浙江省衢州市九年级上学期数学期末考试试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省衢州市九年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2016·泰安) 当x满足时,方程x2﹣2x﹣5=0的根是()
A . 1±
B . -1
C . 1﹣
D . 1+
2. (2分)下列图形,既是中心对称图形,又是轴对称图形的是()
A . 等边三角形
B . 平行四边形
C . 正五边形
D . 正六边形
3. (2分) (2018九上·泰州月考) 如图,为的直径,弦,垂足为点,连接,若,,则的长度为()
A . 2
B . 1
C . 3
D . 4
4. (2分)如果关于的一元二次方程有实数根,则的取值范围是()
A .
B . 且≠0
C .
D . 且≠0
5. (2分)已知,如图,E(-4,2),F(-1,-1)以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()
A . (-2,1)
B . (2,-1)
C . (2,-1)或(-2,1)
D . (8,-4)或(-8,4)
6. (2分) 2014年全球不锈钢粗锅的产量为4170万吨,中东欧地区不锈钢粗钢产量同比下降6.3%.某生产不锈钢的工厂2014年上半年共生产700吨不锈钢,2014年下半年的产量比2014年上半年的增产x倍,2015年上半年的产量比2014年下半年的增产2x倍,则2015年上半年不锈锅的产量y与x之间的函数解析式为()
A . y=1400x2
B . y=1400x2+700x
C . y=700x2+1400x+700
D . y=1400x2+2100x+700
7. (2分)小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数小于3的概率为
A .
B .
C .
D .
8. (2分) (2018九上·梁子湖期末) 如图,半径为5的⊙A中,DE=2 ,∠BAC+∠EAD=180°,则弦BC 的长为()
A .
B .
C . 4
D . 3
9. (2分)如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为18 cm,较小锐角为30°,将这两个三角形摆成如图①所示的形状,使点B,C,F,D在同一条直线上,且点C与点F重合,将图①中的△ACB 绕点C顺时针方向旋转到图②的位置,点E在AB边上,AC交DE于点G,则线段FG的长为
A . cm
B . cm
C . cm
D . 9cm
10. (2分) (2017九上·莒南期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()
A . a>0
B . 3是方程ax2+bx+c=0的一个根
C . a+b+c=0
D . 当x<1时,y随x的增大而减小
二、填空题 (共6题;共6分)
11. (1分) (2016八下·洪洞期末) 定义运算“★”:对于任意实数a,b,都有a★b=a2+b,如:2★4=22+4=8.若(x-1)★3=7,则实数x的值是________.
12. (1分) (2019九上·海淀期中) 在平面直角坐标系中,点绕原点旋转180°后所得到的点的
坐标为________.
13. (1分) (2016九上·临洮期中) 若将方程x2+6x=7化为(x+m)2=16,则m=________.
14. (1分) (2017七下·天水期末) 如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为________.
15. (1分) (2016九上·太原期末) 如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点处,此时点落在点处.已知折痕EF=13,则AE的长等于________.
16. (1分)(2017·连云港模拟) 如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O分别作AB,BC,AC的垂线,垂足为E,F,G,连接EF.若OG﹦1,则EF为________.
三、解答题 (共9题;共100分)
17. (10分) (2017九上·上杭期末) 解方程:
(1)
4x2﹣9=0
(2)
x(2x﹣5)=4x﹣10.
18. (15分)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.
(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.
(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.
(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.
19. (5分)将二次函数的一般式y=x2﹣4x+5化为顶点式y=(x﹣h)2+k,并写出它的对称轴及顶点坐标.
20. (10分)(2018·遵义模拟) 已知,AB是⊙O的直径,点C、D是半⊙O 的三等分点(如图1),
(1)求证:四边形OBCD是菱形.
(2)直线PD切⊙O于D,交直径BA的延长线于P,若切线长PD的长为3,求菱形的面积.
21. (15分) (2016九上·仙游期末) 如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.
22. (10分) (2017八下·江都期中) 在边长为1的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C 运动,连接DM交AC于点N.
(1)如图1,当点M在AB边上时,连接BN.求证:△ABN≌△ADN;
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(1≤x≤2)试问:x为何值时,△ADN为等腰三角形.
23. (10分)(2017·娄底) 如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.
(1)若∠BCD=36°,BC=10,求BD的长;
(2)判断直线DE与⊙O的位置关系,并说明理由;
(3)求证:2CE2=AB•EF.
24. (10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D ,以A为圆心,AD长为半径画弧,交边AC于点E ,连接CD .
(1)若∠A=28°,求∠ACD的度数;
(2)设BC=a,AC=b.
①线段AD的长是方程的一个根吗?为什么?
②若AD=EC,求的值.
25. (15分)如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y=
相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).
(1)直接写出点C坐标及OC、BC长;
(2)连接PQ,若△OPQ与△OBC相似,求t的值;
(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共9题;共100分)
17-1、
17-2、18-1、18-2、18-3、19-1、
20-1、20-2、
21-1、21-2、21-3、
22-1、
22-2、23-1、
23-2、23-3、
24-1、
24-2、
25-1、
25-2、
25-3、。