最新初中数学相交线与平行线分类汇编附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学相交线与平行线分类汇编附答案解析
一、选择题
1.如图,OB ⊥CD 于点O ,∠1=∠2,则∠2与∠3的关系是( )
A .∠2=∠3
B .∠2与∠3互补
C .∠2与∠3互余
D .不能确定
【答案】C
【解析】
【分析】 根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.
【详解】
∵OB ⊥CD ,
∴∠1+∠3=90°,
∵∠1=∠2,
∴∠2+∠3=90°,
∴∠2与∠3互余,
故选:C .
【点睛】
本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.
2.如图,不能判断12//l l 的条件是( )
A .13∠=∠
B .24180∠+∠=︒
C .45∠=∠
D .23∠∠=
【答案】D
【解析】
【分析】 根据题意,结合图形对选项一一分析,排除错误答案.
【详解】
A 、∠1=∠3正确,内错角相等两直线平行;
B 、∠2+∠4=180°正确,同旁内角互补两直线平行;
C 、∠4=∠5正确,同位角相等两直线平行;
D 、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行. 故选:D .
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
3.如图,下列能判定AB CD ∥的条件有( )个.
(1)180B BCD ∠+∠=︒; (2)12∠=∠;
(3)34∠=∠; (4)5B ∠=∠.
A .1
B .2
C .3
D .4 【答案】C
【解析】
【分析】
根据平行线的判定定理依次判断即可.
【详解】
∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;
∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;
∵34∠=∠,∴AB ∥CD ,故(3)正确;
∵5B ∠=∠,∴AB ∥CD ,故(4)正确;
故选:C.
【点睛】
此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.
4.如图,能判定EB ∥AC 的条件是( )
A .∠C =∠ABE
B .∠A =∠EBD
C .∠C =∠ABC
D .∠A =∠ABE
【答案】D
【解析】
【分析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;
D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.
【点睛】
此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
5.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()
A.∠D=∠DCE B.∠D+∠ACD=180° C.∠1=∠2 D.∠3=∠4
【答案】C
【解析】
【分析】
根据平行线的判定方法逐项进行分析即可得.
【详解】
A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;
B. 由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;
C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;
D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,
故选C.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.
A.1个B.2个C.3个D.4个
【答案】D
【解析】
到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.
【详解】
因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.
故选:D.
【点睛】
本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.
7.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()
A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°
【答案】B
【解析】
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
【详解】
解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°.
故选:B.
本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
8.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )
A.75°B.72°C.70°D.65°
【答案】B
【解析】
【分析】
如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°
【详解】
如图,由折叠的性质可知∠3=∠4,
∵AB∥CD,
∴∠3=∠1,
∵∠1=2∠2,∠3+∠4+∠2=180°,
∴5∠2=180°,即∠2=36°,
∴∠AEF=∠3=∠1=72°
故选B.
【点睛】
本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.
9.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()
A.50°B.55°C.65°D.70°
【答案】B
【解析】
【分析】
如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.
【详解】
如图,延长l2,交∠1的边于一点,
∵11∥l2,
∴∠4=180°﹣∠1=180°﹣100°=80°,
由三角形外角性质,可得∠2=∠3+∠4,
∴∠3=∠2﹣∠4=135°﹣80°=55°,
故选B.
【点睛】
本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.
10.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
【详解】
A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不
同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
11.在下图中,∠1,∠2是对顶角的图形是()
A.B.C.D.
【答案】B
【解析】

12.如图,△ABC中,∠C=90°,则点B到直线AC的距离是 ( )
A.线段AB B.线段AC C.线段BC D.无法确定
【答案】C
【解析】
【分析】
直接利用点到直线的距离定义得出答案.
【详解】
解:如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是:线段BC.
故选:C.
【点睛】
本题考查点到之间的距离,正确把握相关定义是解题关键.
13.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )
A.互相垂直B.互相平行
C.既不垂直也不平行D.不能确定
【答案】A
【解析】
∵∠A与∠B是对顶角,
∴∠A=∠B,
又∵∠A与∠B互补,
∴∠A+∠B=180°,
可求∠A=90°.
故选A.
14.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )
A .20°
B .160°
C .20°或160°
D .70°
【答案】C
【解析】
【分析】
分两种情况,画出图形,结合平行线的性质求解即可.
【详解】
如图1,
∵a ∥b ;
∴∠1=α∠=20°,
∵c ∥d
∴∠β=∠1=20°;
如图2,
∵a ∥b ;
∴∠1=α∠=20°,
∵c ∥d
∴∠β=180°-∠1=160°;
故选C.
【点睛】
本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.
15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )
A .5
B .6
C .7
D .8
【答案】C
【解析】
【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.
【详解】
解:如图,做如下标记,
∵//AB CD ,
∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),
又∵EG 、FH 分别平分,,CEF EFB ∠∠
∴CEG FEG EFH BFH ∠=∠=∠=∠,
又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),
∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)
故与BFH ∠相等的角有7个,
故C 为答案.
【点睛】
本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.
16.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )
A .60︒
B .70︒
C .110︒
D .120︒
【答案】A
【解析】
【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.
【详解】
解:5∠标记为如下图所示,
∵1,5∠∠是对顶角,
∴15∠=∠(对顶角相等),
又∵1110,270︒︒
∠=∠=,
∴1251107800︒︒+∠=∠=+︒,
∴a ∥b (同旁内角互补,两直线平行),
∴34∠=∠(两直线平行,内错角相等),
∴4360∠=∠=︒,
故A 为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..
17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )
①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒
A.4个B.3个C.2个D.1个
【答案】A
【解析】
【分析】
根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.
【详解】
∵∠1=∠B
∴AD∥BC,①正确;
∴∠2+∠B=180°,④正确;
∵∠2=∠C
∴∠C+∠B=180°
∴AB∥CD,③正确
∴∠1=∠D,∴∠D=∠B,②正确
故选:A
【点睛】
本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.
18.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()
A.34°B.56°C.66°D.54°
【答案】B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
19.下列图形中线段PQ的长度表示点P到直线a的距离的是()
A.B.
C .
D .
【答案】C
【解析】
【分析】 根据点到直线的距离的定义,可得答案.
【详解】
由题意得PQ ⊥a ,
P 到a 的距离是PQ 垂线段的长,
故选C .
【点睛】
本题考查了点到直线的距离,点到直线的距离是解题关键.
20.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )
A .35°
B .37.5°
C .45°
D .40° 【答案】B
【解析】
【分析】
根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.
【详解】
解:∵//AD BC ,30C ∠=︒
∴18030015ADC ∠=︒-︒=︒
∵:1:3ADB BDC ∠∠= ∴115037.513
ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒
故选:B .
【点睛】
本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.。

相关文档
最新文档