人教版数学八年级上册教案一 (4)
《人教版八年级上册全册数学教案》.pdf
2 .这时它们的三个顶点、三条边和三个内角分别重合了.
3 .完全重合说明三条边对应相等,三个内角对应相等,
?对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1 .概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,
?重合的边叫做对应边,重合的
角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,
? 到角的两边的距离相等的点在角的平分线上. (判定定理)
教学内容 本节课主要内容是探索三角形全等的条件( SSS), ?及利用全等三角形进行证明. 教学目标 1 .知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2 .过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题. 3 .情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识. 重、难点与关键 1 .重点:掌握“边边边”判定两个三角形全等的方法. 2 .难点:理解证明的基本过程,学会综合分析法. 3 .关键:掌握图形特征,寻找适合条件的两个三角形. 教具准备 一块形状如图 1 所示的硬纸片,直尺,圆规.
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1 .重点:会确定全等三角形的对应元素.
2 .难点:掌握找对应边、对应角的方法.
3 .关键: 找对应边、对应角 有下面 两种方法 :( 1)全等三角形对应角所对的边是对应边,两个对应角
所夹的边是对应边; ( 2)对应边所对的角是对应角, ?两条对应边所夹的角是对应角.
?如果本图 11. 1─2△ ABC和
△ DBC全等,点 A 和点 D,点 B 和点 B,点 C 和点 C 是对应顶点, ?记作△ ABC≌△ DBC.
新人教版八年级上册数学教案
20XX年新人教版八年级上册数学教案数学老师上课前须写好数学教案,因为教案是教师进行教学活动的依据。
下面小编为大家精心整理的新人教版八年级上册数学教案,仅供参考。
新人教版八年级上册数学教案(一)12.2 三角形全等的判定(二)学习目标1.掌握三角形全等的“角边角”条件.2.能运用全等三角形的条件,解决简单的推理证明问题.学习重点已知两角一边的三角形全等探究.学习难点灵活运用三角形全等条件证明.学习方法:自主学习与小组合作探究学习过程:一.温故知新1.(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的1/ 8什么?二种:①定义方法有几种?各是__________________________________________________;②“SAS”公理__________________________________________________2.在三角形中,已知三个元素的四种情况中,我们研究了二种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?3.三角形中已知两角一边有几种可能?①.两角和它们的夹边.②.两角和其中一角的对边.二、阅读教材P95-96判定全等三角形的第二种方法“角边角”定理两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△ A1B1C1(ASA) A三、小组合作学习15 DB2/ 8四、阅读例题:P96 例3 例4五.评价反思概括总结至此,我们有三种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边角边(SAS) 角边角(ASA)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.六、作业:新人教版八年级上册数学教案(二)12.2 三角形全等的判定(三)角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、-归纳获得数学结论的过程. 学习重点三角形全等的条件.学习难点寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:A'3/ 8一.回顾思考:1.(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法几种?各是什么? BCB'C'三种:①定义__________________________________________________;②“SAS”公理__________________________________________________③“ASA”定理__________________________________________________二、新课1. 回忆前面研究过的全等三角形.已知△ABC≌△A′B′C′,找出其中相等的边与角.图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.2.已知三角形△ABC你能画一个三角形与它全等吗?怎样画?阅读教材P97-98归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.4/ 8书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△A1B1C1(SSS)3. 小组合作学习(1)如图,△ABC是一个钢架,AB=AC,AD 是连结点A与BC中点D的支架.求证:△ABD≌△ACD. 证明:∵D是BC的中点∴__________________________在△ABD和△ACD中AB ACBD CDAD AD(公共边)∴△ ≌△ ( ). AC(2)如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有一个条件:______________________,怎样才能得到这个条件? B新人教版八年级上册数学教案(三)12.2 三角形全等的判定(四)5/ 8学习目标1.掌握三角形全等的“角角边”条件.2.能运用全等三角形的条件,解决简单的推理证明问题.学习重点已知两角一边的三角形全等探究.学习难点灵活运用三角形全等条件证明.学习方法:自主学习与小组合作探究学习过程:一.温故知新:1.我们已经学习过可以作为判别两三角形全等的方法有几种?各是什么?A12.三角形中已知两角一边有几种可能? A1.两角和它们的夹边.2.两角和其中一角的对边. 1C1C二、新课1.读一读,想一想,画一画,议一议阅读教材P100两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”). 书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△A1B1C1(AAS)6/ 82.定理证明已知:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,求证:△ABC与△DEF证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E∴∠A+∠B=∠D+∠E∴∠C=∠F在△ABC和△DEF中B E BC EFC F∴△ABC≌△DEF(ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).三、例题:阅读教材例题:A四.小组合作学习1.如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.2下图中,若AE=BC则这两个三角形全等吗?请说明理由.7/ 8BECDAC(2)B3.课本P101练习1、2.3五.评价反思概括总结1. 本节课我们探索得到了三角形全等的条件,又-发现了证明三角形全等的一个规律AAS.并利用它可以证明简单的三角形全等问题.2.可以作为判别两三角形全等的常用方法有几种?各是什么?①“SAS”公理__________________________________________________②“ASA”定理_________________________________________________③ “SSS”定理_________________________________________________④“AAS”定理_________________________________________________六.作业8/ 8。
人教版八年级数学上册(教案).1.4.1单项式与单项式、多项式相乘
3.抽象与概括:引导学生从具体实例中抽象出乘法法则,培养其数学抽象思维和概括能力。
4.合作与交流:鼓励学生在小组讨论和互动中,表达自己的观点,倾听他人意见,培养合作交流和团队协作能力。
5.创新与拓展:激发学生探索数学新知识,提高其创新思维和拓展能力,为后续学习打下坚实基础。
3.重点难点解析:在讲授过程中,我会特别强调同类项合并和符号处理这两个重点。对于难点部分,我会通过具体例子和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与单项式与多项式相乘相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过模型或图形展示,让学生直观感受代数式相乘的意义。
2.单项式与多项式相乘:教授学生单项式乘以多项式的法则,并使其能够灵活应用。
-举例:5x * (2x^2 - 3x + 1),-2a^2b * (3a^2b^2 + 4ab - 1)
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.理解与掌握:通过单项式与单项式、单项式与多项式相乘的学习,使学生在数学概念层面理解和掌握相关运算规则,提高数学运算能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《单项式与单项式、多项式相乘》这一章节。在开始之前,我想先问大家一个问题:“你们在数学学习中是否遇到过两个或多个代数式相乘的情况?”比如,计算长方形的面积时,长和宽的表达式相乘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数式相乘的奥秘。
新人教版八年级数学上册名师教案(6篇)_1
新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。
(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。
这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。
最新部编人教版八年级数学上册教学设计(全册教案)
人教版八年级数学上册(全册)教案八年级数学上册教学计划一、教材分析第十一章三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。
本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的培养,开展好数学活动。
第十二章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。
更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十三章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十四章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
第十五章分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。
教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
有少数同学基础特差,问题较严重。
在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
八年级上册数学教案 八年级上册数学教案(9篇)
八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。
八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。
已知点的坐标,能在平面直角坐标系中描出点。
3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。
人教版八年级上册数学教案(5篇)
人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
人教版八年级上册数学教案
人教版八年级上册数学教案标题:人教版八年级上册数学教案一、教学目标1. 知识目标:通过本节课的学习,学生能够了解乘法的定义和乘法定律,掌握乘法中的基本运算技巧。
2. 能力目标:培养学生的分析和解决问题的能力,提高他们的运算速度和思维灵活性。
3. 情感目标:培养学生的数学兴趣,增强自信心,培养合作精神。
二、教学重点和难点1. 教学重点:乘法的基本概念和乘法定律。
2. 教学难点:掌握乘法的运算技巧,并能够应用到实际生活中解决问题。
三、教学准备1. 教材:人教版八年级上册数学教材。
2. 教具:黑板、彩色粉笔、习题纸、练习册。
四、教学过程1. 导入:通过提问和举例的方式引入本节课的内容,让学生思考乘法在日常生活中的应用场景。
2. 概念讲解:通过板书的形式,讲解乘法的定义和乘法定律。
重点讲解正数相乘、零乘任意数等特殊情况。
3. 计算练习:通过布置一些简单的乘法计算题,让学生在黑板上依次计算并解答。
鼓励学生主动参与,积极互动。
4. 理解巩固:教师可以列举一些实际问题,让学生通过乘法运算解答,并引导学生将其具象化为数学运算问题。
5. 拓展应用:让学生应用乘法解决实际问题,如购物计算、面积计算等。
可以将学生分成小组讨论,提高合作与交流能力。
6. 练习巩固:教师可以出一些习题,让学生用乘法计算并解决,鼓励学生独立思考,培养他们分析和解决问题的能力。
7. 作业布置:布置适量习题作为课后作业,让学生在家复习巩固所学内容。
五、教学反思通过本节课的教学,学生们对乘法的定义和运算技巧有了更深入的了解。
教师通过举例和解题的方式,将抽象的概念具象化,使学生能够更好地理解和应用。
并且,在练习和解题环节中,注重培养学生的分析和解决问题的能力,鼓励他们独立思考和探索,培养其合作与交流的能力。
在教学过程中,教师还能够及时给予学生反馈和指导,使学生在实践中快速成长。
同时,通过作业布置,让学生在家进行复习和巩固,进一步提高学生的学习效果。
八年级上册数学教案人教版【优秀8篇】
八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
八年级上册数学教案(优秀9篇)
八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
人教版八年级数学上册教案5篇
人教版八年级数学上册教案5篇作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢下面是小编整理的人教版八年级数学上册教案,欢迎大家分享。
人教版八年级数学上册教案1教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么你画对了吗(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢你画对了吗第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。
人教版八年级上册数学教案(通用10篇)
人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。
教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。
【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。
二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。
数学八年级上册教案
数学八年级上册教案【篇一:新人教版数学八年级上册教案(全册整理版)】第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标等于180,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于180的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。
课时分配11.1与三角形有关的线段 ??????????????? 2课时 11.2 与三角形有关的角 ???????????????? 2课时 11.3多边形及其内角和 ???????????????? 2课时本章小结 ?????????????????????? 2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。
2. 教学重点:勾股定理的表述和证明;勾股定理的应用。
3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。
二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。
2. 教学重点:平行四边形的定义和性质;平行四边形的判定。
3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。
三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。
2. 教学重点:三角形的定义和性质;三角形的判定。
3. 教学难点:三角形的性质证明;三角形的判定方法。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。
四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。
2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。
3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。
4. 教学准备:教学课件;练习题。
5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。
五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。
八年级上册数学教案(实用8篇)
八年级上册数学教案(实用8篇)八年级上册数学教案第1篇教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L 的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的`两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=73°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计12.3.1.1等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角2.三线合一八年级上册数学教案第2篇一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较容易接受,不存在难点。
新人教版八年级数学上册全册名师教案大全5篇
新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。
思维自疑问和惊奇开始。
一个数学家越超脱越好。
数学是锻炼思想的体操。
这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。
新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。
二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
人教版八年级上册数学教案教师用书六篇
人教版八年级上册数学教案教师用书六篇【篇1】人教版八年级上册数学教案教师用书一,教材分析教材从全面提高学生素质的要求出发,在知识选材上,适当加强联系实际,适当降低难度,既考虑现代生产发展与社会生活的需要,又考虑当前大多数初中学生的学习水平的实际可能。
在处理方法上,适当加强观察实验,力求生动活泼,既有利于掌握知识,又有利于培养能力,情感和态度,使学生在学习物理的同时,获得素质上的提高。
教材把促进学生全面发展作为自己的目标。
在内容选配上,注意从物理知识内部发掘政治思想教育和品德教育的潜能,积极推动智力因素和非智力因素的相互作用。
在学习方法上,积极创造条件让学生主动学习参与实践,通过学生自己动手,动脑的实际活动,实现学生的全面发展。
教科书采用了符合学生认知规律的由易到难,由简到繁,以学习发展水平为线索,兼顾到物理知识结构的体系。
这样编排既符合学生认知规律,又保持了知识的结构性。
教科书承认学生是学习的主体,把学生当作第一读者,按照学习心理的规律来组织材料。
全书共14章以及新增添的物理实践活动和物理科普讲座,每章开头都有几个问题,提示这一章的主要内容并附有章节照片,照片的选取力求具有典型性,启发性和趣味性,使学生学习时心中有数。
章下面分节,每节内都有些小标题,帮助学生抓住中心。
在引入课题,讲述知识,归纳总结等环节,以及实验,插图,练习中,编排了许多启发性问题,点明思路,引导思考,活跃思维。
许多节还编排了想想议议,提出了一些值得思考讨论的问题,促使学生多动脑,多开口。
二,学生分析我所承担的是二年级的物理教学。
共有69人,学生的基础差异比较大,其中共3人基础知识掌握较好,有50%的学生基础薄弱,有些学生讨厌理科学习,经过了解测试后个别学生小学物理知识都未掌握。
学生学习兴趣不浓,作业马虎了事,抄袭作业严重且作业格式不正确,写字不认真。
部分学生学习虽然刻苦,但十分吃力,效果不好,这主要是学生学习方式方法问题。
培养学生物理学习兴趣,形成正确的学习习惯,抓好基础知识,是物理教学工作的重点。
人教版八年级数学上册教案
人教版八年级数学上册教案Unit 1 实数1.1 实数的概念与性质教学目标:•理解实数的概念和性质。
•掌握实数的分类方法。
•运用实数的性质解决实际问题。
教学重点:•实数的概念。
•实数的分类方法。
•实数的性质。
教学准备:•教材:人教版八年级数学上册。
•工具:黑板、粉笔。
教学内容:1.课堂导入–让学生回顾小学时学习的整数、分数、小数的概念。
–提问:这些数可以统称为什么数?2.实数的概念–定义:实数包括有理数和无理数。
–有理数:可以表示为两个整数的比值的数。
–无理数:不能表示为两个整数的比值的数。
3.实数的分类方法–有理数的进一步分类:•整数:包括正整数、负整数和0。
•分数:包括真分数和假分数。
–无理数的分类:•代数无理数:不能表示为整数的根式的无理数。
•超越无理数:不能表示为代数方程的根式的无理数。
4.实数的性质–实数的加法性质:•交换律:a + b = b + a•结合律:(a + b) + c = a + (b + c)•存在零元素:a + 0 = a•存在相反数:a + (-a) = 0–实数的乘法性质:•交换律:ab = ba•结合律:(ab) · c = a · (bc)•存在单位元素:a · 1 = a•存在倒数:a · (1/a) = 1–实数的分配律:• a · (b + c) = a · b + a · c5.实际问题的解决–通过实数的性质,帮助学生解决实际应用问题。
–例如:小明有30元钱,他买了一本书花费15元,花了一半的钱后还剩多少?教学总结:通过本节课的学习,学生应该对实数的概念、分类方法和性质有一定的了解。
实数是数学中非常重要的概念,它涵盖了整数、分数、小数等各种数的集合。
同时,实数的性质也是我们解决实际问题时经常使用到的工具。
在接下来的学习中,我们将进一步探讨实数的运算和应用。
以上是《人教版八年级数学上册教案》的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级上册教案一(4)
数学教案:课题直角三角形全等的判定(四)
教学目标:1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握直角三角形全等的条件,并能运用其解决一些实际问题;
3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
教学过程
Ⅰ.提出问题,复习旧知
1、判定两个三角形全等的方法:、、、
2、如图,Rt△ABC中,直角边是、,斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(4)若AB=DE,BC=EF,AC=DF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)Ⅱ.导入新课
(一)探索练习:(画图):斜边与一直角边对应相等的两个直角三角形全等.(HL)
(二)巩固练习:
1、如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法)
2、如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
(4)若AC=BD,AE=BF,CE=DF。
则△ACE≌△BDF,根据
(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据
3、判断两个直角三角形全等的方法不正确的有()
A、两条直角边对应相等
B、斜边和一锐角对应相等
C、斜边和一条直角边对应相等
D、两个锐角对应相等
4、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?
说说你的理由 答:理由:∵ AF ⊥BC ,DE ⊥BC (已知)
∴ ∠AFB=∠DEC= °(垂直的定义)
在Rt △ 和Rt △ 中
⎩
⎨⎧==_______________________________ ∴ ≌ ( )
∴∠ = ∠ ( )
∴ (内错角相等,两直线平行)
5、如图,广场上有两根旗杆,已知太阳光线AB 与DE 是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。
(三)提高练习:
1、判断题:
(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。
( )
(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )
(3)一个锐角与一斜边对应相等的两个直角三角形全等( )
(4)两直角边对应相等的两个直角三角形全等( )
(5)两边对应相等的两个直角三角形全等( )
(6)两锐角对应相等的两个直角三角形全等( )
(7)一个锐角与一边对应相等的两个直角三角形全等( )
(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )
2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD ≌△BAC ,并在添加的条件后的( )内写出判定全等的依据。
(1) ( ) (2) ( )
(3) ( ) (4) ( )
课时小结:至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义2.边边边(SSS )3.边角边(SAS )4.角边角(ASA )5.角角边(AAS ) 6.HL(仅用在直角三角形中)
作业:课本习题课后作业:。