洛阳下册机械能守恒定律同步单元检测(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 杆套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接,将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重力加速度为g .在此后的运动过程中,下列说法中正确的是
A .a 球和b 球所组成的系统机械能守恒
B .b 球的速度为零时,a 球的加速度大小一定等于g
C .b 22gL +()
D .a 2gL
【答案】AC 【解析】 【详解】
A .a 球和b 球组成的系统没有外力做功,只有a 球和b 球的动能和重力势能相互转换,因此a 球和b 球的机械能守恒,故A 正确;
B .当再次回到初始位置向下加速时,b 球此时刻速度为零,但a 球的加速度小于g ,故B 错误;
C .当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候球b 的速度达到最大,此时由运动的关联可知a 球的速度为0,因此由系统机械能守恒有:
22122b mg L L mv ⎛⎫+= ⎪ ⎪⎝⎭
得:
()2+2b v gL =
故C 正确;
D .当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由运动的关联可知此时b 球的速度为零,有系统机械能守恒有:
2
2122
a
mg L mv ⋅= 得:
2a v gL =
此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将继续向下运动到加
速度为0时速度达到最大,故D 错误.
2.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则( )
A .到斜面底端时重力的瞬时功率为
B .下滑过程中重力的平均功率为
C .下滑过程中合力的平均功率为
D .下滑过程中摩擦力的平均功率为
【答案】AB 【解析】
试题分析:A 、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv .故A 正确.B 、物体运动的时间为:t=
=
,则重力做功的平均功率
为:P===.故B 正确.C 、物体做匀加速直线运动的加速度为:a=,则
合力为:F 合=ma=,合力做功为:W 合=F 合L=,则合力的平均功率为:
.故C 错误.D 、根据动能定理得:mgh ﹣W f =mv 2,解得克服摩擦力做功
为:W f =mgh ﹣mv 2,则摩擦力做功的平均功率为:=
﹣
.故D 错
误.
考点:功率、平均功率和瞬时功率.
3.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相
同速度的工件之间的距离为x ,下列判断正确的有
A .传送带的速度为
x T
B .传送带的速度为22gx μ
C .每个工件与传送带间因摩擦而产生的热量为
1
2
mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2
3mtx T
【答案】AD 【解析】 【分析】 【详解】
A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =
x
T
.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为
22
2
22v v x x v g g gT μμμ∆=-=
则摩擦产生的热量为
Q =μmg △x =2
2
2mx T
故C 错误;
D .根据能量守恒得,传送带因传送一个工件多消耗的能量
22212mx E mv mg x T
μ=+∆=
在时间t 内,传送工件的个数f
W E η
=
则多消耗的能量
23mtx E nE T
'==
故D 正确。
故选AD 。
4.2016年6月18日神舟九号完成最后一次变轨,在与天宫一号对接之前神舟九号共完成了4次变轨。
神舟九号某次变轨的示意图如图所示。
在A 点从椭圆轨道Ⅱ进入圆形轨道Ⅰ,B 为轨道Ⅱ上的一点,关于飞船的运动,下列说法中正确的有( )
A .在轨道Ⅱ上经过A 的速度小于经过
B 的速度
B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能
C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 【答案】ABC 【解析】 【分析】 【详解】
A .在轨道Ⅱ上从A 到
B 万有引力做正功,即合外力做正功,物体的动能增加,所以A 的速度小于经过B 的速度,故A 项正确;
B .由于从轨道Ⅱ到轨道Ⅰ神舟九号要点火加速做离心运动,所以在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能,故B 正确;
C .根据开普勒第三定律3
2a k T
=,由图可知轨道Ⅱ的半长轴比轨道Ⅰ的半径更小,所以在
轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,故C 正确; D .根据
2
GmM
ma r
=,由于神舟九号在轨道Ⅱ和轨道Ⅰ上离地球的距离相同即r 相同,所以在轨道Ⅱ上经过A 的加速度等于在轨道Ⅰ上经过A 的加速度,故D 错误。
故选ABC 。
5.如图1所示,遥控小车在平直路面上做直线运动,所受恒定阻力f =4N ,经过A 点时,小车受到的牵引力F A =2N ,运动到B 点时小车正好匀速,且速度v B =2m/s ;图2是小车从A 点运动到B 点牵引力F 与速度v 的反比例函数关系图像。
下列说法正确的是( )
A .从A 到
B ,牵引力的功率保持不变 B .从A 到B ,牵引力的功率越来越小
C .小车在A 点的速度为
4m/s
D .从A 到B ,小车的速度减小得越来越慢 【答案】ACD 【解析】 【分析】 【详解】
AB .遥控小车牵引力的功率P =Fv ,而题目中,已知小车从A 点运动到B 点牵引力F 与速度v 成反比例,则可知F 与v 的乘积保持不变,即功率P 不变,故A 正确,B 错误; C .小车运动到B 点时正好匀速,则牵引力等于阻力,且速度v B =2m/s ,则小车的功率为
8W B P Fv fv ===
则在A 点时速度
8
m/s 4m/s 2
A A P v F =
== 故C 正确;
D .小车从A 到B 的过程中,因速度从4m/s 减小到2m/s ,在这一过程中,功率始终保持不变,故牵引力增大,小车所受的合外力
F f F =-合
可知,合外力减小,由牛顿第二定律F a m
=
合
可知,小车的加速度减小,所以从A 到B ,
小车的速度减小得越来越慢,故D 正确。
故选ACD 。
6.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧轻绳始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L .现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置E 点,D 、E 两点间
的距离为
2L .若A 、B 的质量分别为4m 和m ,A 与斜面间的动摩擦因数38
μ=,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,则( )
A .A 在从C 至E 的过程中,先做匀加速运动,后做匀减速运动
B .A 在从
C 至
D 的过程中,加速度大小为120
g C .弹簧的最大弹性势能为
15
8
mgL
D .弹簧的最大弹性势能为38
mgL 【答案】BD 【解析】 【分析】 【详解】
AB .对AB 整体,从C 到D 的过程受力分析,根据牛顿第二定律得加速度为
4sin 304cos30420
mg mg mg g
a m m μ︒--⋅︒=
=+
可知a 不变,A 做匀加速运动,从D 点开始与弹簧接触,压缩弹簧,弹簧被压缩到E 点的过程中,弹簧弹力是个变力,则加速度是变化的,所以A 在从C 至E 的过程中,先做匀加速运动,后做变加速运动,最后做变减速运动,直到速度为零,故A 错误,B 正确; CD .当A 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对AB 整体应用动能定理得
004sin 304cos30222L L L mg L mg L mg L W μ⎛⎫⎛⎫⎛
⎫-=+︒-+-⨯︒+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭弹
解得3
8
W mgL =
弹,则弹簧具有的最大弹性势能为 p 3
8
E W mgL ==弹
故C 错误,D 正确。
故选BD 。
7.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。
现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。
若轻弹簧储存的弹性势能与其形变量x 间的关系为2
12
p E kx =,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D 点时弹簧的压缩量为(2)
mg mg mg kh ++
【答案】AD 【解析】 【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x ++=
(另一值舍掉)选项D 正确。
故选AD 。
8.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则( )
A .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为2sin mgL μθ
B .物块随转台由静止开始至绳中出现拉力时,转台对物块做的功为
1
sin 2
mgL μθ C .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为2sin 2os mgL c θ
θ
D .物块随转台由静止开始至转台对物块支持力为零时,转台对物块做的功为34os mgL
c θ
【答案】BC 【解析】 【分析】
此题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N =0,f =0。
【详解】
AB .对物体受力分析知物块离开圆盘前,合力为
2
sin v F f T m r
θ=+= …①
cos N T mg θ+=…②
根据动能定理知
2
12
k W E mv ==
…③ 又
T =0,r =L sin θ…④
由①②③④解得
11
sin sin 22
W fL mgL θμθ=
≤ 至绳中出现拉力时,转台对物块做的功为1
sin 2
mgL μθ,选项A 错误,B 正确; CD .当N =0,f =0,由①②③知
21sin sin tan 22cos mgL W mgL θ
θθθ
==
选项C 正确;D 错误。
故选BC 。
9.如图,在竖直平面内有一光滑水平直轨道,与半径为R 的光滑半圆形轨道相切于B 点,一质量为m (可视为质点)的小球从A 点通过B 点进入半径为R 的半圆,恰好能通 过轨道的最高点M ,从M 点飞出后落在水平面上,不计空气阻力,则( )
A .小球在 A 点时的速度为 2gR
B .小球到达B 点时对轨道的压力大小为mg
C .小球从B 点到达M 点的过程中合力的冲量大小为
D .小球运动到与圆心等高处对轨道的压力大小为3mg 【答案】D 【解析】 【分析】 【详解】
A .小球恰好能通过半圆的最高点M ,由重力提供向心力,由牛顿第二定律得
2M
v mg m R
= 解得
M v 由A 到M ,由动能定理得
22M A 11222
mg R mv mv -⋅=
- 解得
A v 故A 错误;
B .由A 到B ,速度不变
B A v v =在B 点时,对B 点进行受力分析重力提供向心力,由牛顿第二定律得
2
B
N v F mg m R
-=
所以
2
2B
=+=6N v
F mg m mg m
mg R
R
+=
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==6N F F mg 压
故B 错误;
C .小球在B 点时速度向右,大小为B v =,在M 点时,速度向左,大小为
M v =B 点到达M 点的过程中,取向右为正,合力的冲量为动量的变化
=M B I mv mv --=-
故C 错误;
D .小球运动到与圆心等高处时,由动能定理知
22A 1122
mg R mv mv -⋅=
-
在那一点,弹力提供向心力
2
3mv F mg R
==
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==3F F mg 压
故D 正确; 故选:D 。
10.一质量为m 的小球以初动能E k0从地面竖直向上抛出,已知上升过程中受到阻力作用,图中两条图线分别表示小球在上升过程中动能、重力势能中的某一个与其上升高度之间的关系,(以地面为零势能面,h o 表示上升的最大高度,图中坐标数据中的k 值为常数且满足0<k <l )则由图可知,下列结论正确的是( )
A .①表示的是动能随上升高度的图像,②表示的是重力势能随上升高度的图像
B .上升过程中阻力大小恒定且f =(k +1)mg
C .上升高度01
2
k h h k +=+时,重力势能和动能不相等 D .上升高度02
h h =时,动能与重力势能之差为02k
mgh
【答案】D 【解析】 【分析】 【详解】
A .根据动能定理可知小球上升过程中速度减小(动能减小,对应图象②),高度升高(重力势能增大,对应图象①),故A 错误;
B .从①和②图知动能与重力势能都随着高度的变化成线性关系,故合力恒定,受到的阻力大小恒定,由功能关系可知从抛出到最高点的过程中机械能的减少量等于阻力的功的大小,由②图得
k0
0k01
E fh E k =-
+ 由①图线结合动能定理得
00(+)k E mg f h =
解得f kmg =,故B 错误; C .当高度01
2
k h h k +=
+时,动能为 ()k k0E E mg f h =-+
联立解得
k 0+1
2k E mgh k =
+ 重力势能为
p 01
2
k E mgh mgh k +==
+ 所以在此高度时,物体的重力势能和动能相等,故C 错误; D .当上升高度0
2
h h =
时,动能为 k 012
k
E mgh -=
重力势能为
p 0E mgh =
则动能与重力势能之差为02
k
mgh ,故D 正确。
故选D 。
11.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大圆环上的质量为m 的小环(可视为质点),从大圆环的最高处由静止滑下,重力加速度为g .当小圆环滑到大圆环的最低点时,大圆环对细杆的拉力大小为:
A .5mg
B .Mg+4mg
C .Mg+5mg
D .Mg+10mg
【答案】C 【解析】 【分析】
利用机械能守恒、竖直平面内的圆周运动、力的合成、牛顿运动定律求解. 【详解】
设大环底端处为重力势能零点,大环半径为R ,小环在最低点速度为v ,由于小环运动过程中只受弹力和重力,弹力和运动方向始终垂直,所以弹力不做功,只有重力做功,所以根据机械能守恒可得:
2
122
mv mgR = 解得:
42v gR gR ==
当小环到达大环最低点时,分析小环的受力得:
2
mv F mg R
-=支 把2v gR =带入得:
5F mg =支
分析大环的受力,大环受到自身重力和小环竖直向下的压力5mg ,故大环对轻杆的拉力为:5Mg mg +,C 符合题意.
12.一个小球从光滑固定的圆弧槽的A 点由静止释放后,经最低点B 运动到C 点的过程中,小球的动能E k 随时间t 的变化图像可能是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率,即
k E W
P t t
∆==∆∆ A 点与C 点处小球速度均为零,B 点处小球速度方向与重力方向垂直,所以A 、B 、C 三点处的重力做功功率为零,则小球由A 点运动到B 点的过程中力做功功率(k E -t 的斜率)
是先增大再减小至零,小球由B 点运动到C 点的过程中,重力做功功率(k E -t 的斜率)也是先增大再减小至零,故B 正确,A 、C 、D 错误; 故选B 。
【点睛】
关键知道动能k E 与时间t 的图像上的任意一点的斜率表示重力做功的瞬时功率。
13.如图所示,一竖直轻质弹簧固定在水平地面上,其上端放有一质量为m 的小球,小球可视为质点且和弹簧不拴接。
现把小球往下按至A 位置,迅速松手后,弹簧把小球弹起,小球上升至最高位置C ,图中经过位置B 时弹簧正好处于自由状态。
已知B 、A 的高度差为1h ,C 、B 的高度差为2h ,重力加速度为g ,空气阻力忽略不计。
下列说法正确的是( )
A .从A 位置上升到
B 位置的过程中,小球的动能一直增大 B .从A 位置上升到
C 位置的过程中,小球的机械能守恒 C .小球在A 位置时,弹簧的弹性势能等于()12mg h h +
D .小球在A 位置时,弹簧的弹性势能小于()12mg h h + 【答案】C 【解析】 【分析】 【详解】
A .小球从A 位置上升到
B 位置的过程中,先加速,当弹簧的弹力k x mg ∆=时,合力为零,加速度减小到零,速度达到最大;之后小球继续上升,弹簧的弹力小于重力,小球做减速运动,故小球从A 上升到B 的过程中,动能先增大后减小,选项A 错误; B .从A 运动到B 的过程中,弹簧对小球做正功,小球的机械能增加。
从B 运动到
C 的过程中,只受重力,机械能守恒,选项B 错误;
CD 、根据系统的机械能守恒可知小球在A 位置时,弹簧的弹性势能等于小球由A 到C 位置时增加的重力势能,为
21p E mg h h =+()
选项C 正确,D 错误。
故选C 。
14.一质量为m的小轿车以恒定功率P启动,沿平直路面行驶,若行驶过程中受到的阻力
大小不变,能够达到的最大速度为v。
当小轿车的速度大小为2
3
v
时,它的加速度大小为
()
A.
P
mv
B.
2
P
mv
C.
3
2
P
mv
D.
4P
mv
【答案】B
【解析】
【分析】
【详解】
汽车速度达到最大后,将匀速前进,此时有
P Fv
=
F f
=
当汽车的车速为2
3
v
时,有
2
3
v
P F'
=⋅
根据牛顿第二定律有
F f ma
'-=
联立解得
2P
a
mv
=
选项B正确,ACD错误。
故选B。
15.如图所示,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的小滑轮O,倾角为θ=30°的斜面体置于水平地面上.A的质量为m,B的质量为4m.开始时,用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时B静止不动.将A由静止释放,在其下摆过程中,斜面体始终保持静止,下列判断中错误的是()
A.物块B受到的摩擦力先减小后增大
B.地面对斜面体的摩擦力方向一直向右
C.小球A的机械能守恒,A、B系统的机械能守恒
D.地面对斜面体的支持力不变
【答案】D
【解析】
【详解】
A. A物体在最高点时,绳子拉力为零,对B进行受力分析可知,B受摩擦力
方向沿斜面向上,当小球A向下运动过程中,机械能守恒,则
在最低点时
整理得:
此时再对B进行受力分析可知,B受摩擦力沿斜面向下,大小等于mg,在A下摆的过程中,B受摩擦力先沿斜面向上,后沿斜面向下,所以物块B受到的摩擦力先减小后增大,故A正确,不符合题意;
B.在A下摆的过程中,将斜面体与B做为一个整体,细绳对整体始终有一个斜向左下方的拉力作用,因此地面对斜面体的摩擦力始终水平向右,故B正确,不符合题意;
C. 小球A摆下过程,只有重力做功,机械能守恒,B静止不动,机械能也守恒,所以A、B 系统的机械能守恒,故C正确,不符合题意;
D. 在A下摆的过程中,小球A在竖直方向上的加速度向上且不断增大,所以地面对斜面体的支持力是不断增大的,故D错误,符合题意。