临漳县第一中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临漳县第一中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设函数
,则有( )
A .f (x )是奇函数,
B .f (x )是奇函数, y=b x
C .f (x )是偶函数
D .f (x )是偶函数,
2. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°
3. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12
x π=-
B .12x π=
C .6x π
=-
D .6
x π
=
4. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.
5. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1
D .a ≤﹣3
6. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不
等式组所确定的平面区域在x 2+y 2
=4内的面积为( )
A .
B .
C .π
D .2π
7. 实数a=0.2,b=log
0.2,c=
的大小关系正确的是( )
A .a <c <b
B .a <b <c
C .b <a <c
D .b <c <a
8. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
9. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i
C .﹣1+i
D .1﹣i
10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15 11.sin 15°sin 5°-2sin 80°的值为( )
A .1
B .-1
C .2
D .-2
12.已知点M (﹣6,5)在双曲线C


=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线
方程为( ) A .y=
±
x B .y=
±
x C .y=
±x
D .y=
±x
二、填空题
13
.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .
14.设函数()()()31
321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .
15.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .
17.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
18.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫

⎬⎩⎭
项中 的最大值为_________.
三、解答题
19.如图,直三棱柱ABC ﹣A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AB=2,
(1)证明:BC 1∥平面A 1CD ;
(2)求异面直线BC 1和A 1D 所成角的大小; (3)求三棱锥A 1﹣DEC 的体积.
20.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7}, (1)求A ∪B ,(∁U A )∩(∁U B );
(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.
21.若已知,求sinx的值.
22.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
23.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).
(1)若首项a1=10,证明数列{a n}为递增数列;
(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值.
24.己知函数f(x)=lnx﹣ax+1(a>0).
(1)试探究函数f(x)的零点个数;
(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.
临漳县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:函数f (x )的定义域为R ,关于原点对称.
又f (﹣x )=
=
=f (x ),所以f (x )为偶函数.
而f ()===﹣=﹣f (x ),
故选C .
【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.
2. 【答案】C
【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc , 可得a 2=7c 2, 所以cosA==
=﹣,
∵0<A <180°, ∴A=120°. 故选:C .
【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.
3. 【答案】D 【解析】
试题分析:由已知()2sin()6
f x x π
ω=+
,T π=,所以22π
ωπ=
=,则()2sin(2)6
f x x π
=+,令 2,62x k k Z π
π
π+
=+
∈,得,26
k x k Z ππ
=
+∈,可知D 正确.故选D .
考点:三角函数()sin()f x A x ωϕ=+的对称性. 4. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
5. 【答案】A
【解析】解:∵条件p :x 2
+x ﹣2>0,
∴条件q:x<﹣2或x>1
∵q是p的充分不必要条件
∴a≥1
故选A.
6.【答案】B
【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.
则f(x)=x3﹣x2+ax,
函数的导数f′(x)=x2﹣2x+a,
因为原点处的切线斜率是﹣3,
即f′(0)=﹣3,
所以f′(0)=a=﹣3,
故a=﹣3,b=2,
所以不等式组为
则不等式组确定的平面区域在圆x2+y2=4内的面积,
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求.
∵k OB=﹣,k OA=,
∴tan∠BOA==1,
∴∠BOA=,
∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,
∴圆x2+y2=4在区域D内的面积为×4×π=,
故选:B
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.
7. 【答案】C
【解析】解:根据指数函数和对数函数的性质,知log 0.2<0,0<0.2
<1,

即0<a <1,b <0,c >1,
∴b <a <c . 故选:C .
【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 8. 【答案】A
【解析】解:∵f (0)=﹣2<0,f (1)=1>0,
∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
9. 【答案】D
【解析】解:由于,(z ﹣)i=2,可得z ﹣
=﹣2i ①
又z+
=2 ②
由①②解得z=1﹣i
故选D .
10.【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B .
11.【答案】
【解析】解析:选A.sin 15°
sin 5°
-2 sin 80°
=sin(10°+5°)
sin 5°
-2cos 10°=
sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°
sin 5°
=sin 10°cos 5°-cos 10°sin 5°
sin5 °

sin(10°-5°)
sin 5°
=1,选A.
12.【答案】A
【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,
∴,①
又∵双曲线C的焦距为12,
∴12=2,即a2+b2=36,②
联立①、②,可得a2=16,b2=20,
∴渐近线方程为:y=±x=±x,
故选:A.
【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.
二、填空题
13.【答案】70.
【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,
则n=8,
所以二项式=展开式的通项为
T r+1=(﹣1)r C8r x8﹣2r
令8﹣2r=0得r=4
则其常数项为C84=70
故答案为70.
【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.
14.【答案】11[3)32⎡⎤
+∞⎢⎥
⎣⎦
,,
【解析】

点:1、分段函数;2、函数的零点.
【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对()3x g x a =-于轴的交点个数进行分情况讨论,特别注意:1.在1x <时也轴有一个交点式,还需31a ≥且21a <;2. 当()130g a =-≤时,()g x 与轴无交点,但()h x 中3x a =和2x a =,两交点横坐标均满足1x ≥.
15.【答案】±.
【解析】分析题意得,问题等价于2
64x ax ++≤只有一解,即2
20x ax ++≤只有一解,
∴2
80a a ∆=-=⇒=±,故填:±.
16.【答案】 150
【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .
在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得,
,因此AM=100
m .
在RT △MNA 中,AM=100m ,∠MAN=60°,由
得MN=100
×
=150m .
故答案为:150.
17.【答案】 .
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
18.【答案】
【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
三、解答题
19.【答案】
【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,
由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,
∴DF∥BC1,
∵BC1⊄平面A1CD,DF⊂平面A1CD,
∴BC1∥平面A1CD;…
(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.
DF=BC1==1,A1D==,A1F=A1C=1.
在△A1DF中,由余弦定理可得:cos∠A1DF==,
∵∠A1DF∈(0,π),∴∠A1DF=,
∴异面直线BC1和A1D所成角的大小;…
(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,
∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.
∴=﹣S△BDE﹣﹣=
∴三棱锥C﹣A1DE的体积V=…
【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.
20.【答案】
【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},
∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);
(2)∵集合C={x|x>a},
∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.
21.【答案】
【解析】解:∵,∴<<2π,
∴sin()=﹣=﹣.
∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin
=﹣﹣=﹣.
【点评】本题考查了两角和差的余弦函数公式,属于基础题.
22.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)
2+x
2+1]<0恒成立,
2
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,

23.【答案】
【解析】解:(Ⅰ)∵,
∴(x>0),
当a=2时,则在(0,+∞)上恒成立,
当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,
当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,
综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,
在区间(0,a﹣1)和(1,+∞)上单调递增;
当a=2时,函数(0,+∞)在(0,+∞)上单调递增;
当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.
(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,
(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,
假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,
∴f(a k+1)>f(a k),即得a k+2>a k+1>0,
由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,
∴数列{a n}为递增数列.
(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,
∴f(a1)>a1,即(a1为正整数),
设(x≥1),则,
∴函数g(x)在区间上递增,
由于,g(6)=ln6>0,又a1为正整数,
∴首项a1的最小值为6.
【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.
选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】
24.【答案】
【解析】解:(1),
令f'(x)>0,则;令f'(x)<0,则.
∴f(x)在x=a时取得最大值,即
①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞
∴f(x)的图象与x轴有2个交点,分别位于(0,)及()
即f(x)有2个零点;
②当,即a=1时,f(x)有1个零点;
③当,即a>1时f(x)没有零点;
(2)由得(0<x1<x2),
=,令
,设,t∈(0,1)且h(1)=0
则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
即,又,
∴f'(x0)=<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算
比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.。

相关文档
最新文档