化学反应速率理论

合集下载

第二章化学反应速率与化学平衡解析

第二章化学反应速率与化学平衡解析

让生成物及时离开反应体系,使反应物能充分接触。 另外,超声波、紫外光、激光和高能射线等也会对某 些反应的速率产生较大的影响。
2. 4 化学平衡
一、化学平衡常数 1.实验平衡常数 对于一般反应
浓度平衡常数
a A +Bb =dD+eE
c d ( D) c e ( E ) Kc a c ( A) c b ( B)
(2)
起始浓度c 0/(mol· L-1 ) 平衡浓度c /(mol· L-1)
Vi V总
p总=2.03×104 kPa
p(H2)=2.03×104 kPa×66.3%=1.35×104 kPa
p( NH ) / p Q p( N ) / p p( H ) / p
2
3

3
2
2
2.35 103 100 5.00 106 3 4.49 103 1.35 104 100 100
速率的影响并会应用;
• 掌握标准平衡常数的概念及表达式的书写; • 掌握转化率的概念及有关计算和应用; • 运用平衡移动原理说明浓度、压力、温度对化学平衡 移动的影响。
2.1 化学反应速率
反应速率是指给定条件下反应物通过化学反应 转化为产物的速率,常用单位时间内反应物浓 度的减少或者产物浓度的增加来表示。 浓度常用mol.L-1,时间常用s,min,h。 反应速率分为平均速率和瞬时速率两种表示方法。
(2) 方位因素
碰撞理论,较成功地 解释了反应物浓度、 反应温度对反应速 率的影响等,但也 存在一些局限性。
合适 方向 不合适的 方向
化学反应的方位因素
2.过渡状态理论
A +BC A…B…C AB + C

《有机化学》第二章 化学反应速率

《有机化学》第二章 化学反应速率
由第一、三次实验数据可得:
1.2×10-2 = k ×(1.0)x ×(1.0)y 4.8 × 10-2 = k ×(1.0)x ×(2.0)y
以上两式相除得: y=2
该反应的速率方程为: kcA cB2
②将任何一组实验数据代入速率方程
1.2102 mol L1 S 1
k cA cB2 (1.0mol L1)(1.0mol L1)2
催化剂通过改变反 应历程,降低反应的 活化能,从而间接增 加活化分子百分数, 加快反应速率。
注:一般反应中,反应级数x、y由实验确定,x、y可以 是整数,分数 或 零。
例: 在 298.15 K 时,发生下列反应:
aA + bB
C
将不同浓度的 A,B 两种溶液混合,得到下列实验数据:
A的初始浓 度/mol·L-1
1.0
2.0 1.0
B的初始浓 度/mol·L-1
1.0
1.0 2.0
初始速率υ/ mol·L-1 ·s-1
[B] t
:物质B的浓度随时间的变化率。
二、瞬时速率
1 lim [B] B t0 t
第二节 影响反应速率的因素
一、 浓度对反应速率的影响 1.速率方程式:
一般反应: mA+nB
pC+qD
kcAx cBy
⑴速率常数k: 只与温度、催化剂有关,与浓度无关。
⑵反应级数
①定义:速率方程式中,反应物浓度的指数x、y分别称为 反应物A和B的反应级数。总反应级数 = x + y
3.质量作用定律:— 只适用于基元反应
质量作用定律:恒温下,基元反应的化学反应 速率与各反应物浓度方次的乘积成正比,反应 物浓度的方次数就等于化学反应式中各相应物 质的计量系数。

化学反应的速率

化学反应的速率

②活化络合物与反应物(产物)存在能垒,称正反应 (逆反应)的活化能。 活化能的本质,学术界至今尚未取得统一的认识。 3-3影响反应速度的外部因素 浓度、压强、温度、催化剂 一、浓度(压强)的影响 定量关系 1、速率方程 反应物浓度与反应速度的数学关系式。 反应 aA(g) + bB(g) cC(g) + dD(g) V∝CAαCBβ= k CAαCBβ [说明] k 为比例常数,称速率常数 α、β为反应分级数, α+β为反应总级数
⑷从反应速度角度考虑 温度升高,速度增大,常温该反应速度小; 总压增加,速度增大,可加速达到平衡; 催化剂使用,提高反应速度; 增加水汽量可提高反应速度。综合反应条件: 解决冲突,考虑经济核算及操作控制。 投料比:CO : H2O=1 : 5~8,过多水汽温度难控制。 总压:5~7×105Pa 温度:多段变换处理。 高温变换,低温出料: 高温提高速度,迅速建立平衡,然后降温平衡 移动提高转化率。
第七章 化学反应的速率
化学反应速率的定义及表示方法
反应速率理论简介 – 碰撞理论 – 过渡状态理论 影响化学反应速率的因素 – 浓度的影响 – 温度的影响 – 催化剂的影响
化学反应速率的定义及表示方法
反应速度与热力学之间没有直接的联系。为什么? 说明:计算常温反应2H2 + O2 2H2O(l) 的平衡常数。 思考:该条件实际反应情况与反应趋势。 3-1 反应速度的表示 1、定义:一定条件下,反应物转变为产物的快慢。 2、表示:单位时间某物质的浓度变化。 注意:①可用不同物质的浓度变化表示反应速度; ②其数值不一定相等,但意义相同,有关系 ③单位:mol/L· s 对大多数反应,物质浓度随时间的变化不是呈 线性关系故有平均速度和瞬时速度之分

化学反应速率

化学反应速率

3 2.0×10-4
0.5×10-2
0.65×10-6
求其反应速率方程和速率常数k . 解: 设其速率方程为:v=k cm (S2O82-) ·n (I-) c
解题步骤略。
将1、2两组数据代入得:m =1; 将2、3两组数据代入得:n=1; 将m和n代入第一组数据,得:k=0.65 (L· -1· -1) mol min
温度每上升10℃,反应速率增大到原来的2~4倍。
k t+10
kt
= r = 2~4
k t+n×10 = rn kt
(4-3)
15
阿仑尼斯(Arrhenius)方程
摩尔气体常数
k = A· -Ea/RT e
速率常数 反应 温度
(4-4)
速率常数与温 度间的关系
指前因子
活化能
16
温度对反应速率的影响
对于特定化学反应:
-νA A-νBB -·· = ·· + νY Y +νz Z ·· ·· ·· ·· 其在某一时刻的反应速率为:
v= dc(A) dc(B) dc(Y) dc(Z) = = = = νAdt νBdt νYdt νZdt dξ dt
6
(4-1)
4.2 浓度对反应速率的影响
基元反应与复杂反应
k 298K 5.34 10 4 298 273 lg 4 8.2 10 2.303 8.314 298 273 k 5.9 10 3 (L mol 1 s 1 )
19
1/T
3.66×10-3
3.5×10-3
3.41×10-3
3.30×10-3
lgk
20 3.7(1/T)×10-3

第三章-化学反应速率理论

第三章-化学反应速率理论
过渡态能量高于反应物,若要发生反应,必须克服这个能垒。 这个过渡态势能又低于其它所有可能的中间态的势能,可将 其看作是各种中间态中的势阱,因而可以说活化络合物具有 最低势能的原子构型。
. surface

势 能 )面 (
1. 势能面概念的提出:
反应体系从始态经活化状态到终态,必然伴随着势能的 起伏变化,如果将这连续变化的势能标示出来,就构成了一 个如山峦起伏的势能面。如果能计算出势能面上越过某一能 垒的频率,即能计算出反应速率。
根据碰撞理论:
k PBT1/ 2eEc / RT
d ln k dT
1 2T
Ec RT 2
公 式 的
Ea
RT 2
1 2T
Ec RT 2
Ea
Ec
1 2
RT

EC——临界能

Ea——表观活化能(实验值)
由此式可知Ea与T确实有关。
Ea与Ec的异同
Ea=E活-E反——表观活化能是2个平均能量之差,是一个
正面碰撞 活化络合物 B-C键拉长
A-B成键 AB与C分离
设:x轴表示rAB,y轴表示rBC,z轴表示V, 则可得一势能面图形:
将势能面投影到一个平面图中——势能曲线 (RTP曲线)图,每条曲线是等势能线,线上数字 越大,势能越高。RTP曲线代表由A+B-C→A-B+C 的耗能最少的途径——反应坐标。
过渡态(T)能量 是所有其它中间 态能量最低的。
由R到达P点,需跨 越的最低势垒是T点
R——反应物(A+B-C)势能——势阱; T——活化络合物势能([A…B…C])——过渡态——势垒 ——鞍点; P——产物(A-B+C)势能——势阱; D——某种中间态势能(A…B…C)

化学反应速率

化学反应速率
25
二、反应级数和反应分子数
1.反应级数 速率方程式中各反应物浓度项指数之和
例: 某元反应
a A b B c C
反应级数 = a + b
1 dc(B) a b vB kc (A)c (B) B dt
反应级数可能因实验条件改变而发生变化 反应级数意义: ① 表示了反应速率与物质的量浓度的关系; ②零级反应表示了反应速率与反应物浓度无关 ③反应级数0~10…,是整数、分数。
2 HI( g ) H2 ( g ) I2 ( g )
10
有效碰撞的条件之一:
碰撞的分子需具备足够高的能量。 这样的分子称为活化分子
11
活化能Ea
Ea Ec E
Ec:活化分子具有的 最低能量
E:分子的平均能量
对于气相双分子反应: A(g) + B(g) →C(g)
v Ze
23
问题 :
对臭氧转变成氧的反应
2O3(g) 3O2(g)
其历程为:
O3 O+O3 O2+O (快) 2O2(慢)
适合此历程的速率方程是什么? a. kc2 (O3) c. kc(O3)2c(O2) b.kc(O3)c(O) d. kc2 (O3) c-1(O2)
24
2. 反应速率系数(k):
cA =1mol· -1 L , cB =1mol· -1 L
反应的热效应
吸热反应
放热反应
18
影响反应速率的因素
浓度对反应速率的影响 温度对反应速率的影响 催化剂对反应速率的影响
19
第三节
浓度对反应速率的影响和速率方程
一、元反应速率方程的确定—质量作用定律 在一定温度下,元反应的反应速率与反 1.质量作用定律 应物浓度以其化学计量数的绝对值为指 数的幂的乘积成正比幻灯片 31

化学中的化学反应速率(化学知识点)

化学中的化学反应速率(化学知识点)

化学中的化学反应速率(化学知识点)化学反应速率是指单位时间内反应物消失或产物生成的速率。

反应速率的快慢对于化学反应的研究和应用具有重要的意义。

本文将介绍化学反应速率的定义、影响因素以及如何测定反应速率。

一、化学反应速率的定义化学反应速率是指在一定条件下,反应物消失或产物生成的速率。

一般情况下,反应速率可以通过反应物消失的速率来描述,以此来衡量反应进行的快慢。

化学反应速率可以用如下公式来表示:速率= ΔC/Δt其中,ΔC表示反应物浓度的变化量,Δt表示时间的变化量。

速率的单位可以是摩尔/升·秒(mol/L·s)、分子/升·秒(molecules/L·s)等。

二、影响化学反应速率的因素化学反应速率受到多种因素的影响,主要包括以下几个方面。

1.反应物浓度:当反应物浓度增加时,反应物之间的碰撞频率增加,从而增加了反应的可能性,使得反应速率加快。

2.温度:提高温度会增加反应物的动能,使反应物之间的碰撞更加频繁且具有更高的能量。

因此,温度升高会加快反应速率。

3.催化剂:催化剂可以降低反应的活化能,使反应物更容易发生反应。

催化剂的存在可以提高反应速率,而不参与反应本身。

4.表面积:反应物的表面积越大,反应物颗粒之间的碰撞频率就越高,反应速率也会增加。

5.反应物的物理状态:气相反应相较于固相反应和液相反应具有更高的反应速率,因为气态分子之间的自由运动能带来更频繁的碰撞。

三、测定反应速率的方法测定反应速率是研究反应动力学的重要手段,常用的方法有以下几种。

1.逐点法:在反应过程中,定时取样,通过测定不同时间点上反应物消失或产物生成的量来计算反应速率。

2.连续监测法:利用分光光度计、电导计等仪器对反应过程进行实时监测,获得反应物浓度的变化曲线,从而计算反应速率。

3.消失溶液平行测定法:将相同溶液分装到多个容器中,分别对不同容器中的反应液进行逐点法测定并计算平均速率,以提高测定结果的准确性。

化学动力学中的反应速率理论

化学动力学中的反应速率理论

化学动力学中的反应速率理论化学动力学是研究化学反应速率的科学,而反应速率理论是化学动力学的核心内容之一。

反应速率理论可以帮助我们理解化学反应的速率是如何受到各种因素的影响,并为我们设计和优化化学反应提供了理论依据。

在化学反应中,反应速率是指单位时间内反应物消失或产物生成的数量。

反应速率的大小取决于反应物的浓度、温度、压力、催化剂等因素。

反应速率理论的主要目标就是解释这些因素对反应速率的影响,并建立相应的数学模型。

反应速率理论最早由荷兰化学家Van't Hoff提出,他通过观察化学反应速率与反应物浓度的关系,提出了速率方程。

速率方程是描述反应速率与反应物浓度之间关系的数学表达式,通常采用指数函数形式。

例如,对于一级反应,速率方程可以表达为:r = k[A]其中,r表示反应速率,k为速率常数,[A]表示反应物A的浓度。

速率常数k是一个与温度有关的常数,它反映了反应的快慢程度。

除了浓度,温度也是影响反应速率的重要因素。

根据反应速率理论,温度升高会导致反应速率增加。

这是因为温度升高会提高反应物的平均能量,使分子碰撞的能量超过反应的活化能,从而增加反应发生的机会。

根据阿伦尼乌斯方程,反应速率与温度的关系可以用以下公式表示:k = Ae^(-Ea/RT)其中,k为速率常数,A为指前因子,Ea为活化能,R为气体常数,T为反应温度。

这个公式表明,随着温度的升高,指前因子A和指数项e^(-Ea/RT)都会增大,从而使得反应速率增加。

除了浓度和温度,压力和催化剂也可以影响反应速率。

对于气相反应,增加压力会增加反应速率。

这是因为增加压力会增加分子的碰撞频率,从而增加反应发生的机会。

催化剂是一种可以提高反应速率的物质,它通过降低反应的活化能来加速反应速率。

催化剂通常参与反应,但在反应结束后能够重新生成,因此可以多次参与反应,提高反应速率。

除了这些因素,反应速率还可能受到其他因素的影响,如溶剂、光照等。

不同的反应体系可能会有不同的速率方程和影响因素。

第二章化学反应速率

第二章化学反应速率
因为T↑, 反应物分子的运动速率加快, 反应物分子 间碰撞频率增大, 更重要的是反应物分子的能量增加, 活化分子的百分数也随之增加, 所以有效碰撞次数增 大, 使反应速率加快.温度变化对反应速率的影响,
mol L1 s1 1.0102 mol

L1
0.65L mol1 min 1
反应速率常数k
重点掌握
物理意义:各反应物浓度均为单位浓度时的反 应速率. k值越大,反应速率越快
k的性质: A:由反应物的本性决定,与反应物浓度无关
B:与温度有关,T↑, k↑, v↑
求k、m、n、m+n
c(S2O82-)
c(I-) 反应初始速率
1 1.0×10-4 1.0×10-2 0.65×10-6
2 2.0×10-4 1.0×10-2 1.30×10-6
3 2.0×10-4 0.5×10-2 0.65×10-6
解:v=k c(S2O82-) m c(I-) n k不变 v1/v2: 0.65 × 10-6/1.30 × 10-6
分子分数%
Ea = Ec - E
Ea
E
Ec
E
重点掌握
影响活化能大小的因素
1.活化能Ea由反应本性决定,与反应物浓度无关; 2. Ea受温度影响较小,可忽略,T 变,Ea基本不变; 3. 催化剂对Ea影响较大,催化剂可大大降低Ea, 加快反应速率; 4. Ea小,活化分子百分数增大,反应速率加快, 一般反应的 Ea 40-400 kJ·mol-1多数在60-250之间 Ea ﹤ 40 kJ·mol-1反应速率大 Ea ﹥ 400 kJ·mol-1反应速率非常小
大多数反应是经过多步才完成的,由两个或两个以上 基元反应构成的反应称为复杂反应.复杂反应中最慢 的基元反应为复杂反应的定速步骤.

化学反应速率ppt

化学反应速率ppt

催化剂具有选择性
不同的催化剂对同一反应可能有不同的效果,选择合 适的催化剂可以提高目标产物的收率和选择性。
03
化学反应速率理论
碰撞理论
01
02
03
有效碰撞
发生化学反应的分子间碰 撞,必须满足能量和取向 的要求。
活化能
分子从常态转变为容易发 生化学反应的活跃状态所 需要的能量。
碰撞频率
单位时间内发生碰撞的分 子对数,与分子浓度、温 度、压力等因素有关。
02
影响化学反应速率的因素
温度对反应速率的影响
温度升高,反应速率加快
一般来说,温度越高,分子的平均动能越大,碰撞频率和有效碰撞几率增加,从而加快反应速率。
温度对反应速率的影响程度因反应而异
不同的化学反应对温度的敏感性不同,有些反应在低温下就能进行,而有些则需要高温条件。
浓度对反应速率的影响
浓度增加,反应速率加快
化学反应速率方程
描述了反应速率与反应物浓度的关系, 其中速率常数k与温度有关。
影响化学反应速率的因素
包括反应物浓度、温度、催化剂、压 力(对气体反应)等。
阿累尼乌斯方程
揭示了反应速率常数k与温度T的关系, 为预测不同温度下的反应速率提供了 依据。
学生自我评价报告
知识掌握程度
通过本次课程学习,我对化学反 应速率的概念、影响因素及相关 方程有了更深入的理解。
对于有气体或溶液参加的反应,增加反应物的浓度可以提高单位体积内活化分子的数目, 从而增加有效碰撞几率,使反应速率加快。
浓度对反应速率的影响受其他因素制约
例如,在固体或纯液体参加的反应中,由于它们的浓度是常数,因此改变它们的用量不 会改变反应速率。
催化剂对反应速率的影响

基础化学之化学反应速率

基础化学之化学反应速率

定义:
Ea E * E k
E*
Ek
上页 下页 目录 返回
Ea 与 △rH 的关系
★ 反应物的能量必 须爬过一个能垒 才能转化为产物 ★ 即使是放热反应 (△rH为负值), 外界仍必须提供 最低限度的能量, 这个能量就是 反应的活化能
上页 下页 目录 返回
energy
O 3 (g) NO(g) NO 2 (g) O 2 (g), r H 199 .6 kJ mol 1
图的方法得到,例如对
于反应(45 ℃ ): 2N2O5 →4NO2+O2
v=2.7×10-4 mol · -3 ·-1 dm s
400
800
dc(N2O5) v dt
1200 1600 时间(s)
2000
lim v
t 0
c(N2O5)/mol· -3 v/mol ·dm-3 ·-1 dm s 0.90 0.45 5.4×10-4 2.7×10-4
上页 下页 目录 返回
3.3.1 浓度对化学反应速率的影响:元 反应的速率方程
在温度恒定情况下, 增加反 应物的浓度可以增大反应速率。
白磷在纯氧气中和在空气中的燃烧
用来表示反应速率与反应物浓度之间定量的关系式 叫速率方程(比率相等)又叫速率定律(比率定律)。 反应速率∝碰撞次数∝反应物浓度
4次碰撞
● 对有些物种而言,碰撞的几何方位要适当
上页 下页 目录 返回
对 HCl 和 NH3 的气相反应,显然 HCl 的 H 端只能通过狭窄的“窗口”接近孤对电子, 发生有效碰撞的机会自然小多了。
上页 下页 目录 返回
Question 2
Solution
对应2HI H2+I2,若每次碰撞都反应, T=500℃,c(HI)=1.0×10–3mol· -3, d (HI) dm = 4.0×10–10m。则理论碰撞次数和实际碰 撞次数各为多少?

化学反应速率定律

化学反应速率定律

化学反应速率定律化学反应速率定律是描述化学反应速率与反应物浓度之间关系的定律。

根据不同的反应类型,速率定律可以分为零级、一级、二级等不同级别。

以下将分别介绍各级别速率定律的基本原理和推导过程。

一、零级速率定律零级速率定律适用于反应速率与反应物浓度无关的情况。

在这种情况下,反应速率恒定,与反应物浓度无关。

数学表示为:v = k。

二、一级速率定律一级速率定律适用于反应速率与反应物浓度成正比的情况。

具体表达式为:v = k[A],其中v为反应速率,k为速率常数,[A]为反应物A 的浓度。

推导过程:考虑一种一级反应的简单反应方程:A → 产物。

根据化学动力学理论,反应速率与反应物的浓度成正比,即v = k[A]。

这是一级速率定律的基本表达式。

三、二级速率定律二级速率定律适用于反应速率与反应物浓度成平方关系的情况。

具体表达式为:v = k[A]^2,其中v为反应速率,k为速率常数,[A]为反应物A的浓度。

推导过程:考虑一种二级反应的简单反应方程:2A → 产物。

根据化学动力学理论,反应速率与反应物的浓度平方成正比,即v = k[A]^2。

这是二级速率定律的基本表达式。

四、其他级别速率定律除了零级、一级和二级速率定律外,还存在其他级别的速率定律,如三级、亚级等。

它们的基本原理和推导过程与一级和二级速率定律类似,只是与反应物浓度的关系形式不同。

五、速率常数的确定速率常数k是反应速率与反应物浓度关系的比例系数,具有温度依赖性。

通常通过实验测定确定,一般采用初始速率法、半衰期法等方法。

实验数据得到后,根据速率定律的表达式进行数据处理和计算,最终确定速率常数k的数值。

六、总结化学反应速率定律是描述化学反应速率与反应物浓度关系的定律。

根据不同的反应类型,速率定律可以分为零级、一级、二级等级别。

通过实验测定反应速率和反应物浓度,可以确定速率常数k的数值。

深入理解速率定律的原理和推导过程对于研究化学反应动力学和控制反应速率具有重要意义。

化学反应速率

化学反应速率

化学反应速率化学反应速率是指反应物质在单位时间内消耗或形成的量。

反应速率的大小与化学反应进行的快慢有关,可以通过实验来确定。

本文将介绍化学反应速率的概念、影响因素以及如何测量和调控反应速率。

一、化学反应速率的定义化学反应速率是指在单位时间内反应物质的消耗或生成速度。

一般用反应物浓度的变化量来表示,可以通过下式计算:反应速率= ΔC/Δt其中,ΔC表示反应物浓度的变化量,Δt表示时间间隔。

反应速率越大,反应进行得越快,反之亦然。

二、影响化学反应速率的因素1. 浓度:反应物浓度越高,反应速率越快。

这是因为高浓度意味着反应物分子碰撞的几率增加,从而增加了反应速度。

2. 温度:温度升高会导致分子动能增加,分子碰撞频率增加,反应速率增加。

根据阿伦尼乌斯方程,温度每升高10摄氏度,反应速率会增加2倍至3倍。

3. 催化剂:催化剂是能够改变反应机理、降低活化能的物质。

添加催化剂可以提高反应速率,但催化剂本身在反应中不参与化学变化。

4. 表面积:反应物分子在固体表面上的反应速率比在液体中要快。

这是因为固体表面积大,反应物分子易于吸附在固体表面上进行反应。

三、测量和调控1. 实验测量:可以通过实验来确定反应速率。

例如,在固定温度下,测量反应物浓度随时间的变化,根据测得的数据计算反应速率。

2. 温度控制:调控反应温度可以改变反应速率。

通过改变温度,可以调节反应的快慢,实现对反应速率的控制。

3. 催化剂的使用:添加催化剂可以提高反应速率。

选择适当的催化剂,可以加快反应速度,提高反应效率。

4. 反应物浓度调节:调节反应物浓度也可以改变反应速率。

增加反应物浓度可以加快反应速率,减少浓度则相反。

结语化学反应速率是化学反应进行的快慢的量化指标,受多种因素影响。

了解化学反应速率的概念和影响因素,对于实际应用具有重要意义。

实验测量和调控反应速率是化学研究和工业生产中常用的手段,可以根据实际需要选择合适的方法来控制反应速率。

化学动力学中的反应速率理论

化学动力学中的反应速率理论

化学动力学中的反应速率理论在化学反应过程中,反应速率是指单位时间内反应物消失量或产物生成量与反应物浓度之积的比值。

而反应速率理论则提供了一种描述化学反应动力学的数学模型,可用于预测反应速率、反应机理和反应路径等方面的研究。

一、反应速率理论基础反应速率理论是基于化学反应物分子间碰撞的概率推导而来的。

根据亚当斯(Adams)和懦得罗夫(Guggenheim)提出的分子碰撞模型,反应物分子必须经过一定能量的阈值,才能碰撞并发生化学反应。

因此,反应速率与反应物分子碰撞的频率和碰撞能量有关。

二、反应速率常数与活化能根据反应速率理论,反应速率常数k和反应物分子碰撞的概率成正比例。

反应速率常数k的大小决定了反应速率的快慢,其大小受到反应物浓度、温度等因素的影响。

此外,反应速率理论还提出了活化能的概念。

活化能是指化学反应必须克服的能量阈值,只有高于此能量阈值,反应物分子才能进行碰撞并发生化学反应。

反应速率常数k和活化能之间有一个Arrhenius公式,可以用来描述反应速率常数的温度依赖性。

三、反应速率与反应机理的研究反应速率理论不仅可以用于预测反应速率和活化能,还可以用于研究反应机理和反应路径。

通过反应速率和温度对k和活化能的测量,可以推导出反应物子的反应路径和反应物状态的变化情况。

这对于研究复杂反应、优化催化剂以及发展新的化学反应渠道具有重要意义。

四、反应速率理论的应用反应速率理论在工业上有着广泛的应用。

例如,研究反应过程中的速率和活化能可以制定更好的催化剂。

同时,反应速率理论还有助于工业生产中的反应条件的优化,从而提高了生产效率和工艺质量。

在环境保护方面,反应速率理论也有着重要的作用,可以通过反应速率理论研究和模拟污染物的分解和去除过程。

总之,反应速率理论是描述化学反应动力学的重要理论模型,有着广泛的应用价值。

通过对反应速率、反应机理、活化能等因素的研究,可以为化学工业的发展、环境治理以及科学研究提供帮助。

无机化学-化学反应速率理论的简介

无机化学-化学反应速率理论的简介

A+B-C→[A‥·B ‥·C]* →A-B+C
反应物 (始态)
活化络合物 (过渡态)
产物 (终态)
反应历程 —— 势能图 以反应 NO2(g) + CO(g) —— NO(g) + CO2(g) 为例说明:
NO2和CO的反应历程
O N OC O
B






A

NO2 CO
C
NO CO2
Ea=251 kJ·mol-1 Ea=175.5 kJ·mol-1
HCl + NaOH → NaCl+H2O, Ea≈20 kJ·mol-1
▲ 离子反应和沉淀反应的Ea都很小
一般认为Ea小于63 kJ·mol-1的为快速反应
小于40 kJ·mol-1和大于400 kJ·mol-1的都很难测定出
Question
化学反应会不会因活化分子的
Solution
消耗而停止?
具有各动能值分子的分布情况是由温度决定的。温
度一定,分布情况就一定。所占的百分数不但不减小反而增加了。
(2)反应是吸热的,如果维持体系温度不变,则活 化分子所占的百分数也不变;如果环境不能供应热量, 体系温度则降低,活化分子所占的百分数将随之减小。 即便这样,体系总还存在一个动能分布,总有一定数量 的活化分子。
能导致化学反应的碰撞叫有效碰撞,反之则为无效碰 撞。单位时间内有效碰撞的频率越高,反应速率越大。
只有能量足够大的分子 才能发生有效碰撞
—— 活化分子
Ee: 分子的平均能量。 Ec: 活化分子所具有的最低能量。 Ea: 活化能,即活化分子所具有的最
低能量与分子的平均能量的差值。 单位均为KJ·mol-1

第三章 化学反应速率

第三章  化学反应速率
级数可以是整数、零,也可以是分数、负数。
20
第三章 化学反应速率
4、一级反应动力学方程
v dc kc dt
积分得:
c dc
t
kdt
c co
o
ln c ln c0 kt 或:
lg
c
lg

c0
kt 2.303
半衰期:
t1
2
0.693 k
贮存期(有效期):
t0.9
0.1054 k
21
第三章 化学反应速率
4、一级反应动力学方程 一级反应的特点:
(1)k的数值与所用的浓度单位无关,k的量纲为[时间]-1。 (2)以lnc或lgc对t作图为一直线,由直线斜率可求出k。 (3)一级反应的半衰期t 与速率常数成反比,而与起始浓度无关。
常见的一级反应有放射性同位素蜕变反应,一些物质的 水解反应,分解反应以及药物在体内的吸收与排除等。
反应机理(反应历程):一个化学反应所经历的途径或具 体步骤。
(一)基元反应和非基元反应
非基元反应:由两个或两个以上的基元反应组成的化学反应。 其中反应最慢的一步基元反应叫速控步骤。
2O3=3O2
基元反应:反应物分子一步直接生成产物的反应。
(1)O3
O2 O (2)O O3
2O2
8
第三章 化学反应速率
如已知元反应
aA bB gG hH v kcacb AB
2、速率方程式: 表示反应速率与反应物浓度之间定量关系
的数学式
如对任意反应:fF+hH=dD+eE v=kc(F)α(H)β
16
白磷在含20%的氧气中燃烧
白磷在纯氧气中燃烧
17
第三章 化学反应速率

化学反应的反应速率和反应机理

化学反应的反应速率和反应机理

化学反应的反应速率和反应机理化学反应是物质发生变化的过程,其中的一个重要特征就是反应速率。

反应速率指的是反应物转化为生成物的速度,在化学反应中起着重要的作用。

同时,反应速率也取决于反应的机理,即反应路径和步骤。

本文将探讨化学反应的反应速率和反应机理的相关内容。

一、反应速率反应速率描述的是反应物浓度变化随时间变化的快慢程度。

通常用以下公式来计算反应速率:反应速率 = (反应物的浓度变化量) / (反应时间)例如,对于简单的一级反应A → 产物,反应速率可以表示为:反应速率 = -(Δ[A]) /Δt其中,Δ[A]表示反应物A的浓度变化量,Δt表示反应时间的变化量。

反应速率通常用mol/(L·s)或M/s来表示。

反应速率与反应物浓度的关系可以通过速率方程来描述。

速率方程表明了反应速率与反应物浓度之间的关系。

例如,对于简单的一级反应,速率方程可以写为:速率 = k[A]其中,k为速率常数,[A]为反应物A的浓度。

二、影响反应速率的因素反应速率受多种因素的影响,包括温度、浓度、催化剂和表面积等。

这些因素对反应速率的影响可以通过反应速率方程来描述。

1. 温度:温度的升高会导致反应物分子的平均动能增加,分子的碰撞频率和能量也相应增加,从而加快反应速率。

根据阿伦尼乌斯方程,反应速率与温度之间呈指数关系:速率 = A·e^(-Ea/RT)其中,A为指前因子,Ea为活化能,R为气体常数,T为温度。

可以看出,温度对反应速率具有显著影响。

2. 浓度:反应物浓度的增加会增加反应物分子之间的碰撞频率,从而提高反应速率。

对于简单的一级反应,反应速率与反应物浓度呈线性关系。

3. 催化剂:催化剂是一种可以加速化学反应的物质,它通过降低反应活化能来促进反应速率。

催化剂不参与反应本身,因此在反应结束后可重新利用。

4. 表面积:反应物的表面积增大时,反应速率也会增加。

这是因为反应物分子在表面上的接触面积增大,提高了碰撞频率。

化学反应速率和速率常数的关系

化学反应速率和速率常数的关系

化学反应速率和速率常数的关系化学反应速率是指单位时间内反应物消失或产物生成的物质量或物质浓度的变化率。

反应速率的大小受到多种因素的影响,其中一个关键因素是速率常数。

本文将探讨化学反应速率和速率常数之间的关系。

1. 速率常数的定义和意义速率常数是指当反应物浓度为单位值时,反应速率的大小。

以一级反应(A → 产物)为例,一级反应速率常数可以表示为k = -d[A]/dt,其中d[A]表示反应物A浓度的变化量,dt表示时间的变化量。

速率常数反映了反应物质转化的快慢程度,是反应速率与反应物浓度之间的定量关系。

2. 反应速率与速率常数的关系反应速率与速率常数之间存在直接关系。

根据化学动力学理论,反应速率可以表示为r= k[A]^m[B]^n,其中r表示反应速率,k为速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。

速率常数k越大,反应速率越快;速率常数k越小,反应速率越慢。

3. 反应物浓度对速率常数的影响反应物浓度可以影响速率常数的大小。

在多数情况下,反应物浓度越高,速率常数也越大,反应速率越快。

这是因为反应物浓度增加会增加反应中的碰撞概率,促进反应发生。

但是,反应速率与反应物浓度的关系取决于反应级数的大小。

4. 温度对速率常数的影响温度是影响速率常数的重要因素之一。

根据阿伦尼乌斯方程,速率常数k与温度呈指数关系:k = Ae^(-Ea/RT),其中A为频率因子,Ea为活化能,R为气体常量,T为温度。

温度升高,速率常数增大,反应速率加快;温度降低,速率常数减小,反应速率变慢。

这是因为温度升高会提高分子的热运动能量,增加反应碰撞频率和能量,有利于反应的进行。

5. 催化剂对速率常数的影响催化剂可以提高反应速率,降低反应的活化能,从而影响速率常数。

催化剂参与反应过程,通过提供新的反应途径或降低反应过渡态的能量,加速反应进行。

催化剂的存在可以使反应速率常数增加,从而加快反应速率。

结论:化学反应速率和速率常数之间存在密切的关系。

化学反应的反应速率与反应物浓度变化

化学反应的反应速率与反应物浓度变化

化学反应的反应速率与反应物浓度变化化学反应的反应速率与反应物浓度变化是化学动力学研究的重要内容之一。

在化学反应中,反应物浓度变化对于反应速率的影响十分显著。

本文将介绍反应速率的定义和影响因素,以及反应物浓度变化对反应速率的影响机理。

一、反应速率的定义反应速率是指单位时间内反应物消耗或生成物生成的量。

通常用化学式来表示,例如对于一个简单的反应:A → B,其反应速率可以表示为:v = -Δ[A]/Δt = Δ[B]/Δt,其中Δ[A]和Δ[B]分别表示反应物A和生成物B在时间Δt内的浓度变化。

二、反应速率的影响因素1. 反应物浓度:反应物浓度的增加会加快反应速率,因为反应物之间的碰撞频率增加,有效碰撞的几率增大。

反应速率与反应物浓度的关系可以通过速率方程表达,例如对于一个一级反应:A → B,其速率方程可以写为:v = k[A],其中k为速率常数。

2. 温度:温度升高会使反应物分子的平均动能增加,碰撞的能量也增大,进而增强了反应物之间的有效碰撞几率,从而加快了反应速率。

温度对反应速率的影响可以用阿伦尼乌斯方程来描述,即Arrhenius equation:k = Ae^(-Ea/RT),其中k为速率常数,A为常数,Ea为活化能,R为气体常数,T为温度。

3. 催化剂:催化剂是一种能够提供额外反应路径的物质,其存在可以降低反应物分子之间的能垒,从而降低反应的活化能。

通过提供反应路径,催化剂能够加速反应速率,但本身并不参与反应。

催化剂的作用可以通过速率方程来表示,例如对于一个催化反应:A → B,其速率方程可以写为:v = k[A][C],其中C为催化剂的浓度。

三、反应物浓度变化对反应速率的影响机理反应物浓度的变化对反应速率的影响是基于碰撞理论和速率方程的基础上。

根据碰撞理论,反应速率与反应物分子的碰撞频率和碰撞的能量有关。

当反应物浓度增加时,碰撞频率增加,有效碰撞的几率也增大,从而加快了反应速率。

此外,速率方程中的指数也表示了反应物浓度对反应速率的敏感性,指数越高,反应速率对该反应物的浓度变化越敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.碰撞理论
例:2HI(g)=H2(g)+I2(g) 773K,c[HI]=10-3 mol·L-1
理论计算,HI分子间碰撞次数:3.5×108 次·L1·s-1 如每次碰撞都发生反应,v=5.8×104 mol·L-1·s-1 但实验测出:v=1.2×10-8 mol·L-1·s-1
所以,并非每一次碰撞都发生预期的反应,大 多数分子间的碰撞都是无效的,不能引起化学反应, 只有非常少非常少的碰撞是有效的。
一.碰撞理论
化学反应的发生,总要以反应物之间的接触为 前提,即反应物分子之间的碰撞是先决条件。
1918年,路易斯(G.N.Lewis)提出反应速率的 碰撞理论,认为参加化学反应的物质的分子、原子 或离子要发生反应的必要条件是这些分子、原子或 离子要互相碰撞。没有粒子间的碰撞,反应的进行 则无从说起。反应物分子碰撞的频率越高,反应速 率越快。
在催化剂反应中,由于改变了活化配合物的组 成,改变了反应的机理,降低了反应活化能,从而 同等地改变正、逆向反应速率。
※一个反应要发生一般要经过哪些过程
普通 分子
活化能
活化 分子
合理取向 碰撞
有效 碰撞
新物质
能量
例题
❖ 下列说法错误的是( )
A 当碰撞的分子具有足够的能量和适当的取向时,才能发 生化学反应
B 发生有效碰撞的分子一定是活化分子 C 活化分子间的碰撞一定是有效碰撞 D 活化分子间每次碰撞都发生化学反应 E 能发生有效碰撞的分子必须具有相当高的能量 F 活化能指活化分子多出反应物分子能量的那部分
E1--反应物的平均能量 E2--产物的平均能量 Ec--活化配合物的平均能量 ∆H--化学反应的反应热
活化配合物分子具有比反应物和 生成物分子更高的能量Ec,只有反应 物分子吸收足够能量时,才能“爬过” 这个能垒,反应才能进行。
反应的活化能越大,能垒越高, 能“爬过”能垒的反应物分子越少, 反应越慢。
二.过渡状态理论
过渡状态理论认为:化学反应不只是通过反应物 分子之间简单碰撞就能完成的,而是当两个具有足 够能量的分子相互接近时,要经过一个中间过渡状 态,即首先形成一种活化配合物。
活化配合物是一种具有高能量的不稳定的反应 物原子组合体,它一方面能很快与反应物建立热力 学平衡,另一方面又能分解为新的能量较低、较稳 定的生成物。其分解生成产物的趋势大于重新变为 反应物的趋势。
二.过渡状态理论
我们以任意反应: A+BC → AB+C为例说明。
A+BC→
A∙∙∙B∙∙∙C
→ AB+C
(反应物) (过渡状态或活化配合物) (生成物)
二.过渡状态理论
正 逆反 反应 应活 活化化能能::EEaa+- ==EEcc-- EE12 ∆H= E2- E1 = Ea+ - Ea-
当∆H>0时,正反应为吸热反应 当∆H<0时,正反应为放热反应
一.碰撞理论 HI 碰撞图
一.碰撞理论
有效碰撞的条件:
1.能量
反应物分子必须具 有足够的能量,才能在 分子无限接近时克服电 子云间的斥力,以很高 的速率相互碰撞,使旧 的化学键断裂,形成新 的化学键,即化学反应。
这些有足够能量的 分子称为活化分子。
大多数分子 具有的能量
活化分子
一.碰撞理论 2.方向
活化分子只有以适当的方向相互碰撞时,反应 才有可能发生。
一.碰撞理论 活化能与反应速率的关系
活化能较小的反应
活化能较大的反应
温度一定时,分子能量分布是不变的,故活化分子数的 比例在一定的温度下是固定的。反应的活化能越高,活化分 子在所有分子中所占的百分数越小,有效碰撞的机会越小, 故反应速率越小,反之亦然。
相关文档
最新文档