八年级初二数学第二学期勾股定理单元 易错题难题提高题学能测试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学第二学期勾股定理单元 易错题难题提高题学能测试
一、选择题
1.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )
A .5
B .75
C .145
D .365
2.如图,已知圆柱的底面直径6
BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到
A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )
A .18
B .48
C .120
D .72 3.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( ) A .0个
B .1个
C .2个
D .3个 4.在ΔABC 中,
211a b c =+,则∠A( ) A .一定是锐角
B .一定是直角
C .一定是钝角
D .非上述答案 5.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()
A .22
B .32
C .62
D .82
6.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A .3
B .5
C .4.2
D .4
7.如图,在△ABC 中,AB=8,BC=10,AC=6,则BC 边上的高AD 为( )
A .8
B .9
C .245
D .10
8.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( )
A .北偏西15︒
B .南偏西75°
C .南偏东15︒或北偏西15︒
D .南偏西15︒或北偏东15︒ 9.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角
形的第三条边可以是( )
A .6
B .8
C .10
D .12
10.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )
A .9
B .10
C .326+
D .12
二、填空题
11.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.
12.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知2,则另一直角边AB 的长为__________.
13.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.
14.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________
15.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.
16.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.
17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.
18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为____m2.
19.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.
20.如图所示,四边形ABCD是长方形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.
三、解答题
21.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.
22.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.
23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.
(2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .
(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;
②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;
(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.
25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,
设出发的时间为ts .
(1)则BC =____________cm ;
(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?
(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.
26.已知ABC ∆中,AB AC =.
(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =
(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;
(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB
的值.
27.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.
小明为解决上面的问题作了如下思考:
作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.
请根据小明的思考,写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.
28.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.
(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;
(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;
(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.
29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .
(1)求证:∠ABE =∠CAD ;
(2)如图2,以AD 为边向左作等边△ADG ,连接BG .
ⅰ)试判断四边形AGBE 的形状,并说明理由;
ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).
30.阅读下列材料,并解答其后的问题:
我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的
边分别为a、b、c,△ABC的面积为S=()()()()
a b c a b c a c b b c a
+++-+-+-
.
(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;
(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,
EG⊥CD于G,证明△DHE≌△EGD,利用勾股定理求出
7
5
EH DG
==,即可得到BE.
【详解】
∵∠BCA=90∘,AC=6,BC=8,
∴2222
6810
AB AC BC,
∵D是AB的中点,
∴AD=BD=CD=5,
由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,
∴BD=DE ,
作DH ⊥BE 于H ,EG ⊥CD 于G ,
∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12
(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,
∵DE=DE ,
∴△DHE ≌△EGD ,
∴DH=EG ,EH=DG ,
设DG=x ,则CG=5-x ,
∵2EG =2222DE DG CE CG -=-,
∴222256(5)x x -=--,
∴75
x =, ∴75EH DG ==
, ∴BE=2EH=
145
, 故选:C.
【点睛】
此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.
2.D
解析:D
【分析】
要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.
【详解】
解:把圆柱侧面展开,展开图如图所示,
点A ,C 的最短距离为线段AC 的长.
∵已知圆柱的底面直径6BC π=
, ∴6
23AD ππ
=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,
∴22218AC AD CD =+=,
∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.
故选D.
【点睛】
本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.
3.C
解析:C
【解析】
【分析】
根据勾股定理求解即可,注意要确认a 是直角边还是斜边.
【详解】
解:当a 是直角三角形的斜边时,22345a =+= ;
当a 为直角三角形的直角边时,22437a -=
故选C .
【点睛】
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4.A
解析:A
【解析】
【分析】根据
211a b c
=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵ 211a b c =+,
∴2b c
a bc
+ =,
∴2bc=a(b+c),
∵a、b、c是三角形的三条边,
∴b+c>a,
∴2bc>a·a,
即2bc>a 2,
∵(b-c)2≥0,
∴b 2 +c 2 -2bc≥0,
b 2 +
c 2≥2bc,
∴b 2 +c 2>a 2,
∴一定为锐角,
故选A.
【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.
5.B
解析:B
【解析】
由题可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三边分别为3b,4b,5b,当b=8时,4b=32,故选B.
6.C
解析:C
【分析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:设折断处离地面的高度OA是x尺,根据题意可得:
x2+42=(10-x)2,
解得:x=4.2,
答:折断处离地面的高度OA是4.2尺.
故选C.
【点睛】
此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.
7.C
解析:C
本题根据所给的条件得知,△ABC 是直角三角形,再根据三角形的面积相等即可求出BC 边上的高.
【详解】
∵AB =8,BC =10,AC =6,
∴62+82=102,∴△ABC 是直角三角形,∠BAC =90°,
则由面积公式可知,S △ABC =12AB ⋅AC =12
BC ⋅AD , ∴AD =
245
.故选C. 【点睛】 本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD 的值.
8.C
解析:C
【分析】
先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.
【详解】
解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;
∵222241857632490030+=+==,
∴乙船的航行方向与甲船的航行方向垂直,
∵甲船的航行方向是北偏东75°,
∴乙船的航行方向是南偏东15°或北偏西15°.
故选:C .
【点睛】
本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.
9.D
解析:D
【分析】
此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.
【详解】
当5和13
当1312=;
故这个三角形的第三条边可以是12.
【点睛】
本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
10.B
解析:B
【分析】
将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.
【详解】
解:如图,AB =22(24)2210++=.
故选:B .
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.
二、填空题
11.5
【分析】
在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.
【详解】
解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,
∵直角ABC 中,90B ∠=︒,6AB =,8BC =,
∴22=10AC AB BC +=,
又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =
∴6810BE ⨯=,5BD =,
∴=4.8BE ,
∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,
∴5AD AE ED =+=.
故答案为:5.
【点睛】
本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.
12.12
【分析】
延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=
+=,可得AB=BE-AE.
【详解】
如图,延长BA 至E ,使AE=BC ,并连接OE.
因为三角形COA 是等腰直角三角形
所以CO=AO,∠AOC=∠BOC+∠AOB=90°
因为∠ABC=90°,∠AOC=90°,
所以∠BAO+∠BCO=180°,
又∠BAO+∠OAE=180°
所以∠BCO=∠OAE
所以∆BCO ≅∠EAO
所以BO=EO, ∠BOC=∠EOA
所以,∠BOE=∠EOA+∠AOB=90°
所以三角形BOE 是等腰直角三角形
所以()()222210210220BO EO +=
+=
所以AB=BE-AE=20-8=12
故答案为:12
【点睛】
考核知识点:全等三角形,勾股定理.构造全等三角形是关键.
13.5
【分析】
设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值
【详解】
如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D
由题意知AD=1,BE=5,BC=10
设绳索x 尺,则OA=OB=x
∴OC=x+1-5=x-4
在Rt △OBC 中,OB 2=OC 2+BC 2
∴222
(4)10x x =-+
得x=14.5(尺)
故填14.5 ,
【点睛】
此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 14.
【解析】
【分析】
延长BC ,AD 交于E 点,在直角三角形ABE 和直角三角形CDE 中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.
【详解】
如图,延长AD 、BC 相交于E ,
∵∠A=60°,∠B=∠ADC=90°,
∴∠E=30°
∴AE=2AB ,CE=2CD
∵AB=3,AD=4,
∴AE=6, DE=2
设CD=x,则CE=2x ,DE=
x 即
x=2 x=
即CD=
故答案为:
【点睛】
本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.
15.4或2510
【分析】
分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
【详解】
①以A为直角顶点,向外作等腰直角三角形DAC,如图1.
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C为直角顶点,向外作等腰直角三角形ACD,如图2.
连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°.
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=22
2 =
在Rt△BAC中,BC22
22
=+=22BD2222
2222
BE DE()()
=+=++= 5
③以AC为斜边,向外作等腰直角三角形ADC,如图3.
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=AC sin45°=2
2
2 2
=
又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,
∴∠BCD=90°.
又∵在Rt△ABC中,BC22
=+=22,
22
∴BD2222
=+=+=
()().
BC CD
22210
故BD的长等于4或25或10.
故答案为4或25或10.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,16.222
+
【分析】
连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
如图,
连接CE,交AD于M,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,
∴AD垂直平分CE,即C和E关于AD对称,BD=2,
∴2,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是
BE+PE+PB=BE+CD+DB=BC+BE,
∵∠DEA=90°,
∴∠DEB=90°,
∵∠ABC=45°,
∴∠B=45°,
∵DE=2,
∴BE=2,
即BC=2+2,
∴△PEB的周长的最小值是BC+BE=2+2+2=2+22.
故答案为2+22.
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.
17.10
【分析】
首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.
【详解】
作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可
知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N′=22
''
OM ON
=10.故答案为10.
【点睛】
本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.
18.8或10或12或25 3
【详解】
解:①如图1:
当BC=CD=3m时,AB=AD=5m,AC⊥BD,
此时等腰三角形绿地的面积:1
2
×6×4=12(m2);
②如图2:
当AC=CD=4m时,AC⊥CB,
此时等腰三角形绿地的面积:1
2
×4×4=8(m2);
③如图3:
当AD=BD时,设AD=BD=xm,
在Rt△ACD中,CD=(x-3)m,AC=4m,
由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,
解得x=25
6
,
此时等腰三角形绿地的面积:1
2
BD·AC=
1
2
×
25
6
×4=
25
3
(m2);
④如图4,
延长BC 到D ,使BD=AB=5m ,
故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12
×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或
253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.
19.5
【解析】
试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.
解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,
∵△ABC 是等腰直角三角形,
∴AB =CB ,∠ABC =90°,AD =DC ,
∴∠BAC =∠C =45°,
∵∠ADF =∠CDB ,
∴△ADF ≌△CDB ,
∴AF =BC ,∠FAD =∠C =45°,
∵AE =3,BE =1,
∴AB =BC =4,
∴AF =4,
∵∠BAF =∠BAC +∠FAD =45°+45°=90°,
∴由勾股定理得:EF 22AF AE +2243+,
∵AC 是BF 的垂直平分线,
∴BP=PF,
∴PB+PE=PF+PE=EF=5,
故答案为5.
点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.
20.7 8
【解析】
试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.
试题解析:∵四边形ABCD为矩形,
∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
∴∠DAC=∠D′AC,
∵AD∥BC,∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,∴AE=EC,
设BE=x,则EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2,
∴32+x2=(4﹣x)2,解得x=7
8
,
即BE的长为7
8
.
三、解答题
21.BF的长为
【分析】
先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.
【详解】
解:连接BF.
∵CA=CB ,E 为AB 中点
∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°
在Rt △FEB 与Rt △FEA 中,
BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩
∴Rt △FEB ≌Rt △FEA
又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°
∴∠FBE=∠FAE=12
∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°
又∵BD ⊥AD ,∠D=90°
∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =
+==【点睛】
本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.
22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;
(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.
【详解】
解:(1)∵AB =AC ,AE =AB ,
∴AB=AC=AE,
∴∠ABE=∠AEB,∠ACE=∠AEC,
∵∠AED=20°,
∴∠ABE=∠AED=20°,
∴∠BAE=140°,且∠BAC=90°
∴∠CAE=50°,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,
∴∠DEC=∠AEC﹣∠AED=45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH
AF ,
∵在Rt △AEF 中,AE 2=AF 2+EF 2,
AF )2+
EF )2=2AE 2,
∴EH 2+CH 2=2AE 2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
23.(1)90°;(2)证明见解析;(3
)变化,24l +≤<.
【分析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =,AD ==
此时22l AD =+=
综上可知24l +≤<.
【点睛】
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明
△ACD ≌△BCF ;
②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD ≌△BCF
②证明:连接EF ,
由①知△ACD ≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD
∴∠EBF=90°
∴EF 2=BE 2+BF 2,
∴EF 2=BE 2+AD 2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF ,CE=CE
∴△DCE ≌△FCE
∴EF=DE
∴DE 2= AD 2+BE 2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,FG=
3
BF
∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2
又∵EG=EB+BG
∴EG=EB+1
2 BF,
∴EF2=(EB+1
2
BF)2+(
3
BF)2
∴DE2=(EB+1
2
AD)2+(
3
2
AD)2
∴DE2=EB2+AD2+EB·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并
通过勾股定理的计算得出线段之间的关系.
25.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s
【分析】
(1)由勾股定理即可得出结论;
(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;
(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.
【详解】
(1)在Rt △ABC 中,BC 2222212016AC AB =
-=-=(cm ).
故答案为:12;
(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,
∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +
-=(, 解得:t =252
. ∵Q 从B 到C 所需的时间为12÷2=6(s ),
252>6, ∴此时,点Q 在边AC 上,CQ =25212132
⨯-=(cm );
(3)分三种情况讨论:
①当CQ =BQ 时,如图1所示,
则∠C =∠CBQ .
∵∠ABC =90°,
∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,
∴∠A =∠ABQ ,
∴BQ =AQ ,
∴CQ =AQ =10,
∴BC +CQ =22,
∴t =22÷2=11(s ).
②当CQ =BC 时,如图2所示,
则BC +CQ =24,
∴t =24÷2=12(s ).
③当BC =BQ 时,如图3所示,
过B 点作BE ⊥AC 于点E ,
则BE 121648205AB BC AC ⋅⨯=
==, ∴CE 2222483612()55
BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,
∴CQ =2CE =14.4,
∴BC +CQ =26.4,
∴t =26.4÷2=13.2(s ).
综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.
【点睛】
本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.
26.(1)详见解析;(241;(33
【分析】
(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证
1302
FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .
【详解】
(1) 证明:∵∠DAE=∠BAC ,
∴∠DAE+∠CAD=∠BAC+∠CAD ,
即∠EAC=∠DAB.
在△ACE 与△ABD 中,
AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩
, ∴△ACE ≌△ABD(SAS),
∴BD CE =;
(2)连接BD
因为AD AE =, 60DAE BAC ∠=∠=,
所以ADE ∆是等边三角形
因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4
因为CE AD ⊥ 所以1302FEA
AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),
所以30FEA BDA ∠=∠=,CE=BD=5
所以90BDE BDA ADE ∠=∠+∠=
所以BE=22225441BD DE +=+=
(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=
所以222AB AC AC +
因为AB AC =
所以AE 2=
又因为45CAB ∠=
所以90ABE ∠=
所以()2
22223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=
所以BC=CD, 90BCD ∠=
因为同(1)可得△ACD ≌△ECB(SAS)
所以AD=BE=3AB 所以33AD AB AB ==
【点睛】
考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.
27.(1)证明见解析;(2)21.
【分析】
(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;
(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.
【详解】
解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,
∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,
∵CD 平分∠ACB ,
∴A′点落在CB 上
∵∠ACB=90°,
∴∠B=90°-∠A=30°,
∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,
∴A′D=A′B ,
∴CA+AD=CA′+A′D=CA′+A′B=CB.
(2)如图,作△ADC 关于AC 的对称图形△AD′C .
∴D′A=DA=9,D′C=DC=10,
∵AC平分∠BAD,
∴D′点落在AB上,
∵BC=10,
∴D′C=BC,
过点C作CE⊥AB于点E,则D′E=BE,
设D′E=BE=x,
在Rt△CEB中,CE2=CB2-BE2=102-x2,
在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.
∴102-x2=172-(9+x)2,
解得:x=6,
∴AB=AD′+D′E+EB=9+6+6=21.
【点睛】
本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.
28.(1)S=
24(06)
464(616)
t
t t
<
⎧
⎨
-+<<
⎩
(2)
10
,10
3
⎛⎫
⎪
⎝⎭
(3)存在,(6,6)或(6,1027)
-,
(6,272)
【解析】
【分析】
(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;
(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
【详解】
解:(1)∵A,B的坐标分别是(6,0)、(0,10),
∴OA=6,OB=10,
当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,
∴
S=1
2
×8×6=24
;
当点P在线段BC上时,BD=8,高为6+10-t=16-t,
∴S=
1
2
×8×(16-t)=-4t+64;
∴S与t之间的函数关系式为:
240t6
S
4t64(6t16)
<≤
⎧
=⎨
-+<<
⎩
()
;(2)设P(m,10),则PB=PB′=m,如图1,
∵OB′=OB=10,OA=6,
∴AB′=22
OB OA
-
'=8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,
解得m=
10
3
则此时点P的坐标是(
10
3
,10);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图2,
①当BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP122
8627
-=
∴AP1=10−7,
即P1(6,10-27
②当BP2=DP2时,此时P2(6,6);
③当DB=DP 3=8时,
在Rt △DEP 3中,DE=6,
根据勾股定理得:P 3E=228627-=,
∴AP 3=AE+EP 3=27+2,
即P 3(6,27+2),
综上,满足题意的P 坐标为(6,6)或(6,10-27),(6,27+2).
【点睛】
本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.
29.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133
k k k k ++++. 【解析】
【分析】
(1)只要证明△BAE ≌△ACD ;
(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;
ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;
【详解】
(1)证明:如图1中,
∵△ABC 是等边三角形,
∴AB =AC ,∠BAE =∠C =60°,
∵AE =CD ,
∴△BAE ≌△ACD ,
∴∠ABE =∠CAD .
(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.
理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,
∴∠GAD=∠BAC=60°,
∴△GAB≌△DAC,
∴BG=CD,∠ABG=∠C,
∵CD=AE,∠C=∠BAE,
∴BG=AE,∠ABG=∠BAE,
∴BG∥AE,
∴四边形AGBE是平行四边形,
ⅱ)如图2中,作AH⊥BC于H.
∵BH=CH=1 (1) 2
k+
∴
1113 1(1),3(1) 222
DH k k AH BH k =-+=-==+
∴222
AH DH k k1
AD=+=++
∴四边形BGAE的周长=2
22k k1
k+++,△ABC的周长=3(k+1),
∴四边形AGBE与△ABC的周长比=
2
221
33
k k k
k
+++
+
【点睛】
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
30.(1)46(2)(123+24+510)m2
【分析】
(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.
【详解】
(1)解:△ABC的面积为S=()()()()
a b c a b c a c b b c a
+++-+-+-
=
(457)(457)(475)(574)
+++-+-+-
=46
故答案是:46;
(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)。