】二元一次方程的定义
【解析】【解答】解:A、不是二元一次方程,A不符合题意;
B、不是二元一次方程,B不符合题意;
C、是二元一次方程,C符合题意;
D、不是二元一次方程,D不符合题意;
故答案为:C.
【分析】本题考查的是二元一次方程的定义,需含两个未知数,并且未知数的指数为1 的等式.
10、(2分)如图,在平移三角尺画平行线的过程中,理由是()
A. 两直线平行,同位角相等
B. 两直线平行,内错角相等
C. 同位角相等,两直线平行
D. 内错角相等,两直线平行
【答案】C
【考点】平行线的判定
【解析】【解答】解:如图
∵∠DPF=∠BMF
∴PD∥MB(同位角相等,两直线平行).
故答案为:C.
【分析】画平行线的过程,是为画了两个相等的角∠DPF=∠BMF,依据平行线的判定定理可知两直线平行.
11、(2分)已知同一平面上的两个角的两条边分别平行,则这两个角()
A. 相等
B. 互补
C. 相等或互补
D. 不能确定
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图:
①∠B和∠ADC的两边分别平行,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠B=∠ADC,
②∠B和∠CDE的两边分别平行,
∵∠ADC+∠CDE=180°,
∴∠B+∠CDE=180°.
∴同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
故答案为:C
【分析】首先根据题意作图,然后由平行线的性质与邻补角的定义,即可求得同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
12、(2分)下列说法正确的是()
A. |-2|=-2
B. 0的倒数是0
C. 4的平方根是2
D. -3的相反数是3
【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;
B、根据倒数的定义可得0没有倒数,不符合题意;
C、根据平方根的定义可4的平方根为±2,不符合题意;
D、根据相反数的定义可得﹣3的相反数为3,符合题意,
故答案为:D.
【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。
二、填空题
13、(1分)把命题“对顶角相等”改写成“如果那么”的形式:________.
【答案】如果两个角是对顶角,那么它们相等
【考点】命题与定理
【解析】【解答】解:题设为:对顶角,结论为:相等,
故写成“如果那么”的形式是:如果两个角是对顶角,那么它们相等,
故答案为:如果两个角是对顶角,那么它们相等.
【分析】根据命题的构成可知题设为:对顶角,结论为:相等,所以用“如果… 那么… ”的形式可表示为:如果两个角是对顶角,那么它们相等。
14、(1分)若的整数部分为a,小数部分为b,则a-b的值为________.
【答案】3−
【考点】实数的运算
【解析】【解答】∵4<5<9,∴2<
<3,∴1< −1<2,∴a=1,b= −1-1= -2,∴a-b=3− .故
答案是:3− .【分析】因为2 <<3,所以1<−1<2,即整数部分a=1,小数部分b=-2,再将a 、b 的值代入所求代数式即可求解。
15、( 1分 ) 已知,直线AB 和直线CD 交与点O ,∠BOD 是它的邻补角的3倍,则直线AB 与直线CD 的夹角是________度.
【答案】45
【考点】对顶角、邻补角
【解析】【解答】解:由题意得:∠BOD=3(180°-∠BOD ),解得:∠BOD=45°.故答案为:45.
【分析】设直线AB 与直线CD 的较小的夹角为x ,则∠BOD=180°-x 根据已知条件∠BOD 是它的邻补角的3倍可得,3x=180°-x ,解得x=45°。
即直线AB 与直线CD 的夹角是45°。
16、( 3分 ) 已知a 、b 、c 满足
,则a=________,b=________,c=________.
【答案】2;2;-4
【考点】三元一次方程组解法及应用
【解析】【解答】解:①﹣②,得:3a﹣3b=0④
①﹣③,得:﹣4b=﹣8,解得:b=2,
把b=2代入④,得:3a﹣3×2=0,解得:a=2,
把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,
∴原方程组的解是.
故答案为:2,2,﹣4.
【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b的值,再代入计算求出a、c的值。
17、(1分)我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[﹣0.56]=﹣1,则按这个规律[﹣]=________.
【答案】-4
【考点】实数的运算,定义新运算
【解析】【解答】∵2<<3,
∴﹣4<﹣﹣1<﹣3,
∴[﹣]=﹣4.
故答案为:﹣4.
【分析】先求得的范围是,于是可得的范围是,然后由题中的材料可知,原式=-4.
18、(1分)的算术平方根是________.
【答案】
【考点】算术平方根
【解析】【解答】∵的平方为,
∴的算术平方根为.
故答案为.
【分析】根据算术平方根的意义可知,的平方等于,所以的算术平方根为。
三、解答题
19、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)
进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
20、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:(…);
整数集合:(…);
负分数集合:(…);
无理数集合:(…).
【答案】解:正有理数集合:(3,,-(-2.28), 3.14 …);
整数集合:(3,0,-∣-4∣…);
负分数集合:(-2.4,- ,,…);
无理数集合:(,-2.1010010001………).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。
逐一填写即可。
21、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
22、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。
正有理数、0、负有理数统称有理数。
非
负整数包括正整数和0;无理数是无限不循环的小数。
将各个数准确填在相应的括号里。
23、(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.
24、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
25、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
26、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做
好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
第21 页,共21 页。