电流模式控制Boost变换器设计方案:电流模式控制Boost变换器分岔及其控制

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流模式控制Boost变换器论文:电流模式控制Boost变换器分岔及其控制
【中文摘要】电流模式控制Boost变换器是一种电压转换装备,相比较电压模式控制,电流模式控制的Boost变换器具有增益大、动态反应快、输出电感相对小、补偿电路相对简化且易于均流等众多
优点,其广泛运用在各类用电设备上。

由于其电路结构的优势,在有
源功率因数校正领域发挥重要作用,这些都是不争的事实。

但是这种电路有它自身的缺点,电流模式控制Boost变换器系统是一个强非线性系统,工作中易因电路参数选择不当或者外部干扰而是系统运行出现不稳定现象,严重地影响了其在各类用电设备的正常使用,所以其
不稳定问题成为限制这类系统应用的重要瓶颈之一。

电流模式控制
分为峰值电流控制和平均电流控制。

当采用峰值电流控制且占空比
大于50%时,系统开环不稳定,容易产生次谐波振荡,其抗干扰能力差,特别当电感中纹波电流成分很少时,这种情况更严重。

目前工程上大都采用斜坡补偿法,利用斜坡信号叠加在电感电流上,从而得到控制
系统稳定的作用。

但目前这种方法的参数选择(斜率m的取值)主要
靠经验和重复实验,不能形象、客观地观察到系统运行规律。

在初期研究DC-DC变换器中混沌现象主要是通过数值仿真的方法,经过求解描述这些系统的微分方程得到系统运动的轨迹。

利用非线性理论研
究非线性电路领域是目前较为前沿的研究手段,本文采用混沌等非线性理论研究电流模式控制Boost变换器。

针对Boost变换器的稳定
性控制,目前已有很多的控制手段,总体可分为反馈控制和非反馈控制方法,非反馈控制方法的实用性很高,且这一方法比较成熟,目前采用比较多,但其也存在控制效率低、适用面窄、控制精度难以掌握等许多固有的缺陷。

工程上经常采用斜坡控制方法,但目前还是凭靠经验,不断地调整控制参数,这样大大增加了设计的工作量以及操作难度,因此限制了这一方法的推广应用。

本文将采用非反馈控制方法,分析研究电流模式控制Boost变换器在扰动强度及扰动相位共同作用下的系统二维分岔图,使我们更容易地观察以及总结到在两者控制下的电流模式控制Boost变换器系统的运行规律,从而便于工程人员在了解系统运行规律的前提下选择更精确的控制参数,减少设计过程的工程量以及操作难度。

因此,本文的研究成果在工程上极具实用性。

【英文摘要】Current-mode Controlled Boost Converter is a kind of voltage conversion equipment, which is widely used in various types of electrical installations. Compared with voltage-mode controlled Boost converter, Current-mode controlled Boost converter has many advantages, including quicker dynamic response, simplified compensation circuit, larger gain wideband, smaller output inductor and easier to average current, etc. Furthermore, it can’t be replaced in the field of active power factor correction for the advantages of its circuit structure, and these is
disputable facts. However, it also has disadvantages. As current-mode controlled Boost converter is a strongly nonlinear system, it’s easier to be unstable during working due to the inappropriate choice of circuit parameters or external disturbances, which seriously
affects the normal use of all kinds of electrical installations. Therefore, the instability has become a important bottleneck to the application of such
system.Current-mode control is divided into the peak current control and average current control. When the peak current control is used as well as the duty circle is more than fifty percent, the system open-loop unstable, prone to harmonic oscillation, and its anti-jamming ability, especially when small inductor ripple current components, this situation is even more serious. At present, most projects adopt the method of slope compensation by superposing ramp signal over induct current to achieve the purpose of controlling the stability of the system. Currently, however, the choice of the parameter (slope m values) mainly depends on the experience and repeated trials, the system operation can not be observed vividly and objectively.This paper, based on the chaos theory and
other nonlinear theories, studies the instability behavior of the Boost converter, especially makes a detailed analysis and derivation on the nonlinear phenomenon of the Current-mode controlled Boost converter. It’s at present a cutting-edge research method to study the field of nonlinear circuit by using the nonlinear theory. There are many control means in view of the stability study of the Boost converter, which can be generally divided into feedback control and non-feedback control method. Non-feedback control method is widely used, as it is very useful and mature, but it also has its inherent defects, such as the low control efficiency, narrow applied face and difficult to grasp the control accuracy, etc. Although frequently used in projects, slope compensation method needs to adjust the control parameter according to the experience, which greatly increased the workload of design process and the difficulty of operation, thus limiting the application of this method. This paper will use the non-feedback control method to study and analyze the two-dimensional bifurcation of the current-mode controlled Boost converter under the action of disturbance intensity and phase disturbance, which allows us easily observe and
summarize the operating rules of the current-mode
controlled Boost converter, making it easier for
engineering staff to choose more accurate control parameter
on the basis of understanding the system operating rules, reducing the workload of design process and the difficulty
of the operation. Therefore, the study of this paper is
very practical in the engineering.
【关键词】电流模式控制Boost变换器混沌理论非线性电路
斜坡控制
【英文关键词】Current-mode Controlled Boost Converter Chaos Theory Nonlinear Circuit Slope Controlled 【目录】电流模式控制Boost变换器分岔及其控制摘要3-
5Abstract5-6目录7-9第一章绪论9-151.1 什么是开关变换器及
开关电源9-101.2 开关变换器的非线性现象101.3 开关变换器的控
制技术10-121.4 国内外发展、研究现状以及本课题研究的意义12-141.5 本论文的内容与结构14-15第二章 DC-DC变换器简介15-312.1 Buck变换器16-222.1.1 工作原理16-172.1.2 理论分析17-212.1.3 Buck变换器Simulink建模仿真21-222.2 Boost变换器
22-292.2.1 工作原理23-242.2.2 理论分析24-272.2.3 Boost变
换器Simulink建模仿真27-292.3 结语29-31第三章 DC-DC变换器
电路的数字仿真法及其分析的方法31-403.1 DC-DC变换器的电路建
模方法简介31-323.2 Buck变换器的直接数字仿真及间接数字仿真
32-363.2.1 Buck(降压式)变换直接数字仿真法32-333.2.2 Buck(降压式)变换器的间接数字仿真法33-363.3 Boost变换器的直接数字仿真及间接数字仿真36-383.3.1 Boost(升压式)变换器直接数字仿真法36-373.3.2 Boost(升压式)变换器间接数字仿真法37-383.4 结语38-40第四章电流模式控制Boost变换器的二维分岔及其控制分析40-514.1 电流模式控制Boost变换器工作原理40-414.2 扰动对系统的影响41-424.3 传统的工程上的控制方法——斜坡补偿法42-434.4 利用参数共振微扰法控制电流模式控制Boost 变换器系统43-474.5 参数共振微扰法控制下的电流模式控制Boost 变换器的二维分岔47-504.6 结论50-51第五章结论与展望51-53参考文献53-56致谢
56。

相关文档
最新文档