函数概念与基本初等函数PPT课件

合集下载

函数的概念与基本初等函数函数模型及其应用课件文ppt

函数的概念与基本初等函数函数模型及其应用课件文ppt
函数的概念与基本初等函数函数 模型及其应用课件文ppt
xx年xx月xx日
目录
• 函数的概念与基本初等函数 • 函数模型的选择与建立 • 函数模型的应用领域 • 建立函数模型的实例分析 • 函数模型的进阶应用与挑战 • 总结与展望
01
函数的概念与基本初等函数
函数定义与性质
函数定义
设x和y是两个变量,D是一个数集,如果对于D中的每个x值,都有唯一确定的y值与之对应,那么称y 是x的函数,记作y=f(x)。
06
总结与展望
函数模型的重要性和应用前景
函数模型在各个领域 的应用广泛
无论是自然科学、社会科学还是工程 技术,函数模型都扮演着重要的角色 。
函数模型在数据处理 和分析中的重要性
通过函数模型可以对数据进行拟合、 预测和推断,进而为决策提供科学依 据。
函数模型在算法设计 和优化中的关键作用
函数模型可以描述算法的性能、复杂 度和精度,为算法优化提供基础。
在工程设计中,利用已知的设计 参数,建立函数模型,优化设计 方案。
03
函数模型的应用领域
函数模型在物理中的应用
力学
利用函数模型描述物体的运动轨迹、受力情况等。
电磁学
函数模型可以描述电路、电磁波的传播等。
光学
用函数模型研究光的传播、折射、反射等。
函数模型在化学中的应用
物质结构
函数模型可以描述分子、原子等微观粒子的结构和 运动。
图解法
通过绘制变量之间的关系图,建立函数模型。
最小二乘法
通过最小化预测值与实际值之间的平方误差 ,建立函数模型。
函数模型的应用实例
01
02
03
经济预测
科学计算
工程设计

第二章 函数概念与基本初等函数(文数) 第1讲

第二章 函数概念与基本初等函数(文数)  第1讲

答案 (1)x2-1(x≥1) (2)x2+2x+1
基础诊断 考点突破 课堂总结
ex-1,x<1, 1 【例 3】(1)(2014· 新课标全国Ⅰ卷)设函数 f(x)= x3,x≥1, 则使得 f(x)≤2 成立的 x 的取值范围是________.
x-1 2 -2,x≤1, (2)(2015· 全国Ⅰ卷改编)已知函数 f(x)= -log2(x+1),x>1,
基础诊断
考点突破
课堂总结
[易错防范]
1.求函数的解析式时要充分根据题目的类型选取相应的方法, 同 时要注意函数的定义域,如已知 f( x)=x+1,求函数 f(x)的解 析式时,通过换元的方法可得 f(x)=x2+1,这个函数的定义域 是[0,+∞),而不是(-∞,+∞). 2.求分段函数应注意的问题:在求分段函数的值 f(x0)时,首先要 判断 x0 属于定义域的哪个子集,然后再代入相应的关系式.
(5)分段函数
在函数的定义域内,对于自变量x的不同取值区间,有着不 同的 对应法则 ,这种函数称为分段函数.
分段函数是一个函数,分段函数的定义域是各段定义域 的 并集 ,值域是各段值域的 并集 .
基础诊断 考点突破 课堂总结
2.函数定义域的求法
类型 2n f(x),n∈N* x 满足的条件 f ( x) ≥0
函数,记作y=f(x),x∈A.
基础诊断
考点突破
课堂总结
(2)函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数
的 定义域 ;与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的 值域 . (3)函数的三要素是:定义域 、 值域 和对应关系. (4)表示函数的常用方法有:列表法 、图象法 和解析法.

数学版课件第二章函数的概念与基本初等函数Ⅰ第1讲

数学版课件第二章函数的概念与基本初等函数Ⅰ第1讲
设A,B是两个_非__空___集__合__
对应关系 f:A→B
如果按照某种确定的对应关系f,使对于 如果按某一个确定的对应关系f,使对于
集合A中的__任___意___一个数x,在集合B中 集合A中的__任__意___一个元素x,在集合B 都有__唯___一__确__定____的数f(x)和它对应 中都有__唯___一__确__定____的元素y与之对应
(4)∵f(x)是二次函数,∴设f(x)=ax2+bx+c(a≠0). 由f(0)=1,得c=1.由f(x+1)=f(x)+2x,得 a(x+1)2+b(x+1)+1=(ax2+bx+1)+2x, 整理得(2a-2)x+(a+b)=0,
由恒等式原理知2aa+-b2==00,⇒ab= =1-,1,
∴f(x)=x2-x+1.
答案 (1)-34 (2)[e+4,+∞)
角度3 分段函数与不等式结合
【例 3-3】 (1)已知函数 f(x)=x12,+x1<,0,x≥0,则满足不等式 f(1-x2)>f(2x)的 x 的取值 范围是________. (2)设函数 f(x)=x2+x,1x,>0x,≤0,则满足 f(x)+f x-12>1 的 x 的取值范围是________.
解 (1)法一 设 t= x+2,则 x=t-2,
即x=(t-2)2(t≥2),∴f(t)=(t-2)2+4(t-2)=t2-4, ∴f(x)=x2-4(x≥2).
法二 ∵f( x+2)=( x+2)2-4,∴f(x)=x2-4(x≥2).
(2)设 t=2x+1,则 x=t-2 1(t>1),∴f(t)=lg t-2 1,即 f(x)=lg x-2 1(x>1). (3)由 2f(x)+f 1x=2x ①, 将 x 换成1x,则1x换成 x,得 2f 1x+f(x)=2x ②, ①×2-②,得 3f(x)=4x-2x,得 f(x)=43x-32x.

高一数学函数概念与基本初等函数课件

高一数学函数概念与基本初等函数课件

• P25—26 • 例4 连续的、离散的(点)、或一 段 • P26 • 例6为学习函数的单调性做准备; • P27“思考”学会一般化,形成良好 地学习习惯; • “阅读”,有条件的学校,建议学 生会操作
• 习题的处理建议 • 分三个阶段来处理 • 先学——再识——后括——新探。
2.1.2 函数的表示法
• PP50—51
• 函数的单调性是对定义域内某个区 间而言的,它反映的是函数的局部 性质,函数在某个区间上单调,并 不能说明函数在定义域上也单调。
• P37—38 从形、数两个角度探索,理解函数图象 的对称性与函数奇偶性的关系。
• P39例7 • 只要函数的定义域内有一个x值不 满足f(-x)=-f(x)(或f(-x)=f(x)),这 个函数就不是奇(偶)函数;或只 要函数图象上有一个点不满足“关 于原点(或y轴)的对称点都在函 数的图象上,”这个函数就不是奇 (偶)函数。
2.1.4 映射概念
• 了解映射的概念。在讲解映射的 概念时应指出,映射是函数概念 的推广,函数是一类特殊的映 射.函数是两个非空数集之间的 映射。
• 对于映射f:AB而言,集合A、B 可以是数集,也可以是点集或其他 集合。 • 关于映射中象与原象的概念,以及 映射的分类,一般不要涉及。 • P42 第11题是努力引导学生学会这样思 考。
• PP21 这三个例子:函数引入中的三个问题:我国从1949 年到1999年的人口数据表、自由落体运动中物体 下落的距离与时间关系式、某城市一天24小时内 的气温变化图,既与初中时学习的函数内容相联 系,又蕴含了函数的三种表示方法——列表法、 解析法、图象法,起到了承上启下的作用.这三 个实际问题背景,既是函数知识的生长点,又突 出了函数的本质,为从数学内部研究函数打下了 基础.而某城市一天24小时内的气温变化将函数 概念、函数的图象、函数的单调性、函数的零点 有机地贯通。 • 用输入与输出来揭示函数概念。

数学版课件第二章函数的概念与基本初等函数Ⅰ第9讲

数学版课件第二章函数的概念与基本初等函数Ⅰ第9讲
在同一坐标系中作出两个函数y=sin 2x与函数y=|ln(x+1)|的大致图象如图所示. 观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.
答案 (1)③ (2)2 (3)2
考点二 二次函数的零点问题
【例2】 已知函数f(x)=x2+ax+2,a∈R.
(1)若不等式f(x)≤0的解集为[1,2],求不等式f(x)≥1-x2的解集;
由图可知f(x)-a|x-1|=0有4个互异的实数根等价于y1=|x2+3x|与y2=a|x-1|的图象有4 个不同的交点且4个交点的横坐标都小于1,
所以yy= =- a(x21--3xx),有两组不同解,
消去y得x2+(3-a)x+a=0有两个不等实根, 所以Δ=(3-a)2-4a>0, 即a2-10a+9>0, 解得a<1或a>9. 又由图象得a>0,∴0<a<1或a>9.
第9讲 函数与方程
考试要求 函数的零点与方程根的关系,一元二次方程根的存在性及根的个数的 判断(B级要求).
1.函数的零点
知识梳理
(1)函数零点的定义
对于函数y=f(x)(x∈D),把使__f_(x_)_=__0___的实数x叫作函数y=f(x)(x∈D)的零点.
(2)几个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与_x_轴___有交点⇔函数y=f(x)有_零__点___.
+1x=1-x2x2<0,故当 1<x<2 时 h(x)单调递减,在同一坐标系中画出 y=|h(x)|和 y=1 的图象如图所示.
由图象可知|f(x)+g(x)|=1的实根个数为4. 答案 (1)③ (2)4
规律方法 (1)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且 f(a)·f(b)<0,再结合函数的图象与性质确定函数零点个数. (2)确定函数零点所在区间,可利用零点存在性定理或数形结合法. (3)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质; ③数形结合法:转化为两个函数图象的交点个数.

函数的概念与基本初等函数函数与方程课件文ppt

函数的概念与基本初等函数函数与方程课件文ppt
函数的概念与基本初等函数函数与 方程课件文ppt
xx年xx月xx日
目 录
• 函数的概念 • 基本初等函数 • 函数的应用 • 方程的概念与解法 • 基本初等函数与方程的关系
01
函数的概念
函数定义与性质
函数定义
函数是一种从输入到输出的映射关系,输入被称为自变量,输出被称为因变 量。函数通常被表示为一个数学表达式或表格。
含有多个未知数的方程,如 x + y z = 0。
方程的解法与技巧
代数法
通过化简、变形、替换等代数技巧求解方 程。
公式法
对于一些特殊类型的方程,可以使用公式 直接求解。
图解法
对于一些一元二次方程,可以通过画图的 方式求解。
迭代法
通过不断迭代逼近方程的解。
方程的应用与实例
1 2
工程问题
在工程设计中,经常需要使用方程来描述和解 决实际问题,如力学、流体力学等。
函数性质
函数具有唯一性、可逆性、有界性、连续性等性质。
函数的定义域与值域
定义域
函数中自变量的取值范围被称为定义域。
值域
函数中因变量的取值范围被称为值域。
函数的类别与关系
类别
根据函数的定义和性质,函数可以分为线性函数、二次函数 、指数函数、对数函数等类别。
关系
函数之间存在一些基本的关系,如加法、减法、乘法、除法 等运算,以及一些特定的函数关系,如正比、反比、对数等 关系。
在极值点处,函数的值会发生变化,这个变 化的值即为极值。
最值点
最值
在定义域内,函数可以取到的最大或最小值 点。
在最值点处,函数的值达到定义域内的最大 或最小值。
函数的优化与改进
函数的优化

函数的概念ppt课件

函数的概念ppt课件

函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。

函数的概念及基本初等函数节函数及其表示课件理新ppt

函数的概念及基本初等函数节函数及其表示课件理新ppt

02
节函数及其表示
节函数的定义与性质
定义
节函数是指满足某种性质的连续或离散函数,通常具有明显的局部性质。
性质
节函数具有非连续点,但不一定有跳跃间断点;在连续区间上具有一致性;可能 具有极限值。
节函数的表示方法
图形表示
通过图像表示节函数的性质和 变化趋势。
表格表示
通过表格列出函数在不同自变量 下的取值,反映其变化规律。
函数性质
函数具有一些基本性质,包括有界性、单调性、奇偶性、周 期性等。这些性质描述了函数的行为特征。
常见函数类型
线性函数
线性函数是指输出与输入成正比或反比关系的函数。常见的线性函数包括正比例函数、反 比例函数和一次函数等。
幂函数
幂函数是指输出为输入的若干次幂的函数。常见的幂函数包括正整数次幂函数、负整数次 幂函数和分数次幂函数等。
培训与支持
提供培训和支持,帮助用户更好地使用PPT ,提高演示效果。
THANKS
数据到某个函数模型上,能够得到更精确的预测结果。
课件理新的优缺点分析
优点
课件理新具有直观性和形象化的特点,能够快速展示函数的形态和变化过程 ,同时可以清晰地表达函数的单调性、极值等性质。此外,它还能够通过调 整参数来动态地展示函数的变化过程。
缺点
课件理新的缺点主要在于它只适用于某些特定的函数形式,对于其他复杂的 函数形式可能无法得到准确的拟合结果。此外,课件理新的制作需要一定的 技巧和经验,需要经过专业的培训和学习才能掌握。
课件理新的应用场景
01
教学辅助
课件理新常常被用于教学中,通过将函数表达式与图形结合起来,能
够帮助学生更好地理解函数的概念和性质。
02

《函数基本初等函数》PPT课件

《函数基本初等函数》PPT课件
(3)幂函数 y=xα 的图象和性质,分幂指数 α>0,α<0 两种 情况,只需掌握 α=-1,1,12,2,3 时幂函数的图象和性质即可.
精选课件ppt
4
第2讲 │ 要点热点探究
要点热点探究
► 探究点一 函数的性质的应用
例 1[2011·安徽卷] 设 f(x)是定义在 R 上的奇函数,当 x≤0 时,f(x)=2x2-x,则 f(1)=________.
精选课件ppt
7
第2讲 │ 要点热点探究

例2
探[2究01点1·山 二东卷 函]数函图数象的y=分x2-析2判si断nx 的图象大致是(
)
C 【解析】 由 f(-x)=-f(x)知函数 f(x)为奇函数,所以排除 A;
又 f′(x)=12-2cosx,当 x 的取值从右侧趋向 0 时,f′(x)<0,所以
精选课件ppt
3
第2讲 │ 主干知识整合
4.指数函数、对数函数和幂函数的图象和性质(注意根据 图象记忆性质)
(1)指数函数 y=ax(a>0,a≠1)的图象和性质分 0<a<1,a>1 两种情况,注意两种情况的公共性质.
(2)对数函数 y=logax(a>0,a≠1)的图象和性质分 0<a<1, a>1 两种情况,注意两种情况的公共性质,在对数计算中要特 别注意对数恒等式和对数的换底公式.
第2讲 函数、基本初等函数的
图象与性质
精选课件ppt
1
第2讲 │ 主干知识整合
主干知识整合
1.函数的概念及其表示 (1)函数包含对应关系、定义域和值域三要素. (2)函数的表示法有图象法、列表法和解析式法. 2.函数的性质 (1)单调性:单调性是函数在其定义域上的局部性质. (2)奇偶性:偶函数图象关于 y 轴对称,在关于坐标原点 对称的定义域区间上具有相反的单调性;奇函数图象关于坐 标原点对称,在关于坐标原点对称的定义域区间上具有相同 的单调性.奇偶性是函数在定义域上的整体性质.

初中函数的概念ppt课件

初中函数的概念ppt课件

二次函数的定义
形如y=ax^2+bx+c(a, b,c是常数,a≠0)的函 数称为二次函数。
二次函数的图像
二次函数y=ax^2+bx+c 的图像是一个抛物线。
二次函数的性质
当a>0时,抛物线开口向 上,有最小值;当a<0时 ,抛物线开口向下,有最 大值。
03 函数的应用
函数在生活中的实际应用
人口增长模型
提供工具。
04 函数的扩展知识
复合函数的概念
定义
如果y是u的函数,而u是x的函数,那么y关于x的函数叫做由基本函 数f(u)和g(x)构成的复合函数。
表示方法
y = f(u),u = g(x)
分解
把一个复合函数分解成若干个基本初等函数,并分别指出各基本初等 函数在复合函数中的作用。
函数的奇偶性
THANKS 感谢观看
微积分
函数是微积分的基础,可以用来研 究物体的运动、变化和趋势等。
统计学
函数可以用来描述数据的分布特征 ,为统计分析提供工具。
函数在物理问题中的应用
力学
函数可以用来描述物体的运动状 态,如速度、加速度等。
热力学
函数可以用来描述温度、压力等 物理量的变化情况,为热力学研
究提供工具。
电学
函数可以用来描述电流、电压等 物理量的变化情况,为电学研究
函数的定义通常包括定义域和值域,定义域是指自变量的取值范围,值域是指因变 量的取值范围。
函数的表示方法
函数的表示方法有三种:表格法、图 象法和解析式法。
图象法是用图形来表示函数关系,它 直观形象,可以反映函数的单调性、 增减性等性质。
表格法是最简单的一种表示方法,它 将自变量和因变量的对应关系列成表 格,适用于简单的函数关系。

函数的概念与基本初等函数指数与指数函数课件文

函数的概念与基本初等函数指数与指数函数课件文

函数的概念与基本初等函数指数与指数函数课件文ppt xx年xx月xx日•函数的概念与基本初等函数•指数函数•基本初等函数•指数与指数函数的运算性质及图像表示目•指数函数的应用实例录01函数的概念与基本初等函数函数是定义在非空数集之间的一种对应关系,对于每一个自变量x,都有唯一确定的因变量y与之对应。

函数定义函数的特性包括一元性、双射性、传递性、可计算性和普遍性。

函数的特性函数定义与特性定义域函数中自变量的取值范围。

值域函数中因变量的取值范围。

函数的定义域与值域符号表示法列表表示法图像表示法列出自变量与因变量的对应关系。

用坐标系上的图形表示函数。

03函数的表示方法02 01用函数符号f(x)表示一个函数。

02指数函数定义域指数函数的定义域是实数集,即x可以取任何实数。

函数定义指数函数是一种特殊的函数,它是指数运算和幂运算的结合体。

它的定义形式为f(x) = a^x,其中a为底数,x为指数。

值域指数函数的值域是正实数集,即f(x)的取值范围是正实数。

指数函数的定义1 2 3当a大于1时,指数函数是递增函数;当0小于a 小于1时,指数函数是递减函数。

递增性当a大于0时,指数函数是偶函数;当a等于0时,指数函数是奇函数。

奇偶性指数函数可以用于幂变换,即通过改变底数和指数来改变函数的值。

幂变换03社会学指数函数在社会学中也有应用,例如人口老龄化、城市化进程等。

01金融领域指数函数在金融领域中有广泛的应用,例如投资组合理论、期权定价模型等。

02自然科学指数函数在自然科学中也有很多应用,例如人口增长模型、化学反应速率等。

03基本初等函数幂函数是形如`y = x^n`(其中n为常数)的函数。

定义幂函数的图形在第一象限内为递增曲线,且当x>1时,函数值y随x的增大而增大。

性质幂函数在科学、工程和数学中都有广泛的应用,如物理学中的能量分布、统计学中的概率分布等。

应用幂函数三角函数是以角度为自变量,角度对应的正弦值、余弦值和正切值等为因变量的函数。

“高中数学必修二课件:函数的概念与初等函数”

“高中数学必修二课件:函数的概念与初等函数”
高中数学必修二课件:函数的 概念与初等函数
本课件将带您回顾高中数学必修二中关于函数的基本概念,初等函数分类及 性质与图像。
函数基本概念
函数是自变量与因变量之间的一种对应关系。在本节中,我们将介绍什么是函数以及如何表示它们以及最常见 的函数类型。
1
自变量与因变量
自变量是函数域中的输入值,因变量是
函数的定义域、值域和像
2
函数域中的输出值。
一个函数的定义域是自变量可以取的值
的集合,值域是函数的结果值可以取得
的集合。
3
初等函数的分类
包括常数函数、一次函数、二次函数、 幂函数、指数函数、对数函数、三角函 数。
常函数和恒等函数
本节介绍常函数和恒等函数的概念及性质。
常函数
在定义域上的任何输入,常函数的输出始终是 同一个固定值。
恒等函数
以输入自身为输出的函数,即f(x) = x。它的图形 是一条斜率为1的直线。Fra bibliotek一次函数
一次函数是最基本的函数类型之一。
代数表达式
一次函数的代数表达式为y = kx + b,其中k代表斜率,b代表截距。
斜率的求法
通过计算y轴的变化量除以x轴的 变化量来计算斜率。
截距的求法
当x等于0时,y轴截距是y轴上的 点。
二次函数
二次函数中最常见和重要的函数类型是抛物线函数。
1
代数表达式
二次函数的一般形式是y = ax²+ bx + c,a代表开口方向和开口程度,b代表x轴上对称轴的位置, c代表y轴截距。
2
特征
二次函数的特点是其图像呈一个U字形,又称为抛物线。
3
顶点坐标
二次函数的标准式可以求出顶点坐标为(-b/2a,f(-b/2a))。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关系 f,使对于集合 A 中 关系 f,使对于集合 A 中 对应关系
的__任__意__一个数 x,在集 的_任__意___一个元素 x,在 f:A→B
合 B 中都有唯一确定的数 集合 B 中都有唯一确定的
f(x)和它对应
元素 y 与之对应
称 f:A→B 为从集合 A 到 称对应 f:A→B 为从集合
第二章 函数概念与基本初等函数
知识点
考纲下载
奇偶性 结合具体函数了解函数奇偶性的含义.
了解指数函数模型的实际背景.
理解有理指数幂的含义,了解实数指数幂的意
义,掌握幂的运算. 指数函数
理解指数函数的概念,理解指数函数的单调性,
掌握指数函数图象通过的特殊点.
知道指数函数是一类重要的函数模型.
第二章 函数概念与基本初等函数
集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合 B 的子集. (2)函数的三要素:_定__义__域___、_值__域___和__对__应__关__系__. (3)相等函数:如果两个函数的_定__义__域___和_对__应__关__系___完全一致,
则这两个函数相等,这是判断两y= x2
D.y=(3 x)3
解析:选 D.y=x 的定义域为 R,而 y=xx2的定义域为
{x|x∈R 且 x≠0},y=2log2x的定义域为{x|x∈R,且 x>0},排除 A、
B;y= x2=|x|的定义域为 x∈R,对应关系与 y=x 的对应关系
不同,排除 C;而 y=(3 x)3=x,定义域与对应关系与 y=x 均相 同,故选 D.
栏目 导引
第二章 函数概念与基本初等函数
(教材习题改编)若函数 y=f(x)的定义域为 M={x|-2≤x≤2},值域为 N={y|0≤y≤2},则函数 y=f(x)的 图象可能是( )
答案:B
栏目 导引
第二章 函数概念与基本初等函数
(教材习题改编)下列哪个函数与 y=x 相等( )
A.y=xx2
名称
集合 B 的一个函数
A 到集合 B 的一个映射
记法
y=f(x)(x∈A)
对应 f:A→B 是一个映射
栏目 导引
2.函数的有关概念
第二章 函数概念与基本初等函数
(1)函数的定义域、值域
在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取值范围 A 叫做
函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的
栏目 导引
(教材习题改编)下列对应关系:
第二章 函数概念与基本初等函数
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x 的
平方根;
②A=R,B=R,f:x→x 的倒数; ③A=R,B=R,f:x→x2-2;
④A={-1,0,1},B={-1,0,1},f:A 中的数的平方.
其中是 A 到 B 的映射的是( )
(4)函数的表示法
表示函数的常用方法有:__解__析__法__、图象法、列表法.
栏目 导引
第二章 函数概念与基本初等函数
3.分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几 个不同的式子来表示,这种函数称为分段函数.
栏目 导引
第二章 函数概念与基本初等函数
判断正误(正确的打“√”,错误的打“×”) (1)函数 y=f(x)的图象与直线 x=a 最多有 2 个交点.( × ) (2)函数 f(x)=x2-2x 与 g(t)=t2-2t 是同一函数.( √ ) (3)若两个函数的定义域与值域相同,则这两个函数是相等函 数.( × ) (4)若 A=R,B={x|x>0},f:x→y=|x|,则对应关系 f 是从 A 到 B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × ) (6)分段函数的定义域等于各段定义域的并集,值域等于各段值 域的并集.( √ )
A.①③
B.②④
C.③④ 答案:C
D.②③
栏目 导引
第二章 函数概念与基本初等函数
已知函数 f(x)= 2x+1,若 f(a)=5,则实数 a 的值为_______. 解析:f(a)= 2a+1=5,所以 2a+1=25,所以 a=12. 答案:12
栏目 导引
第二章 函数概念与基本初等函数
(教材习题改编)已知函数 f(x)=xx((xx+ -44)), ,xx≥ <00,,则 f(1)+ f(-3)=________. 解析:f(1)=1×5=5,f(-3)=-3×(-3-4)=21, 故 f(1)+f(-3)=5+21=26. 答案:26
第二章 函数概念与基本初等函数
知识点
考纲下载
了解构成函数的要素,会求一些简单函数的定义
域和值域;了解映射的概念. 函数及其表
在实际情境中,会根据不同的需要选择恰当的方 示
法(如图象法、列表法、解析法)表示函数.
了解简单的分段函数,并能简单应用.
单调性
理解函数的单调性及其几何意义. 理解函数最大值、最小值及其几何意义.
第二章 函数概念与基本初等函数
知识点
考纲下载 了解幂函数的概念.
幂函数
结合函数 y=x,y=x2,y=x3,y=1x,y=x21的图
象,了解它们的变化情况.
函数的图象 会运用函数图象理解和研究函数的性质.
结合二次函数的图象,了解函数的零点与方程根
的联系,判断一元二次方程根的存在性及根的个数. 函数与方程
广泛应用.
第二章 函数概念与基本初等函数
第 1 讲 函数及其表示
第二章 函数概念与基本初等函数
1.函数与映射的概念
函数
映射
两集合 设 A,B 是两个非空的 设 A,B 是两个非空的
A、B _数__集___
_集__合___
栏目 导引
第二章 函数概念与基本初等函数
函数
映射
如果按照某种确定的对应 如果按某一个确定的对应
根据具体函数的图象,能够用二分法求相应方程
的近似解.
第二章 函数概念与基本初等函数
知识点
考纲下载
了解指数函数、对数函数以及幂函数的增长特
征,知道直线上升、指数增长、对数增长等不同函
函数模型 数类型增长的含义.
及其应用
了解函数模型(如指数函数、对数函数、幂函数、
分段函数等在社会生活中普遍使用的函数模型)的
知识点
考纲下载
理解对数的概念及其运算性质,知道用换底公式
能将一般对数转化成自然对数或常用对数;了解对数
在简化运算中的作用.
理解对数函数的概念,理解对数函数的单调性, 对数函数
掌握对数函数图象通过的特殊点.
知道对数函数是一类重要的函数模型.
了解指数函数 y=ax(a>0,且 a≠1)与对数函数
y=logax(a>0,且 a≠1)互为反函数.
相关文档
最新文档