八年级数学(下)数学水平测试题_2

合集下载

鲁教版五四制数学八年级下册期末测试(二)(含答案)

鲁教版五四制数学八年级下册期末测试(二)(含答案)

鲁教版五四制数学八年级下册期末测试(二)(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中,与2是同类二次根式的是( ) A.2.0 B.4 C.6 D.8 2.下列a 、b 、c 、d 四条线段,是成比例线段的是( ) A.a =12,b =4,c =5,d =12 B.a =15,b =3,c =5,d =1 C.a =13,b =2,c =8,d =12 D.a =5,b =0.02,c =0.7,d =0.33.若关于x 的一元二次方程(k-1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A.k <5B.k <5,且k ≠1C.k ≤5,且k ≠1D.k >54.如图,以点O 为位似中心,把△ABC 各边扩大为原来的2倍得到△A ´B ´C ´以下说法中错误的是( )A.△ABC ∽△A ´B ´C ´B.C ,O ,C ´三点在同一条直线上C.AO:AA ´=1: 2D.AB ∥A ´B ´5.如图,正方形ABCD 的边长为4,点E 在边DC 上,且DE =1,连接BE 并延长,交AD 的延长线于点F ,则DF 的长为( )A.1B.43 C.34 D.32 6.如图,直线l 1∥l 2∥l 3,等腰Rt △ABC 的三个顶点A 、B 、C 分别在直线l 1、l 2、l 3上,∠ACB =90°,AC 交l 2于点D ,若l 1与l 2的距离为1,l 1与l 3的距离为4,则BDAB的值是( )A.22 B.534 C.524 D.825 7.对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中较大的数,如:max{2,4}=4.按照这个规定,方程xx x x 12}max{+=-,的解为( ) A.1-2 B.2-2 C.1-2和1+2 D.1+2和-18.某楼盘准备以每平方米10000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米8100元的均价开盘销售,则平均每次下调的百分率是( ) A.8% B.9% C.10% D.11% 9. 已知关于x 的一元二次方程mx 2-(m +2)x +4m=0有两个不相等的实数根x 1,x 2,若m x x 41121=+=,则m 的值是( ) A.2或-1 B.2 C.-1 D.不存在10.如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O.∠MPN 是直角,其顶点P 与点O 重合,边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是( )(1)EF =2OE ;(2)S 四边形OEBF :S 正方形ABCD =1:4;(3)BE +BF =2OA ;(4)OG ·BD =AE 2+CF 2.A.(1)(2)(3)(4)B.(1)(2)(3)C.(2)(3)(4)D.(1)(4) 二、填空题(每小题3分,共24分)11.化简:()()()()222235532323+⨯-+--+= ____________.12.如图所示,已知AEACAD AB ==3,∠BAD =∠CAE ,若△ADE 的面积为6,则△ABC 的面积为____________.13.如图所示,菱形ABCD 的对角线相交于点O ,过点A 作AE ⊥CB 交CB 的延长线于点E ,连接OE 若菱形ABCD 的面积等于12,对角线BD =4,则OE 的长为____________.14.如图所示,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是____________.15.如图所示,在平面直角坐标系中,△ABC 和△A ′B ´C ´是以坐标原点O 为位似中心的位似图形,且点B (3,1),B ´(6,2),若点A ´(5,6),则点A 的坐标为___________.16.已知关于x 的一元二次方程(m-1)2x 2+3mx +3=0的一个实数根为-1,则该方程的另一个实数根为__________.17.下表是小明填写的实践活动报告的部分内容,则小河的宽度为__________.题目测量小河的宽度测量目标示意图相关数据BC =1m ,DE =1.5m ,BD =5m18.如图所示,在矩形ADCB 中,AD =2,AB =5,P 为CD 边上的动点(不与点C 、D 重合),当DP =__________时,△ADP 与△BCP 相似.三、解答题(共66分) 19.(6分)计算: (1)184831512-+-; (2)()()()()22233653-+--+⨯-.20.(8分)解方程:(1)x 2-3x-2=0(公式法); (2)2x 2-4x-8=0(配方法)21.(8分)在如图所示的方格中,△OAB 的顶点坐标分别为O (0,0)、A (-2,-1)、B (-1,-3),△O 1A 1B 1与△OAB 是以点P 为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的相似比;(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1,并写出点B的对应点B2的坐标.22(8分)已知关于x的一元二次方程x2+mx=3(m为常数).(1)求证:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.23.(8分)如图所示,已知在矩形ABCD中,点E在边AD上,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BFCE是正方形.24.(10分)某水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,那么每天可售出500千克经市场调查后发现,在进货价不变的情况下,若每千克涨价1元,则日销量将减少20千克.(1)若该种水果以每千克盈利16元的单价出售,则每天的总毛利润为多少元?(2)现市场既要保证每天的总毛利润为6000元,又要使顾客得到实惠,则该种水果每千克应涨价多少元?25.(10分)如图所示,在△ABC中,AB=AC,D为BC的中点,AE∥BD,O是CE的中点,CE交AB于点F.(1)求证:四边形AEBD是矩形;(2)若BE=23,AE=2,求EF的长.26.(10分)如图所示,四边形ABCD是正方形,点E是BC边上一动点(不与B、C重合),连接AE,过点E作EF⊥AE,交DC于点F,连接AF.(1)求证:△ABE∽△ECF;(2)试探究当点E在BC的什么位置时,∠BAE=∠EAF,请证明你的结论.参考答案一、选择题1.D2.B3.B4.C5.C6.C7.D8.C9.B 10.A 二、填空题11.222+ 12.54 13.3 14.63 15.(2.5,3)16.-3117.10 m 18.1或4或2.5三、解答题19.解析(1)原式=2333132********-=-+-. (2)原式=28232233033536-+=++--+-. 20.解析(1)∵a =1,b =-3,c =-2,∴△=b 2-4ac =(-3)2-4×1×(-2)=17>0, ∴x =12173⨯±,∴x 1=2173+,x 2=2173-. (2)∵2x 2-4x =8,∴x 2-2x =4,则x 2-2x +1=4+1,即(x-1)2=5,∴x-1=±5, ∴x 1=5+1,x 2=-5+1.21.解析(1)如图,点P 的坐标为(-5,-1),△O 1A 1B 1与△OAB 的相似比为2:1.(2)如图,△OA 2B 2即为所求,B 2的坐标为(-2,-6). 22.解析(1)证明:由题意得x 2+mx-3=0,∵a =1,b =m ,c =-3,∴△=b 2-4ac =m 2-4×1×(-3)=m 2+12, ∵m 2≥0,∴m 2+12>0,∴△>0,∴无论m 为何值,该方程都有两个不相等的实数根.(2)设方程的另一个根为x 1, 则2·x 1=313-=-=a c ,∴x 1=23,∴方程的另一个根为23. 23.证明 ∵BF ∥CE ,CF ∥BE ,∴四边形BFCE 是平行四边形, 又∵在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,∴∠ABE =∠EBC =∠DCE =∠BCE =45°,∴BE =CE ,∠BEC =90°. ∴四边形BFCE 是正方形.24.解析 (1)若每千克盈利16元,则每天可销售500-20×(16-10)=380(千克). ∴每天的总毛利润为16×380=6080(元). 答:每天的总毛利润为6080元 (2)设该种水果每千克应涨价x 元,由题意得(10+x )(500-20x )=6000,解得x 1=5,x 2=10, ∵要使得顾客得到实惠,∴应选x =5. 答:该种水果每千克应涨价5元.25.解析 (1)证明:∵O 是CE 的中点,∴OE =OC ,∵AE ∥BD ,∴∠AEO =∠DCO ,∠EAO =∠CDO ,∴△AEO ≌△DCO ,∴AE =DC , ∵D 是BC 的中点,AB =AC ∴AD ⊥BC ,BD =CD ,∴AE =BD , 又∵AE ∥BD ,∴四边形AEBD 是平行四边形,又∵AD ⊥BC ,即∠ADB =90°,∴四边形AEBD 是矩形. (2)∵AE =2,∴BC =2BD =2AE =4. ∵四边形AEBD 是矩形,∴∠EBC =90°, ∵BE =23,BC =4,∴EC =27, ∵AE ∥BC ,∴△AEF ∽△BCF ,∴21==BC AE CF EF ,∴EF =31EC =732. 26.解析(1)证明:四边形ABCD 是正方形, ∴∠B =∠C =90°,∴∠BAE +∠BEA =90°, ∵EF ⊥AE ,∴∠AEF =90°,∴∠BEA +∠FEC =90°, ∴∠BAE =∠FEC ,∴△ABE ∽△ECF.(2)当点E 在BC 的中点位置时,∠BAE =∠EAF 证明如下: 如图,延长AE ,交DC 的延长线于点H ,∵E为BC的中点,∴BE=CE,∵∠B=∠ECH=90°,∠AEB=∠CEH,∴△ABE≌△HCE,∴AE=HE,∵EF⊥AH,∴△AFH是等腰三角形,∴∠EAF=∠H.∵AB∥DH,∴∠H=∠BAE,∴∠BAE=∠EAF,∴当点E在BC的中点位置时,∠BAE=∠EAF.。

浙教版下学期八年级数学(下册)第二章一元二次方程测试题及答案

浙教版下学期八年级数学(下册)第二章一元二次方程测试题及答案

浙教版下学期八年级数学(下册)第2章一元二次方程测试题(时间:100分钟 满分:120分)1、下列方程是一元二次方程的是( )A .ax 2+bx +c =0 B .2x 2=0 C .xx 3=1 D .x 2+y =02、方程3x (x -4)=5(1-2x )的二次项系数、一次项系数、常数项分别为( ) A .3,-2,5 B .3,-2,-5 C .-3,-2,5 D .3, 2,53、关于x 的一元二次方程x 2-3px +p 2-2p +8=0的一个根为2,则实数p 的值是( ). A .2 B .6 C .2或6 D .-2或-64、若整式x 2-2x -15能分解成 (x -5)与 (x +3),则一元二次方程x 2-2x -15=0的根为( ).A .x 1=5,x 2=-3B .x 1=-5,x 2=-3C .x 1=5,x 2=3D .x 1=-5,x 2=3 5、已知方程3x (2x +5)= (2x +5),则其根为( ) A .31 B .0 C . 25- D .31,25- 6、如果一元二次方程ax 2+bx +c =0(a ≠0) 有两个相等的实数根,且满足a +b +c =0,则下列结论正确的是( )A .a =bB .c =bC .c =aD .a +b =c7、关于x 的一元二次方程x 2-(2m -3)x +m 2-6=0有两个不相等的实数根,那么m 的最大值是( ). A .-1 B .0 C .1 D .28、使用一面9m 墙为一边,再用17m 长的铁丝网围成三边,使其成一个面积为35m 2的长方形,求这个长方形的边长,设墙的对边长为x m ,可得方程为( )A 、x (17-x )=35B 、x ·217x-=35 C 、x (17-21x )=35 D 、x ·2217x -=35 9、有一个两位数它的十位上数与个位数之和是7,如把十位上数字和个位上数字调换所得两位数乘以原来的两位数就的1462求原来的两位数?( )A .34B .43C .34或43D .5210、若2b-为方程2x 2+ax +b =0的根(b ≠0),则下列代数式的值恒为常数的是( ) A .a b B .ba C .2(a +b ) D .b -a二、填空题(共10小题 每题3分 共30分)11、若关于x 的一元二次方程(k -3)x 2-6x -2=0 有实数根,则k 的取值范围是 . 12、方程(m -2)mmx -2+(m -3)x -2=0是一个一元二次方程,则m 的值是 .13、已知方程x 2-5kx -25=k 2的一个根是2,则k 的值是 ,方程的另一个根是 . 14、已知m ,n 是方程x 2+x -2019=0的两个根,则m 3-3mn +2020n 的值为 . 15、若方程x 2+(2k -1)x +k 2+2=0无实数根,则方程x 2-(3k +1)x +49k 2-3=0的根的情况为 . 16、如果两个不同的方程x 2+ax +b =0与x 2+bx +a =0只有一个公共根,那么a ,b 满足的关系式为 . 17、某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为xm ,n19、设a ,b 是一个直角三角形的两条直角边的长,且(a 2+b 2)(a 2+b 2-2)=63,则这个三角形的斜边长为 .20、若m 为实数,方程x 2-2x +m =0的一个根的相反数是方程x 2+2x -2=0的一个根,则x 2-2x +m =0的根是 .三、解答题(共6题 共60分) 21、(满分9分)解方程 (1)(2x +3)2=4(3x -4)2;(2) (3x -1)(x -2)=8;(4)2x 2-3x -1=0;22、(满分10分)已知关于x 的一元二次方程x 2+bx +a =0有两个相等的实数根,求4)2(4222-+-b a ab 的值.23、(满分10分)先阅读理解下面的材料,再按要求解答问题:解方程x 4-13x 2+36=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-13y+36=0 ①,解得y1=4,y2=9.当y=4时,x2=4,∴x=±2;当y=9时,x2=9,∴x=±3;∴原方程有四个根:x1=2,x2=-2,x3=3,x4=-3.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2-2x)2-6(x2-2x) -16=0.24、(满分10分)关于x的一元二次方程为(m-2)x2-2mx+m+2=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?25、(满分9分)将进货单价为50元的商品按60元售出时,就能卖出600个.已知这种商品每个涨价1元,其销售量就减少15个.为了赚得9000元的利润,每个商品售价应定为多少元?这时应进货多少个?26、(满分12分)已知关于x的一元二次方程2x2-3(k+1)x+k2+3k=0.(1)求证:无论k取何值,方程总有实数根.(2)若等腰三角形ABC的一边长a=2,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.参考答案一、选择题(共10小题 每3分 共30分)11、k ≥23-且 k ≠3 12、-1 13、-3,-7;-17,-37 14、2018 15、有两个不相等的实数根 16、a +b +1=0 17、2(1+x )+2(1+x )2=8 18、x 2-x -30=0 19、3 三、解答题(共6题 共60分)21、(1)(2x +3)2=4(3x -4)2;解:将原方程化为(2x +3)2-4(3x -4)2=0分解因式,得 [][])43(2)32()43(2)32(--+-++x x x x =0则(8x -5)( -4x +11)=0 则8x -5=0,或-4x +11=0解得x (2) (3x -1)(x -2)=8;解:将原方程化为3x 2-7x -6=0 分解因式,得(3x +2)(x -3)=0 则3x +2=0,或x -3=0 解得x x 2=3解:将原方程化为x 2-2x =3方程两边同加1,得x 2-2x +1=3+1,即(x -1)2=4. 则x -1=2,或x -1=-2, 解得x 1=3,x 2=-1 (4)2x 2-3x -1=0;解:∵a =2,b =-3,c =-1, ∴△=b 2-4ac =(-3)2-4×2×(-1)=17 ∴x解得x 22、解:∵x 2+bx +a =0有两个相等的实数根,∴△=b 2-4a =0, b 2=4a ,∵4)2(3222-+-b a ab =4443222-++-b a a ab =44441222-++-a a a a =121222=aa . 23、解:(1)换元,降次(2)设x 2-2x =y ,原方程可化为y 2-6y -16=0, 解得y 1=8,y 2=-2.由x 2-2x =8,得x 1=-2,x 2=4. 由x 2-2x =-2,得方程x 2-2x +2=0, b 2-4ac =4-4×2=-4<0,此时方程无实根. 所以原方程的解为x 1=-2,x 2=4. 24、解:(1)根据题意得m ≠2, △=(-2m )2-4(m -2)(m +2)=16, ∴x 1=)2(242-+m m =22-+m m ,x 2=)2(242--m m =1.(2)由(1)知x 1=22-+m m =1+22-m , ∵方程的两个根都是正整数, ∴22-m 是正整数, ∴m -2是整数, ∴m -2=1或2, ∴m =3或4.25、解:设涨价x 元能赚得9000元的利润, 即售价定为每个(x +60)元,应进货(600-10x )个, 依题意得:(60-50+x ) (600-10x )=9000,解得x 1=10 ,x 2=20,当x =10时,x +60=70,600-10x =500; 当x =20时,x +60=80,600-10x =400答:售价定为每个60元时应进货500个,或售价定为每个80元时应进货400个.26、【解】 (1)∵△=b 2-4ac =9(k +1)2-8(k 2+3k)=(k -3)2≥0, ∴无论k 取何值,方程总有实数根. (2)分两种情况: ①若b =c ,则方程2x 2-3(k +1)x +k 2+3k =0有两个相等的实数根, ∴△=b 2-4ac =(k -3)2=0, 解得k =3,此时方程为x 2-6x +9=0,解得x 1=x 2=3. ∴△ABC 的周长为8.②若b ≠c ,则b =a =2或c =a =2,即方程有一个根为2, 把x =2代入方程2x 2-3(k +1)x +k 2+3k =0,得 8-6(k +1)+k 2+3k =0, 解得k 1=1,k 2=2,当k =1时,方程为x 2-3x +2=0,解得x 1=1,x 2=2. ∴方程的另一个根为1. ∴△ABC 的周长为5.当k =2时,方程为2x 2-9x +10=0,解得x 1=2,x 2=25. ∴方程的另一个根为25. ∴△ABC 的周长为213. 综上所述,所求△ABC 的周长为8或5或213.。

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案

北师大版八年级数学下册第二章测试题及答案一.选择题(每题3分,共30分)1.下列数学式子中:①﹣3<0,②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x+1>3中,不等式有( ) A.3个B.4个C.5个D.6个2.下列各式中正确的是( )A.若a>b,则a+2>b+2B.若a>b,则a2>b2C.若a>b,且c≠0,则2ac>2bcD.若a>b,则﹣3a>﹣3b3.下列不等式的变形不一定成立的是( )A.若x>y,则﹣x<﹣y B.若x>y,则x2>y2C.若x<y,则D.若x+m<y+m,则x<y4.关于x的一元一次不等式组的解集如图所示,则它的解集是( )A.﹣1<x≤2B.﹣1≤x<2C.x≥﹣1D.x<25.若不等式组的解是x≥a,则下列各式正确的是( )A.a>b B.a≥b C.a<b D.a≤b6.某商店为了促销一种定价为20元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小颖有200元钱,那么她最多可以购买该商品( )A.5件B.6件C.7件D.11件7.若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是( )A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣18.一次函数y1=ax+b与y2=mx+n在同一平面直角坐标系内的图象如图所示,则不等式组的解集为( )A.x<﹣2B.﹣2<x<3C.x>3D.以上答案都不对9.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为( )A.5B.8C.9D.1510.已知关于x.y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的一个解;②当a=﹣2时,x.y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是( )A.①②③④B.①②③C.②④D.②③二.填空题(每题3分,共24分)11.若﹣a<﹣b,那么﹣2a+9 ﹣2b+9(填">""<"或"=").12.若关于x的不等式组的解集是x<4,则P(2﹣m,m+2)在第 象限.13.若不等式组无解,则a的取值范围是 .14.不等式(m﹣2)x<3的解集是,则m的取值范围是 .15.一次竞赛中,一共有10道题,5分,答错(或不答)一题扣1分,则小明至少答对 道题,成绩超过30分.16.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款:若一次性购买5件以上,超过部分打八折.现有32元钱,最多可以购买该商品 件.17.2019年春节期间,为提倡文明,环保祭祖,某烟花销售商拟今年不再销售烟花爆竹,改为销售鲜花,经过市场调查,发现有甲乙丙丁四种鲜花组合比较受顾客的喜爱,于是制定了进货方案,其中甲丙的进货量相同,乙丁的进货量相同,甲与丁单价相同,甲乙与丙丁的单价和均为88元/束,且甲乙的进货总价比丙丁的进货总价多800元,由于年末资金紧张,所以临时决定只进购甲乙两种组合,甲乙的进货量与原方案相同,且进货量总数不超过500束,则该经销商最多需要准备 元进货资金.18.某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有 ————人.三.解答题(共66分)19.解不等式组:(1)解不等式组,并将解集在数轴上表示出来.(2)求不等式组的整数解.20.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围解:∵x﹣y=2,∴x=y+2,又∵x>1,∴y+2>1,∴y>﹣1,又∵y<0,∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=5,且x>﹣2,y<0,①试确定y的取值范围;②试确定x+y的取值范围;(2)已知x﹣y=a+1,且x<﹣b,y>2b,若根据上述做法得到3x﹣5y的取值范围是﹣10<3x﹣5y<26,请直接写出a.b的值.21.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣5|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.22.已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围;(3)不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,试求出这个公共解.23.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a﹣b<0,则a<b.反之也成立.这种比较大小的方法称为"求差法比较大小".请运用这种方法尝试解决下面的问题:(1)比较4+3a2﹣2b+b2与3a2﹣2b+1的大小;(2)若2a+2b>3a+b,比较a.b的大小.24.阅读题.小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集,小明同学的思路如下:先根据绝对值的定义,求|x|=3时x的值,并在数轴上表示为点A,B,如图所示:观察数轴发现:以点A,B为分界点把数轴分为三部分,点A左边的点表示的数的绝对值大于3,点A.B之间的点表示的数的绝对值小于3,点B右边表示的数的绝对值大于3,因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式|x|>1的解集是 ;(2)求绝对值不等式|x﹣3|>4的解集;(3)求绝对值不等式|x﹣1|<2的解集.25.一个汽车零件制造车间可以生产甲,乙两种零件,生产4个甲种零件和3个乙种零件共获利120元;生产2个甲种零件和5个乙种零件共获利130元.(1)求生产1个甲种零件,1个乙种零件分别获利多少元?(2)若该汽车零件制造车间共有工人30名,每名工人每天可生产甲种零件6个或乙种零件5个,每名工人每天只能生产同一种零件,要使该车间每天生产的两种零件所获总利润超过2800元,至少要派多少名工人去生产乙种零件?26.某商场用60个A型包装袋与90个B型包装袋对甲,乙两类农产品进行包装出售(两种型号包装袋都用完),每个A型包装袋装2千克甲类农产品或装3千克乙类农产品,每个B型包装袋装3千克甲类农产品或装5千克乙类农产品,设有x个A型包装袋包装甲类农产品,有y个B型包装袋包装甲类农产品.(1)请用含x或y的代数式填空完成表:包装袋型号A B甲类农产品质量(千克)2x 乙类农产品质量(千克) 5(90﹣y)(2)若甲.乙两类农产品的总质量分别是260千克与210千克,求x,y的值.(3)若用于包装甲类农产品的B型包装袋数量是用于包装甲类农产品的A型包装袋数量的两倍,且它们数量之和不少于90个,记甲.乙两类农产品的总质量之和为m千克,求m的最小值与最大值.27.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格.每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.久保田收割机春雨收割机价格(万元/台)x y收割面积(亩/天)2418(1)求两种收割机的价格;(2)如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?(3)在(2)的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢? 28."中国人的饭碗必须牢牢掌握在咱们自己手中".为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲.乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲.乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲.乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?答案一.选择题1.A.2.A.3.B.4.B.5.A.6.D.7.C.8.C.9.B.10.A.二.填空题11.<.12.二.13.a≥4.14.m<2.15.7.16.12.17.22400.18.25.三.解答题(共10小题)19.解:(1),解不等式①得:x>﹣4,解不等式②得:x≤2,∴不等式组的解集为:﹣4<x≤2,数轴表示如下:(2),解不等式①得:x>﹣1,解不等式②得:x≤5,∴不等式组的解集为:﹣1<x≤5,∴整数解为0,1,2,3,4,5.20.解:(1)①∵x﹣y=5,∴x=y+5,∵x>﹣2,∴y+5>﹣2,∴y>﹣7,∵y<0,∴﹣7<y<0,②由①得﹣7<y<0,∴﹣2<y+5<5,即﹣2<x<5②,∴﹣7﹣2<y+x<0+5,∴x+y的取值范围是﹣9<x+y<5;(2)∵x﹣y=a+1,∴x=y+a+1,∵x<﹣b,∴y+a+1<﹣b,∴y<﹣a﹣b﹣1,∴﹣y>a+b+1,∵y>2b,∴﹣y<﹣2b,∴a+b+1<﹣y<﹣2b①,∴10b<5y<﹣5a﹣5b﹣5,∵2b+a+1<y+a+1<﹣b,∴2b+a+1<x<﹣b,∴6b+3a+3<3x<﹣3b②,∴11b+8a+8<3x﹣5y<﹣13b,∴①+②得:5b+5a+5+6b+3a+3<3x﹣y<﹣10b﹣3b,∵3x﹣y的取值范围是﹣10<3x﹣5y<2,∴,解得:.21解:(1),①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:,解得:3≤m≤5,∴m﹣3≥0,m﹣5≤0,则原式=m﹣3+5﹣m=2;(3)根据题意得:s=2x﹣3y+m=2(m﹣3)﹣3(﹣m+5)+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=18﹣21=﹣3;m=5时,s=30﹣21=9,则s的最小值为﹣3,最大值为9.22.解:(1)∵是ax+2y=a﹣1的一个解,∴2a﹣2=a﹣1,解得a=1;(2)x=2时,2a+2y=a﹣1,∴y=∵x=2时,y>0,∴>0,解得a<﹣1;(3)ax+2y=a﹣1变形为(x﹣1)a+2y=﹣1,∵不论实数a(a≠0)取何值,方程ax+2y=a﹣1总有一个公共解,∴x﹣1=0,此时2y=﹣1,∴这个公共解为.23.解:(1)4+3a2﹣2b+b2﹣(3a2﹣2b+1)=4+3a2﹣2b+b2﹣3a2+2b﹣1=b2+3>0,∴4+3a2﹣2b+b2>3a2﹣2b+1;(2)∵2a+2b>3a+b,∴(2a+2b)﹣(3a+b)>0,∴2a+2b﹣3a﹣b>0,∴﹣a+b>0,∴a<b.24.解:(1)根据阅读材料可知:①|x|>1的解集是x<﹣1或x>1;故答案为:x<﹣1或x>1;(2)∵|x﹣3|>4∴x﹣3<﹣4或x﹣3>4解得:x<﹣1或x>7;(3)|x﹣1|<2,∵﹣2<x﹣1<2,解得:﹣1<x<3.25.解:(1)设生产1个甲种零件获利x元,生产1个乙种零件获利y元,根据题意得:,解得:.答:生产1个甲种零件获利15元,生产1个乙种零件获利20元.(2)设要派a名工人去生产乙种零件,则(30﹣a)名工人去生产甲种零件,根据题意得:15×6(30﹣a)+20×5a>2800,解得:a>10.∵a为正整数,∴a的最小值为11.答:至少要派11名工人去生产乙种零件.26.解:(1)由题意可以填表如下:包装袋型号A B 甲类农产品质量(千克)2x3y 乙类农产品质量(千克)3(60﹣x) 5(90﹣y)故答案为:3y;3(60﹣x).(2)由题意可得,,解得.∴即x的值为40;y的值为60.(3)设有x个A型包装袋包装甲类农产品,则有y=2x个B型包装袋包装甲类农产品.∵用于包装甲类的A,B型包装袋的数量之和不少于90个,∴x+2x≥90,∴x≥30.∵90﹣2x≥0,∴x≤45;∴30≤x≤45,∴m=2x+3(60﹣x)+6x+5( 90﹣2x)=﹣5x+630,∵﹣5<0,∴当30≤x≤45时,m随x增大而减小,∴当x=45时,m有小值405,当x=30时,m有最大值480,∴m的最大值为480,最小值为405.27.解:(1)设两种收割机的价格分别为x万元,y万元,依题意得,解得故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;(2)设购买久保田收割机m台,依题意得20m+12(8﹣m)≤125 解得m≤3,故有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;(3)由题意可得24m+18(8﹣m)≥150,解得m≥1,由(1)得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.28.解:(1)设购进1件甲种农机具x万元,1件乙种农机具y万元.根据题意得:,解得:,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10﹣m)件,根据题意得:,解得:4.8≤m≤7.∵m为整数.∴m可取5.6.7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w万元.w=1.5m+0.5(10﹣m)=m+5.∵k=1>0,∴w随着m的减少而减少,=1×5+5=10(万元).∴m=5时,w最小∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a件,乙种农机具b件,由题意得:(1.5﹣0.7)a+(0.5﹣0.2)b=0.7×5+0.2×5,其整数解:或,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

八年级下册数学第17章 函数及其图象测试题(二)

八年级下册数学第17章 函数及其图象测试题(二)

第17章函数及其图象测试题(二)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若y=mx+m-1是正比例函数,则m的值为()A.0 B.1 C.1-D.2 2. 关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=13时,y=13.对于双曲线2kyx-=,当x>0时,y随x的增大而增大,则k的取值范围为()A.k<2 B.k≤2 C.k>2 D.k≥24. 正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D5. 把函数y=x的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6. 已知函数y=ax-3和y=kx的图象交于点P(2,-1),则关于x,y的二元一次方程组3y axy kx=-⎧⎨=⎩,的解是()A.21xy=-⎧⎨=-⎩,B.21xy=⎧⎨=-⎩,C.21xy=⎧⎨=⎩,D.21xy=-⎧⎨=⎩,7. 若点(-1,m)和(2,n)在直线y=-x+b上,则m,n,b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n8. 设min(x,y)表示x,y中的最小值.例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{3x,-x+4}可以表示为()A.y=()(3141)y x xx x=⎧-+≥⎪⎨⎪⎩,<B.y=()413()1x xx x-+≥⎧⎪⎨⎪⎩<,C.y=3x D.y=-x+49. 如图1,在平面直角坐标系中,点A(m,6),B(3,n)均在反比例函数(0)ky kx=>的图象上,若三角形AOB的面积为8,则k的值为()A.3 B.6 C.9 D.12图1 图210. 如图2,直线142yx=+与x轴,y轴分别交于点A和点B,点C(-4,2),点D为线段OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(-1,0)B.(-2,0)C.(-3,0)D.(-4,0)二、填空题(本大题共6小题,每小题3分,共18分)11. 若点P的坐标是(2a+1,a-4),且P点到两坐标轴的距离相等,则P点的坐标是.12. 若点A(a,2a+3)在第二、四象限两坐标轴夹角的平分线上,则a= .13. 如图3,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集是.图3 图414. 某商场对一款运动鞋五天中的售价与销量关系的调查显示,售价是销量的反比例函数(统计数据见下表).已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为元/双.15. 已知关于x的一次函数y=(m-3)x+m+2的图象经过第一、二、四象限,则关于x的一次函数y=(m+2)x-m+3必经过第象限.16. 如图4,三角形OAB的顶点A在双曲线6(0)y xx=>上,顶点B在双曲线4(0)y xx=-<上,AB中点P恰好落在y轴上,则三角形OAB的面积为.三、解答题(本大题共7小题,共52分)17.(6分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.18.(6分)已知一次函数y=(3-m)x+2m-9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当-1≤x≤2时,求y的取值范围.19.(6分)已知y=y1+y2,y1与(x-1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.求y关于x的函数表达式.20.(8分)如图5所示,在平面直角坐标系中,直线AC与x轴交于点A,与y轴交于点B(0,52),且与反比例函数10(0)y xx=>的图象交于点C,CD⊥y轴于点D,CD=2.(1)求直线AC的表达式;(2)根据函数图象,直接写出当反比例函数10(0)y xx=>的函数值y≥5时,自变量x的取值范围;(3)设点P是x轴上的点,若三角形PAC的面积等于10,直接写出点P的坐标.售价x(元/双)200 240 250 400销售量y(双)30 25 24 15图521.(8分)如图6,已知A (a ,-2a ),B (-2,a )两点是反比例函数my x=与一次函数y=kx+b 图象的两个交点.(1)求一次函数和反比例函数的表达式; (2)求三角形BAO 的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.图622.(8分)某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)与通电时间x (分)的关系如图7所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数表达式; (2)求出图中a 的值;(3)某天早上7∶20,李老师将放满水后的饮水机电源打开,若他想在8∶00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?图723.(10分)甲、乙两人同时登山,两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图8所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求甲和乙提速后y 和x 之间的函数关系式; (3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?图8附加题(20分,不计入总分)24. 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图9所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?图9(山东于秀坤)第17章 函数及其图象测试题(二)一、1. B 2. C 3. A 4. A 5. D 6. B 7. C 8. A 9. B 10. B二、11. (-9,-9)或(3,-3) 12. -1 13. x<-2 14. 300 15. 一、二、三 16. 5 三、17. (1)P (0,-3). (2)P (-12,-9). (3)P (2,-2).18. 解:(1)因为一次函数y=(3-m )x+2m-9的图象与y 轴的负半轴相交,y 随x 的增大而减小, 所以3−m <0,2m−9<0,解得3<m <4.5.因为m 为整数,所以m=4.(2)由(1)知,m=4,则该一次函数表达式为y=-x-1. 因为-1≤x≤2,所以-3≤-x-1≤0,即y 的取值范围是-3≤y≤0.19. 解:根据题意,设111k y x =-,y 2=k 2x (k 1,k 2≠0). 因为y=y 1+y 2,所以121k y k x x =+-. 因为当x=2时,y 1=4,y=2,所以11242 2.k k k =⎧⎨+=⎩,.所以k 1=4,k 2=-1.所以41y x x =--. 20. 解:(1)因为CD ⊥y 轴于点D ,CD=2,所以点C 的横坐标为2.把x=2代入反比例函数10(0)y x x =>得,1052y ==.所以C (2,5). 设直线AC 的表达式为y=kx+b ,把B (0,52),C (2,5)代入得522 5.b k b ⎧=⎪⎨⎪+=⎩,解得545.2k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线AC 的表达式为5542y x =+. (2)由图象可知,当反比例函数10(0)y x x=>的函数值y ≥5时,自变量x 的取值范围是0<x ≤2. (3)P (-6,0)或(2,0).21. 解:(1)因为A (a ,-2a ),B (-2,a )两点在反比例函数my x=的图象上,所以m=-2a ·a=-2a ,解得a=1,m=-2.所以A (1,-2),B (-2,1),反比例函数的表达式为2y x=-.将点A (1,-2),点B (-2,1)代入y=kx+b 中,得221k b k b +=-⎧⎨-+=⎩,,解得11.k b =-⎧⎨=-⎩,所以一次函数的表达式为y=-x-1.(2)在直线y=-x-1中,令y=0,则-x-1=0,解得x=-1,所以C (-1,0). 所以S △AOB =S △AOC +S △BOC =12×1×2+12×1×1=32. (3)x<-2或0<x<1.22. 解:(1)当0≤x ≤8时,设y 与x 之间的函数表达式为y=kx+b (k ≠0).将(0,20),(8,100)代入y=kx+b ,得208100b k b =⎧⎨+=⎩,,解得1020.k b =⎧⎨=⎩,所以当0≤x ≤8时,y 与x 之间的函数表达式为y=10x+20. (2)当8≤x ≤a 时,设y 与x 之间的函数表达式为22(0)k y k x=≠. 将(8,100)代入2k y x =,得2100kx=,解得k 2=800. 所以当8≤x ≤a 时,y 与x 之间的函数表达式为800y x=. 将(a ,20)代入800y x=,解得a=40. (3)依题意,得800x≤40,解得x ≥20. 因为x ≤40,所以20≤x ≤40.所以他应在7∶40~8∶00时间段内接水. 23. 解:(1)10 30(2)设甲的函数关系式为y=kx+b.由题意,得10020300b k b +⎧⎨⎩=,=,解得10=100.k b ⎧⎨⎩=,所以甲的关系式为y=10x+100.设乙提速后的函数关系式为y=mx+n.由于m=30,且图象经过(2,30),所以30=2×30+n ,解得n=-30. 所以乙提速后的关系式为y=30x-30.(3)由题意,得10x+100=30x-30 ,解得x=6.5. 把x=6.5代入y=10x+100,得y=165.所以相遇时乙距A 地的高度为165-30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A 地的高度为135米.24. 解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则b =4,7k 1+b =46,解得k 1=6,b =4.则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)因为爆炸后浓度成反比例下降,所以可设y 与x 的函数关系式为y =2k x(k 2≠0). 由图象知y =2k x 过点(7,46),所以27k =46.所以k 2=322.所以y =322x.此时自变量x 的取值范围是x >7. (2)当y=34时,由y=6x+4,得6x+4=34,x=5.所以撤离的最长时间为7-5=2(小时).所以撤离的最小速度为3÷2=1.5(km/h ).(3)当y=4时,由y=322x,得x=80.5. 80.5-7=73.5(小时).所以矿工至少在爆炸后73.5小时才能下井.。

人教版八年级数学下册期末测试卷(二)(原卷+解析)

人教版八年级数学下册期末测试卷(二)(原卷+解析)

人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。

八年级下册数学第3章 图形与坐标测试题(二)

八年级下册数学第3章 图形与坐标测试题(二)

第3章图形与坐标测试题(浙江李奇)一、选择题(每小题3分,共30分)1.根据下列表述,能确定位置的是()A. 广州白云区以北B. 万达广场3楼C. 博罗中学北偏东35°D. 东经120°,北纬30°2.在平面直角坐标系中,若点A(-m,n)在第四象限,则点B(1-n,m)在()A.第一象限B.第二象限C.第三象限D.第四象限3. 在平面直角坐标系中,下列各点在y轴上的点是()A. (2,0 )B. (-2,3 )C. (0,3)D. (1,-3 )4.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴的正方向,图1中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(-1.9,0.7)C.(0.7,-1.9)D.(3.8,-2.6)图15. 已知点A(2,-1)和点B(m-1,3),如果直线AB∥y轴,那么m的值为()A. 1B. -4C. -1D. 36.点P(m,-2)与点P1(-4,n)关于x轴对称,则m,n的值分别为()A. 4,-2B. -4,2C. -4,-2D. 4,27. 有下列说法:①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(-2,-6)在第三象限内.其中正确的有()A. 0个B. 1个C. 2个D. 3个8. 已知直角坐标系中点P到y轴的距离为5,且点P到x轴的距离为3,则这样的点P的个数是()A.1B.2C.3D.49. 图2为晓莉使用微信与晓红的对话记录.根据图中两个人的对话记录,若下列有一种走法能从邮局出发走到晓莉家,此走法为()A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米图2 图310. 如图3,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,每小题4分,共24分.请你把答案填在横线上方)11. 如果用(7,3)表示七年级三班,则(9,6)表示________.12. 在平面直角坐标系中,点P(-2,1)关于y轴对称的点P的坐标是________.13.已知点P(5a﹣7,﹣6a﹣2)在第二、四象限的角平分线上,则a=.14. 图4是北京市地铁部分线路示意图.若分别以正东、正北方向为x轴,y轴的正方向建立平面直角坐标系,表示西单的点的坐标为(-4,0),表示雍和宫的点的坐标为(4,6),则表示南锣鼓巷的点的坐标是.图 4 图515.在平面直角坐标系中,一个点的横、纵坐标都是整数,并且它们的乘积是4,满足条件的点共有个.16.如图5,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(-1,1),第2次运动到点(-2,0),第3次运动到点(-3,2),…… 按这样的运动规律,经过第2020次运动后,动点P的坐标是_______.三、解答题(共52分)17.(6分)如图6,将△ABC各顶点的横坐标都乘以-1,纵坐标不变,请在下面的平面直角坐标系中描出对应点A′,B′,C′,并依次连接这三个点,则所得△A′B′C′与△ABC有怎样的位置关系?图618.(6分)图7是某动物园的平面示意图,请按要求回答下列问题:(1)正门北偏东30°的方向上有哪些动物景点?要想确定蝴蝶馆的位置,还需要有什么数据?(2)距正门的图上距离为1个单位长度的景点有哪些?图719. (8分)图8是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果1个单位长度表示30米,求宿舍楼到教学楼的实际距离.20.(10分)如图9,平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.21. (10分)在平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记为[P],即[P]=|x|+|y|(其中“+”是四则运算中的加法),例如点P (1,2)的勾股值为[P]=|1|+|2|=3.(1)求点A (-2,4),B (32+,32-)的勾股值[A],[B];(2)若点M 在x 轴的上方,其横、纵坐标均为整数,且[M]=3,请求出点M 的坐标.22.(12分)如图10,一只甲虫在5×5的方格(每个小方格的边长为1)上沿着网格线运动. 它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上、向右走均为正,向下、向左走均为负. 如果从A 到B 记为:A→B (+1,+4),从B 到A 记为:B→A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→D ( , ),C→B ( , ),B → (+3,-2);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+1,+2),(+4,-1),(-2,+3),(-1,-1),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B →C→D ,请计算该甲虫走过的路程.(4)若图中另有两个格点M ,N ,且M→A (3-a ,b -4),M→N (5-a ,b -2),则N→A 应记为什么?图10附加题(20分,不计入总分)23. 在平面直角坐标系中,O 为坐标原点,过点A (8,6)分别作x 轴,y 轴的平行线,交y 轴于点B ,交x 轴于点C ,点P 是从点B 出发,沿B→A→C 以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t (秒).(1)直接写出点B 和点C 的坐标:B ,C ;(2)当点P 运动时,用含t 的式子表示线段AP 的长;(不要求写出t 的取值范围)(3)点D (2,0),连接PD ,AD ,在(2)的条件下是否存在这样的t 值,使S △APD =18S 四边形ABOC ,若存在,请求出t 值;若不存在,请说明理由.图11第3章图形与坐标测试题参考答案一、1.D 2.D 3.C 4.B 5.D 6.B 7.C 8.D 9.A10.B二、11. 九年级六班12.(2,1)13.-9 14.(1,3)15.616. (-2020,0)提示:动点P第1次从原点运动到点(-1,1),第2次运动到点(-2,0),第3次运动到点(-3,2),第4次运动到点(-4,0),第5次接着运动到点(-5,1),……所以经过第2020次运动后,动点P的横坐标为-2020;纵坐标为1,0,2,0,每4个为一个循环,且2020÷4=505,所以纵坐标为0.即经过第2020次运动后,动点P的坐标是(-2020,0).三、17.解:如图1,△A′B′C′与△ABC关于y轴对称.图118. 解:(1)观察图形知,正门北偏东30°的方向上的有蝴蝶馆、大象馆.要想确定蝴蝶馆的位置,还需知道蝴蝶馆与正门的距离.(2)距正门的图上距离为1个单位长度的景点有长颈鹿馆和猴园.19. 解:(1)建立平面直角坐标系如图2所示,食堂(-5,5),图书馆(2,5).图2(2)如图2所示,办公楼和教学楼的位置即为所求.(3)由坐标系可知宿舍楼到教学楼的距离是8个单位长度,所以宿舍楼到教学楼的实际距离为:8×30= 240(米).20. 解:如图3,作CE⊥x轴于点E,DF⊥x轴于点F.图3则S △ADF =12×(2-1)×4=2,S 梯形DCEF =12×(3+4)×(3-2)=3.5,S △BCE =12×(5-3)×3=3. 所以S 四边形ABCD =2+3.5+3=8.5.答:四边形ABCD 的面积是8.5.21. 解:(1)由题意,[A]=|-2|+|4|=2+4=6,[B]=|32+|+|32-|=2332-++=23.(2)因为点M 在x 轴的上方,其横、纵坐标均为整数,且[M]=3,所以x=±1,y=2,或x=±2,y=1, x=0,y=3.所以点M 的坐标为(-1,2),(1,2),(-2,1),(2,1)或(0,3).22. 解:(1)+4 +2 -2 0 D(2)点P 的位置如图4所示.图4(3)A B 记为(1,4),B C 记为(2,0),C D 记为(1,-2),则该甲虫走过的路程为1+4+2+1+2=10.(4)由M A (3-a ,b -4),M N (5-a ,b -2),所以5-a -(3-a )=2,b -2-(b -4)=2.所以点A 向右走2格,向上走2格到N ,所以N A 记为(-2,-2).23. 解:(1)(0,6) (8,0)(2)由题意可得AB=8,AC=6.当点P 在线段BA 上时, AP=8-2t ;当点P 在线段AC 上时,AP=2t -8.(3)如图5,当点P 在线段BA 上时,AB ÷2=4,所以t <4.设点D 到AP 的距离为h ,则h=AC.因为S △APD =12AP•h=12AP•AC ,S 四边形ABOC =AB•AC ,所以12•(8-2t )×6=18×8×6,解得t=3<4;图5 图6如图6,当点P 在线段AC 上时,4<t <862+,即4<t <7.因为S△APD=12AP•CD,CD=8-2=6,S四边形ABOC=AB•AC,所以12•(2t-8)×6=18×8×6,解得t=5<7.综上所述,当t为3秒或5秒时,S△APD=18S四边形ABOC.。

2022-2023学年河北省邯郸市馆陶县八年级第二学期期末数学试卷及参考答案

2022-2023学年河北省邯郸市馆陶县八年级第二学期期末数学试卷及参考答案

邯郸市馆陶县2022-2023学年第二学期文化课水平测试八年级数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要画一个面积为230cm 长方形,其长为cm x ,宽为cm y ,在这一变化过程中,下列说法正确的是( )A.30是常量B.x 是常量C.30是变量D.x y 、是常量2.某班进行民主选举班干部,要求每位同学选出一位候选人,并将其选票投入票箱.这个过程是收集数据中的( )A.确定调查对象B.实施调查C.选择调查方法D.得出结论3.用长分别为557a 、、、的四根木根,恰好能钉成一个平行四边形的木框(接头忽略不记),则a 的值是( )A.5B.7C.2D.124.点(),m n 在y 轴上,则下列说法正确的是( )A.0m =B.0n =C.0m ≠D.0n ≠5.一组数据有90个,其中最大值为141,最小值为40,取组距为10,则可以分成( )A.9组B.10组C.11组D.12组6.如图所示,某居民小区为了美化环境,要在一块三角形ABC 空地上围一个四边形花坛BCFE ,已知点E 、F 分别是边AB 、AC 的中点,量得BC =16米,则边EF 的长是( )A.6米B.7米C.8米D.9米7.如图,直线y kx b =+交坐标轴于()()2,0,0,1A B -两点,则不等式0kx b --<的解集为( )A.2x >-B.2x <-C.2x >D.2x <8.正比例函数13y x =的图象大致是( ) A. B. C. D.9.在正方形网格中,点,,A B C 的位置如图所示,建立适当的直角坐标系后,点,B C 的坐标分别是()()3,1,2,1---,则点A 在( )A.第一象限B.第二象限C.第三象限D.第四象限10.依据所标识的数据,下列平行四边形一定为菱形的是( )A. B.C. D.11.下列函数的图象经过第二、三、四象限的是( )A.21y x =+B.21y x =-C.21y x =-+D.21y x =--12.如图是一台雷达探测相关目标得到的部分结果,若图中目标A 的位置为()2,90,用方位角和距离可描述为:在点O 正北方向,距离O 点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B ,则判断正确的是( )嘉嘉:目标B 的位置为()3,210;琪琪:目标B 在点O 的南偏西30方向,距离O 点4个单位长度.A.只有嘉嘉正确B.只有琪琪正确C.两人均正确D.两人均不正确13.游乐园里的大摆锤如图1所示,它的简化模型如图2,当摆锤第一次到达左侧最高点A 点时开始计时,摆锤相对地面的高度y 随时间t 变化的图象如图3所示.摆锤从A 点出发再次回到A 点需要( )秒.A.2B.4C.6D.814.已知等腰三角形的周长为16,设底边长为x ,腰长为y .可得出y 关于x 的函数表达式为182y x =-+,对于自变量x 的取值范围,小丽、小强给出不同的解答:小丽:由于x 是底边长,因此0x >小强:由于三角形两边和大于第三边,因此1282x x ⎛⎫-+> ⎪⎝⎭,解得8x <,对于两人的解法,正确的是( ) A.小丽对B.小强对C.小丽和小强合在一起对D.小丽和小强合在一起也不对 二、填空题(本大题共3个小题,每小题3分,共9分.其中16小题第一空2分,第二空1分;17小题每空1分,请将答案直接写在题中横线上)15.在平面直角坐标系中,点()3,4M -到原点的距离为__________.16.某校为了解今年春季开学后八年级学生的体质情况,校卫生室从八年级19个班中随机抽取了190名学生进行调研,则此次抽样调查的样本是__________,样本容量是__________.17.如图1,点E 为矩形ABCD 中AD 边的中点,点P 从点A 出发,沿A E B →→以2cm /s 的速度运动到点B ,图2是点P 运动时,PBC 的面积2(cm)y 随时间()s t 变化的函数图象,(1)A ∠=__________︒;(2)点C 到AD 的距离是__________;(3)a 的值为__________.三、解答题(本大题共七个小题,满分69分,解答题应写出必要的解题步骤或文字说明) 18.(本小题满分9分)如图所示,在直角坐标系xOy 中,已知,,A B C 三点的坐标分别为()()()1,5,3,0,4,3A B C ---.(1)点C 关于x 轴的对称点的坐标是__________;(2)画出把ABC 向右平移6个单位,再向上平移1个单位的图形A B C ''';并写出A 点对应点A '的坐标;19.(本小题满分9分)已知一个多边形的内角和等于它的外角和的2倍.(1)求这个多边形的内角和.(2)求这个多边形的边数.20.(本小题满分9分)为了解我市初中生每周锻炼身体的时长t (单位:小时)的情况,在全市随机抽取部分初中生进行调查,按五个组别:A 组(34),t B <组(45),t C <组(56),t D <组(67)t <,E 组(78)t <进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)求抽样调查的学生总人数;(2)抽取的学生中,求D 组的频数;(3)求D 组所在扇形的圆心角.21.(本小题满分10分)如图,点O 是平行四边形ABCD 对角线的交点,AB BC =,分别过点C D 、作,CE BD DE AC ∥∥,连接OE .(1)求证:四边形OCED 是矩形;(2)设12,16AC BD ==,求OE 的长.22.(本小题满分10分)某企业接到一批订单,在160天内(含160天)生产甲、乙两种型号家具共100套,经过测试与统计,得到如下数据:受条件限制,两种型号的家具不能同时生产,已知该企业能如期完成生产任务,设生产甲型家具x 套,生产这100套家具的总利润为y (万元).(1)求y 与x 之间的函数关系式;(2)求x 为何值时,y 最大,最大值是多少?23.(本小题满分10分)某数学学习网站,正在讲解如下问题:【背景呈现】在平面直角坐标系中,直线1l 经过()()3,4,3,0A B -,直线21:12l y x =+与x 轴交于点C ,与直线1l 交于点D【解决问题】(1)求直线1l 的函数解析式;(2)求BCD 的面积;【拓展探究】嘉淇为了更好观看图象,用手机截屏该问题的图象,如图所示,嘉淇发现屏幕上有一位置固定的黑点M ,刚好落在直角坐标系中坐标为(6,2)的位置上,嘉淇通过手机的触屏功能,在坐标原点的位置与可视范围不改变的情况下,把截屏横向、纵向放大相同的倍数,当直线1l 恰好经过点M 时,图中坐标系的单位长度变为原来的a 倍,直接写出a 的值;24.(本小题满分12分)如图,在正方形ABCD 中,E 是AB 上的一点(不与端点,A B 重合),连结DE ,过点A 作DE 的垂线,垂足为F ,延长AF 交BC 于H 点.在FH 上取点G ,使得FG AF =,连结,DG CG .(1)求证:ADE BAH ≅;(2)①若30ADE ∠=,则HGC ∠=__________︒;②改变ADE ∠的度数,HGC ∠的度数是否会发生变化?若发生变化,请写出HGC ∠与ADE ∠之间的数量关系,若不改变,请说明理由;(3)若AE BE ==CG 的长.八年级数学参考答案1-5ABBAC 6-10CAABC 11-14DDDC15.516.190名学生的体质情况,19017.(1)90°(2)6(3)418.解:(1)(-4,-3)(2)写出A 点对应点A ′的坐标(5,6)19.解:(1)这个多边形的内角和为360°×2=720°.(2)设这个多边形的边数为x .根据多边形内角和公式,得180°(x -2)=720°.∴x =6.∴这个多边形的边数为620.(1)抽样调查的学生总人数为100÷20%=500(人)(2)500-(50+100+160+40)=150(人)(3)D 组所在扇形的圆心角度数为360°×150500=108° 21.(1)证明:∵CE ∥BD ,DE ∥AC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是平行四边形,AB =BC ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴平行四边形OCED 是矩形;(2)解:∵四边形ABCD 是平行四边形,AC =12,BD =16,∴OC =12AC =6,OD =12BD =8,在Rt △COD 中,由勾股定理得:CD 10=,由(1)知,四边形OCED 是矩形,∴OE =CD =1022.解:(1)∵y=0.5x +0.8(100-x )=-0.3x +80(2)由题意得,54x +53(100-x )≤160解之得,x ≥16∵0.30k =-<,y 随x 增大而减小,∴x =16时,y 最大,最大值为-0.3×16+80=75.2(万元)23.【解决问题】(1)设直线l 1的函数解析式为(0)y kx b k =+≠∵点A (-3,4),B (3,0)在直线l 1上,∴4=033k b k b⎧⎨=++⎩-【拓展探究】3 24.(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =∠CBA =90°, ∴∠DAF +∠EAF =90°,∵DE ⊥AH ,∴∠AFD =∠DAF +∠ADF =90°, ∴∠ADE =∠BAH ,∴△ADE ≌△BAH ;(2)①45°②∠HGC 的度数不会发生变化,理由如下:∵DE ⊥AH 于F ,F A =FG ,∴AD =DG设∠ADE =α,则∠DAF =∠DGF =90°-α, ∴∠FDG =α,∴∠CDG =90°-2α,∠DGH =90°+α,∴∠DCG =∠DGC =18090(22)α︒-︒-=45°+α, ∴∠HGC =∠DGH -∠DGC =90°+α-(45°+α)=45°,∴∠HGC 的度数不会发生变化;(3)【解析】如图2,过点C 作CM ⊥AG 于M 点, ∵∠HGC =45°,∠CMG =90°,∴△CMG 是等腰直角三角形, ∴MG =CM,∵AE =BE ∴CD =BC =AB由(1)知:△ADE ≌△BAH ,∴BH =AE =CH AH =DE ,∴AH =DE 5=,∵S△ADE =12AF •DE =12AE •AD ,AF ,∴AF =2, ∵∠AFE =∠CMH =90°,∴∠AEF =∠AHB =∠CHM ,∵AE =CH , ∴△AFE ≌△CMH(AAS ),∴CM =AF =2,∴CM =MG =2,∴CG。

八年级下学期数学期末测试卷 试题试卷 含答案解析(2)

八年级下学期数学期末测试卷 试题试卷 含答案解析(2)

八年级下期数学期末测试一.选择题1.9的平方根为()A.3B.﹣3C.±3D.2.下列式子中,为最简二次根式的是()A.B.C.D.3.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣14.若式子在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<15.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元6.下表是我市6个县(市)区今年某日最高气温(℃)的统计结果:地区孟州温县沁阳博爱武陟修武平均气温温度(℃)■302729283029则6个县(市)区该日最高气温(℃)的众数和中位数分别是()A.29,31B.30,29.5C.30,29D.30,37.如图,直线y=﹣x+b经过点(0,3),则关于x的不等式﹣x+b>0的解集是()A.x>2B.x<2C.x≥2D.x≤28.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=1210.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD11.如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B→C→D的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示△P AD的面积y 关于x的函数关系的图象是()A.B.C.D.二.填空题12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)13.化简:=.14.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为.15.如图,菱形ABCD的两条对角线AC、BD相交于点O,若AB=cm,BD=6cm,则菱形ABCD的面积是.16.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是.17.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.18.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,则AF的长为.19.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=°.三.解答题20.计算:.21.计算:(﹣2)2+﹣÷.22.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.23.在平面直角坐标系xOy中,已知一次函数y=kx+4与y=﹣x+b的图象都经过A(﹣2,0),且分别与y轴交于点B和点C.(1)填空:k=,b=;(2)设点D在直线y=﹣x+b上,且在y轴右侧,当△ABD的面积为15时,求点D 的坐标.24.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?25.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.26.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.27.某校七、八年级各有400名学生,为了了解疫情期间线上教学学生的学习情况,复学后,某校组织了一次数学测试,刘老师分别从七、八两个年级随机抽取各50名同学的成绩(百分制),并对数据(成绩)进行了整理、描述和分析,部分信息如下:a.七、八年级的频数分布直方图如下(数据分为5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.七年级学生成绩在80≤x<90的这一组是:808081818182828283858586868888899090c.七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级80.3m八年级78.276根据以上信息,回答下列问题:(1)表中m的值为;(2)在这次测试中,八年级80分以上(含80分)有人;(3)小江说:“这次考试没考好,只得了79分,但年级排名仍属于前50%”,请判断小江所在年级,并说明理由;(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.28.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题如图①,若E是线段AC的中点,连接EF,其他条件不变,填空:线段BE与EF的数量关系是;(2)探究问题如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=1,请直接写出AF的长度.参考答案一.选择题1.C.2.B.3.D.4.A.5.C.6.B.7.B.8.A.9.D.10.B.11.D.二.填空题12.乙.13..14..15.12cm2.16.4.17..18.3.19.57.5.三.解答题20.解:原式=﹣﹣2=4﹣﹣2=4﹣3.21.解:原式=3﹣4+2+2﹣3=7﹣5.22.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.解:(1)将A(﹣2,0)代入y=kx+4得﹣2k+4=0,解得k=2,将A(﹣2,0)代入y=﹣x+b得1+b=0,解得b=﹣1;故答案为2,﹣1;(2)如图,过D作DE⊥BC于E,在y=2x+4中,令x=0,则y=4,∴B(0,4),在y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),∴BC=5,+S△BCD=15,当△ABD的面积为15时,S△ABC即AO×BC+DE×BC=15,∴×2×5+×DE×5=15,∴DE=4,在y=﹣x﹣1中,令x=4,则y=﹣3,∴D(4,﹣3).24.解:(1)由题意可得,,解得,答:小王共购进A种水果25箱,B种水果9箱.(2)设利润为W元,W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量,∴x≥,解得:x≥15.∵﹣1<0,∴W随x的增大而减小,∴当x=15时,W取最大值,最大值为225,此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润,此时最大利润为225元.25.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.26.证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=127.解:(1)由直方图中的数据可知,中位数是80≤x<90这一组第一个和第二个数的平均数,故m=(80+80)÷2=80,故答案为:80;(2)由频数分布直方图可得,在这次测试中,八年级80分以上(含80分)有400×=160(人),故答案为:160;(3)小江属于八年级,因为小江的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数,故小江属于八年级;(4)400×=136(人),即七年级达到“优秀”的有136人.28.解:(1)猜想线段BE与EF的数量关系为:BE=EF;理由如下:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF.故答案为BE=EF.(2)猜想线段BE与EF的数量关系为:BE=EF;理由如下:过点E作EG∥BC交AB于点G,如图②所示:∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC,∠BCD=120°,AB∥CD,△ABC与△ACD都是等边三角形,∴∠ACD=60°,∠DCF=∠ABC=60°,AB=AC,∴∠ECF=120°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)连接EF,过点E作EG∥BC交AB延长线于点G,如图③所示:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF,∵∠ABC=60°,∠EBC=30°,∴∠ABE=∠ABC+∠EBC=60°+30°=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BEA=180°﹣∠ABE﹣∠BAC=180°﹣90°﹣60°=30°,在Rt△ABE中,∠BEA=30°,∴AE=2AB=2×1=2,BE=,∴EF=,∵BE=EF,∴∠EBC=∠EFB=30°,∴∠BEF=180°﹣30°﹣30°=120°,∴∠AEF=∠BEF﹣∠BEA=120°﹣30°=90°,由勾股定理得:AF===.。

新北师大版八年级数学下册各章测试题附答案(全册)

新北师大版八年级数学下册各章测试题附答案(全册)

第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肥西县2009—2010学年度(上)期末教学质量检测试题
七年级生物
命题人:肥西严店初中王群肥西县教育局李德勤
时间:90分钟满分:100分
一、选择题:(每题2分,共50分,下列各题只有一个选项符合题意,请
将正确选项填入下框内)
1、“离离原上草,一岁一枯荣”这种生命现象说明生物体具有
A、遗传、变异的特征
B、适应性
C、生命现象
D、生长和繁殖现象
2、“惊蛰”是二十四节气之一,意思是蛰伏越冬的昆虫开始活动。

造成这一现象的非生物因素是
A、温度
B、阳光
C、水
D、土壤
3、在实验设计中,下列哪组不能作为对照条件
A、25℃和0℃
B、有空气和无空气
C、温度和水分
D、有光和无光
4、食物链开始的生物通常是
A、食草动物
B、食肉动物
C、浮游动物
D、绿色植物
5、在一个由植物→雷鸟→猛禽组成的食物链中,若消灭了全部的猛禽,雷鸟的种群数量就会
A、上升
B、先上升后下降
C、仍保持稳定不变
D、下降
6、用解剖针挑取少许番茄果肉制成的临时玻片标本,叫做
A、临时切片
B、临时涂片
C、临时装片
D、永久装片
7、在载玻片上写下一个小小的字母“E”,则会在显微镜视野内看到一个放大的
8、杜鹃花与杜鹃鸟的结构层次相比缺少的是
A、细胞
B、组织
C、器官
D、系统
9、某生物体细胞中含有12对染色体,在细胞分裂后形成的子细胞中染色体数目是
A、6条
B、12条
C、24条
D、36条
10、一个心脏从动物体的结构层次上说属于
A、系统
B、器官
C、组织
D、细胞
11、草履虫是单细胞生物,它的哪个结构相当于细胞膜
A、表膜
B、伸缩泡
C、收集管
D、纤毛
12、对于患鸡瘟的鸡,若治疗无效,正确的处理方法是
A、杀死吃掉
B、送给熟人
C、杀死后加工成饲料喂鸡
D、焚烧或深埋
13、人吃香蕉时,吃的是
A、输导组织
B、保护组织
C、营养组织
D、机械组织
14、绘生物图时,其中较暗的地方用铅笔()来表示。

A、画圆圈
B、点上细点
C、画斜线
D、涂抹
15、下列各类植物中可以当作监测空气污染程度的指示植物是
A、藻类植物
B、苔藓植物
C、蕨类植物
D、被子植物
16、为了延长种子的寿命,最好的贮藏条件是
A、低温,干燥
B、高温,干燥
C、低温,湿润
D、高温,湿润
17、植物营养的“三要素”是指
A、氮、磷、钾
B、锌、钾、鉏
C、硼、铁、鉏
D、铁、铜、钾
18、生长在印尼的“大王花”是世界上单朵最大的花,当它开放时能够发出恶臭,这对于自身生存的意义是
A、招引苍蝇为其传粉
B、以臭味熏走敌害,有利于自身生存
C、招引蝴蝶采蜜
D、排出体内毒素
19、3月12日为我国全民植树节,之所以选这个时候是因为
A、正值农闲时节
B、气温较高
C、雨水较高
D、没有长出大片叶片,蒸腾作用弱
20、植物细胞能吸水也能失水,农作物的“烧苗”现象是由于
A、缺肥
B、施肥太多,细胞失水
C、缺水
D、浇水过多
21、下列表示呼吸作用的公式中,正确的是
A、二氧化碳+水→有机物+氧
B、二氧化碳+有机物→水+氧+能量
C、有机物+氧→二氧化碳+水+能量
D、有机物+氧→二氧化碳+水
22、植物白天进行
A、光合作用
B、呼吸作用
C、蒸腾作用
D、三种作用都进行
23、在农村,人们常常将马铃薯贮藏在窖中,进入地窖取物之前,农民往往把一盏油灯吊入地窖内,这一做法的目的是
A、主要为了照明
B、消耗地窖内的氧气
C、测量地窖内的氧气含量
D、增加地窖内的温度
24、“好种出好苗”用生物学知识进行分析,“好种”的“好”主要是强调种子的下列哪种结构必须完整
A、胚
B、胚乳
C、子叶
D、种皮
25、我们提倡“不使用一次性木筷”的出发点是
A、减少个人经济支出
B、节约木材,保护森林
D、减少固体垃圾
二、判断题:(每题2分,共10分,正确的打“√”,错误的打“×”)
1、沙漠中的仙人掌为了减少温度的散失,叶片变成针刺状。

()
2、用显微镜观察的材料,必须是薄而透明的。

()
3、袁隆平爷爷是世界上著名的“杂交水稻之父”。

()
4、病毒能引起人类和动植物的多种疾病,因此病毒对人类只有害处。

()
5、在北方的森林里,树干上长满苔藓的一侧一定是南方。

()
三、识图填空题:(每空2分,计40分)
1、下面两种材料:一种是人的口腔上皮(A),一种是洋葱鳞片叶表皮(B)。

在显微镜下分别观察到如图甲、乙所示的细胞。

请你据图回答:
(1)在甲、乙两个模式图中,来自材料A的应是
________图,判断的理由是______________________
____________。

(2)对细胞有害的物质不易进入细胞,细胞中有用的物质也不会自由流出细胞,是因为标号____所示的结构在起着极为重要的作用。

(3)甲、乙细胞中作为细胞生命活动的指挥中心是标号______。

(4)图中标号②的细胞结构名称为_______。

2、目前时兴一种生态球(如图)作为家庭摆设。

该球密封,内装有水,2~3条小鱼,底部有泥沙,并生长着一些水草、藻类。

奇妙的是小鱼、藻类和水草都是活的。

请分析并回答下列问题:
(1)生态球应放在_________的环境中。

(2)球中生物能生存的原因是:藻类和水草进行_________作用,为鱼的生活提供有机物、氧气和能量。

而小鱼通过__________作用为水草和藻类提供二氧化碳,小鱼排泄物中的有机物被泥中的_____________分解二氧化碳和水,再被植物利用。

(3)生态球不是自然状态下的生态系统,一般不能维持太长时间,说明这种生态系统的_______________能力是有限的。

3、下图是与被子植物生殖有关的示意图,请据图回答:
(1)图A中,②③④⑤合称为__________它是由___________发育而来。

(2)图A种子中有两片子叶,请列举结这类种子的两种植物________________。

(3)图B中,胚珠和子房壁合称为___________,传粉受精后,它能发育成___________。

4、为了“探究玉米种子萌发的环境条件”,某校的生物兴趣小组做了如下实验:在甲、乙、丙、丁四个烧杯中分别放等量的棉花,再将相同数量的玉米种子放在上面,在不同条件下进行培养,数日后记录发芽情况如下:
(1)甲装置在实验中起____________作用,影响种子萌发的环境条件有_________________。

(2)若想探究“温度对种子萌发的影响”应选择_____________。

(3)请设计一组对照,以探究“光照对种子萌发的影响”:
A组:____________________________________________________________________
B组:____________________________________________________________________
七年级生物参考答案
一、选择题:(每题2分,共50分)
1—5 DACDB 6—10 CDDCB 11—15 ADCBB 16—20 AAADB 21—25 CDCAB
二、判断题:(每题2分,共10分)
1、(×)
2、(√)
3、(√)
4、(×)
5、(×)
三、识图填空题:(每空2分,共40分)
1、(1)甲图甲图没有细胞壁、液泡、叶绿体(填对一个就给分)
(2)①(3)③(4)细胞质
2、(1)有光(2)光合呼吸细菌和真菌(或分解者)(3)自动调节
3、(1)胚受精卵(2)大豆和花生(其它双子叶植物均可,少一个不给分)(3)子房果实
4、(1)对照水分,温度和空气(少一个不给分)
(2)甲与丙
(3)A组:潮湿的棉花,置于25℃的橱柜中,同时给光照
B组:潮湿的棉花,置于25℃的橱柜中,同时不给光照。

相关文档
最新文档