八年级数学上册 轴对称填空选择单元测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册轴对称填空选择单元测试与练习(word解析版)
一、八年级数学全等三角形填空题(难)
1.在Rt△ABC中,∠BAC=90°AB=AC,分别过点B、C做经过点A的直线的垂线BD、CE,若BD=14cm,CE=3cm,则DE=_____
【答案】11cm或17cm
【解析】
【分析】
分两种情形画出图形,利用全等三角形的性质分别求解即可.
【详解】
解:如图,当D,E在BC的同侧时,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵BD⊥DE,
∴∠BDA=90°,
∴∠BAD+∠DBA=90°,
∴∠DBA=∠CAE,
∵CE⊥DE,
∴∠E=90°,
在△BDA和△AEC中,
ABD CAE
D E
AB AC
∠=∠


∠=∠

⎪=


∴△BDA≌△AEC(AAS),
∴DA=CE=3,AE=DB=14,
∴ED=DA+AE=17cm.
如图,当D,E在BC的两侧时,
同法可证:BD=CE+DE,可得DE=11cm,
故答案为:11cm或17cm.
【点睛】
此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.
2.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.
①ABD ACE ∆≅∆
②45ACE DBC ∠+∠=︒
③BD CE ⊥
④180EAB DBC ∠+∠=︒
【答案】①②③④
【解析】
【分析】
根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.
【详解】
解:∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC ,
即:∠BAD=∠CAE ,
∵AB=AC ,AE=AD ,
∴△BAD ≌△CAE (SAS ),故①正确;
∵△BAD ≌△CAE ,
∴∠ABD=∠ACE ,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,故②正确;
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD ⊥CE ,故③正确;
∵90BAC DAE ∠=∠=︒,
∴∠BAE+∠DAC=180°,
∵∠ADB=∠E=45°,
∴DAC DBC ∠=∠,
∴180EAB DBC ∠+∠=︒,故④正确;
故答案为:①②③④.
【点睛】
此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.
3.如图,ABE
△,BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,连接OB,下列结论正确的有_________.
①AD EC
=;②BM BN
=;③MN AC;④EM MB
=;⑤OB平分AOC

【答案】①②③⑤.
【解析】
【分析】
由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.
【详解】
解:∵△ABE,△BCD均为等边三角形,
∴AB=BE,BC=BD,∠ABE=∠CBD=60°,
∴∠ABD=∠EBC,
在△ABD和△EBC中,
AB BE
ABD EBC
BD BC


∠∠






∴△ABD≌△EBC(SAS),
∴AD=EC,故①正确;
∴∠DAB=∠BEC,
又由上可知∠ABE=∠CBD=60°,
∴∠EBD=60°,
在△ABM和△EBN中,
MAB NEB
AB BE
ABE EBN
∠∠



⎪∠∠




∴△ABM≌△EBN(ASA),
∴BM=BN,故②正确;
∴△BMN为等边三角形,
∴∠NMB=∠ABM=60°,
∴MN∥AC,故③正确;
若EM=MB,则AM平分∠EAB,
则∠DAB=30°,而由条件无法得出这一条件,
故④不正确;
如图作,,
BG AD BH EC
⊥⊥
∵由上可知△ABD≌△EBC,
∴两个三角形对应边的高相等即BG BH
=,
∴OB是AOC
∠的角平分线,即有OB平分AOC
∠,故⑤正确.
综上可知:①②③⑤正确.
故答案为:①②③⑤.
【点睛】
本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.
4.如图,ABC
∆中,90
ACB
∠=︒,8cm
AC,15cm
BC=,点M从A点出发沿
A C B
→→路径向终点运动,终点为B点,点N从B点出发沿B C A
→→路径向终点运动,终点为A点,点M和N分别以每秒2cm和3cm的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME l
⊥于E,NF l
⊥于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角
形全等,则t的值为______.
【答案】23
5
或7或8
【解析】
【分析】
易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.
【详解】
①当0≤t<4时,点M在AC上,点N在BC上,如图①,
此时有AM=2t,BN=3t,AC=8,BC=15.
当MC=NC即8−2t=15−3t时全等,
解得t=7,不合题意舍去;
②当4≤t<5时,点M在BC上,点N也在BC上,如图②,
若MC=NC,则点M与点N重合,即2t−8=15−3t,
解得t=23
5

当5≤t<23
3
时,点M在BC上,点N在AC上,如图③,
当MC=NC即2t−8=3t−15时全等,解得t=7;
④当23
3
≤t<
23
2
时,点N停在点A处,点M在BC上,如图④,
当MC=NC即2t−8=8,解得t=8;
综上所述:当t等于23
5
或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为
顶点的三角形全等.
故答案为:23
5
或7或8.
【点睛】
本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.
5.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CDE=55°.如图,则∠EAB的度数为_________
【答案】35°
【解析】
【分析】
过点E作EF⊥AD于F,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出∠AEB,再根据直角三角形两锐角互余求解即可.
【详解】
过点E作EF⊥AD于F.
∵DE平分∠ADC,∴CE=EF.
∵E是BC的中点,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分线,∴∠EAB=∠FAE.
∵∠B=∠C=90°,∴∠CDA+∠DAB=180°,∴2∠CDE+2∠EAB=180°,
∴∠CDE+∠EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.
故答案为:35°.
【点睛】
本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的判定,熟记性质并作辅助线是解题的关键.
6.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:
①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.
【答案】①③
【解析】
【分析】
根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴∠EAP=1
2
∠BAC=45°,AP=
1
2
BC=CP.
①在△AEP与△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正确;
②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;
③∵△AEP≌△CFP,同理可证△APF≌△BPE.
∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=1
2
S△ABC,即2S四边形AEPF=S△ABC;正确;
④根据等腰直角三角形的性质,EF=2PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=2PE=AP,在其它位置时EF≠AP,故④错误;
故答案为:①③.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.
7.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.
【答案】3
【解析】
【分析】
在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.
【详解】
解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.
∵ON’=ON,∠N’OM=∠NOM,OM=OM,
∴△N’OM≌△NOM,
∴MN’=MN,
∴MA+MN=MA+MN’,
∵A点固定,
∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,
∴MA+MN’的最小值为AD,
∵∠OAB=∠AOB=15°,OB=6,
∴∠ABD=30°,AB=6,
∴AD=0.5×6=3,
∴MA+MN的最小值为3,
故答案为3.
【点睛】
理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.
8.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
【分析】
由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交BE与点G,连接AG,可得△AGF, △AGE,△CEG均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.
【详解】
解:如图
Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠ABF=∠ACE,
在△ABF与△ACE中,有
AB AC
BAF CAE
ABF ACE
=


∠=∠

⎪∠=∠

,∴△ABF≌△ACE,
∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,
C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,
AF=22∴AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
∴四边形AGCE为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
9.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;
③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正确的是_____.
【答案】①②③④.
【解析】
【分析】
根据已知条件易证△ABD≌△EBC,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC,再利用勾股定理即可判定③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF及
Rt△CEG≌Rt△AFE,根据全等三角形的性质可得AF=CG,所以BA+BC=BF+FA+BG﹣CG=BF+BG=2BF,即可判定④正确.
【详解】
①∵BD为△ABC的角平分线,
∴∠ABD=∠CBD,
在△ABD和△EBC中,
BD BC
ABD CBD
BE BA
=


∠=∠

⎪=


∴△ABD≌△EBC(SAS),
∴①正确;
②∵BD为△ABC的角平分线,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正确;
③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,
∴△ACE 为等腰三角形,
∴AE=EC ,
∵△ABD ≌△EBC ,
∴AD=EC ,
∴AD=AE=EC ,
∵EF ⊥AB ,
∴AF 2=EC 2﹣EF 2;
∴③正确;
④如图,过E 作EG ⊥BC 于G 点,
∵E 是BD 上的点,∴EF=EG ,
在Rt △BEG 和Rt △BEF 中,
BE BE EF EG
=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF (HL ),
∴BG=BF ,
在Rt △CEG 和Rt △AFE 中,
EF FG AE CE =⎧⎨=⎩
, ∴Rt △CEG ≌Rt △AFE (HL ),
∴AF=CG ,
∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,
∴④正确.
故答案为:①②③④.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
10.如图,已知BD ,CD 分别是 ∠ABC 和∠ACE 的平分线,连接AD ,∠DAC=46°, ∠BDC _________
【答案】44°
【解析】
如图,过点D作DF⊥BA,交BA的延长线于点F,过点D作DH⊥AC于点H,过点D作DG⊥BA,交BC的延长线于点G,
∵BD,CD分别是∠ABC和∠ACE的平分线,
∴DF=DG=DH,
∵DH⊥AC,DF⊥BA,
∴AD平分∠CAF,
∴∠DAC=∠FAD=46°,
∴∠BAC=180°-46°-46°=88°;
∵BD,CD分别是∠ABC和∠ACE的平分线,
∴∠DCE=1
2
ACE
∠,∠DBC=
1
2
ABC
∠,
∵∠DCE=∠BDC+∠DBC,∠ACE=
∴∠BDC+∠DBC=1
2
(∠BAC+∠ABC),
∴∠BDC=1
2
∠BAC=00
1
8844
2
⨯= .
二、八年级数学全等三角形选择题(难)
11.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握12.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于
点M和N,再分别以M,N为圆心,大于1
2
MN的长为半径画弧,两弧交于点P,连结AP并延长交
BC于点D,则下列说法中正确的个数是( )
①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①根据作图的过程可以判定AD是∠BAC的∠平分线;
②根据作图的过程可以判定出AD的依据;
③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;
④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.
解:如图所示,
①根据作图的过程可知,AD是∠B AC的∠平分线;故①正确;
②根据作图的过程可知,作出AD的依据是SSS;故②错误;
③∵在△ABC中,∠C=90°,∠B=30°,
∴∠CBA=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=1
2
∠CAB=30°,
∴∠3=90°-∠2=60°,即∠ADC=60°.
故③正确;
④∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故④正确;
故选C.
“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.
13.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524
++;⑤当
BD=3
2
B时,ED=5AB;其中正确的有()
A.5个 B.4个 C.3 个 D.2个【答案】B
【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =
2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=10BC =5AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
14.如图,已知,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA .下面结论:①△ABD ≌△EBC ;②AC=2CD ;③AD=AE=EC ;
④∠BCE+∠BCD=180°.其中正确的是( )
A .①②③
B .①②④
C .①③④
D .②③④
【答案】C
【解析】 已知BD 为△ABC 的角平分线,根据角平分线的定义可得∠ABD =∠CBD ,在△AB D 和△EB C 中,BD =BC ,∠ABD =∠CBD ,BE =BA ,由SAS 可判定△ABD ≌△EBC ,即可得①正确;根据已知条件,无法证明AC =2CD ,②错误; 已知BD 为△ABC 的角平分线,
BD=BC ,BE=BA ,可得∠BCD =∠BDC =∠BAE =∠BEA , 再由
∠BCE =∠BDA ,∠BCE =∠BCD +∠DCE ,∠BDA =∠DAE +∠BEA ,∠BCD =∠BEA ,可得∠DCE =∠DAE ,所以AE =EC ;再由△ABD ≌△EBC ,可得AD=EC ,所以AD=AE=EC ,即③正确;由△ABD ≌△EBC ,可得∠BCE =∠BDA ,所以∠BCE +∠BCD =∠BDA +∠BDC =180°,④正确.故选C.
点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
15.如图,BD 是∠ABC 的角平分线,AD ⊥AB ,AD=3,BC=5,则△BCD 的面积为( )
A .7.5
B .8
C .10
D .15
【答案】A
【解析】 作DE⊥BC 于E ,根据角平分线的性质,由BD 是∠ABC 的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S △BCD =12
×BC×DE=7.5, 故选:A .
16.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒,
在Rt APR 和Rt APS 中,
AP AP PR PS
=⎧⎨=⎩, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确;
在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
17.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】
分析:根据三角形内角和等于180
°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =, ∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒, ∴DEB DBE ∠=∠,
∴DB DE =,故②正确. ∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.
18.在边长为1的正方形网格中标有A 、B 、C 、D 、E 、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是( )
A .△ACF
B .△ACE
C .△ABD
D .△CEF 【答案】C
【解析】
【分析】 利用勾股定理先分别求得△ABC 的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC 中,2231+10,2211+2,2,
A 、在△ACF 中,2221+5105252,则△ACF 与△ABC 不全
等,故不符合题意;
B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;
C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;
D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
19.下列条件中,不能判定两个直角三角形全等的是( )
A.两条直角边对应相等B.有两条边对应相等
C.斜边和一锐角对应相等D.一条直角边和斜边对应相等
【答案】B
【解析】
根据全等三角形的判定SAS,可知两条直角边对应相等的两个直角三角形全等,故A不正确;
根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL,能判定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B正确.
根据全等三角形的判定AAS,可知斜边和一锐角对应相等的两直角三角形全等,故C不正确;
根据直角三角形的判定HL,可知一条直角边和斜边对应相等两直角三角形全等,故D不正确.
故选B.
点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS,SAS,ASA,AAS,HL,直接判断即可.
20.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;
;,其中正确的有( )个.
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;
由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;
先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;
先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】
‚解:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED与△AEF中,

∴△AED≌△AEF(SAS),①正确;
②∵△AED≌△AEF,
∴AF=AD,
∵,
∴∠FAB=∠CAD,
∵AB=AC,
∴≌,②正确;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD与△ABF中,

∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED ≌△AEF ,
∴DE=EF .
在△BEF 中,∵BE+BF >EF ,
∴BE+DC >DE ,③正确;
④由③知△ACD ≌△ABF ,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.④正确.
故答案为D .
【点睛】
本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.
21.如图,已知在正方形ABCD 中,点E F 、分别在BC CD 、上,△AEF 是等边三角形,连接AC 交EF 于G ,给出下列结论:
①BE DF =; ② 15DAF ∠=;
③AC 垂直平分EF ; ④BE DF EF +=.
其中结论正确的共有( ).
A .1个
B .2个
C .3个
D .4个 【答案】C
【解析】
试题分析:四边形ABCD 是正方形,∴AB=BC=CD=AD ,
∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形, ∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).
∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),
∵BC=CD ,∴BC ﹣BE=CD ﹣DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确). 设EC=x ,由勾股定理,得EF=
x ,CG=x ,AG=AEsin60°=EFsin60°=2×CGsin60°=x , ∴AC=
, ∴AB=, ∴BE=﹣x=, ∴BE+DF=x ﹣x≠x .(故④错误).
∴综上所述,正确的有3个.
考点:正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质.
22.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;
③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )
A .①②
B .①③④
C .①②③
D .①②④
【答案】D
【解析】
①∵F 是AD 的中点,
∴AF=FD ,
∵在?ABCD 中,AD=2AB ,
∴AF=FD=CD ,
∴∠DFC=∠DCF ,
∵AD ∥BC ,
∴∠DFC=∠FCB ,
∴∠DCF=∠BCF ,
∴∠DCF=12∠BCD ,故此选项正确;
延长EF ,交CD 延长线于M ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠A=∠MDF ,
∵F 为AD 中点,
∴AF=FD ,
在△AEF 和△DFM 中,
∠A =∠FDMAF =DF ∠AFE =∠DFM ,
∴△AEF ≌△DMF (ASA ),
∴FE=MF ,∠AEF=∠M ,
∵CE ⊥AB ,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF ,
∴FC=FM ,故②正确;
③∵EF=FM ,
∴S △EFC=S △CFM ,
∵MC >BE ,
∴S △BEC <2S △EFC
故S △BEC=2S △CEF 错误;
④设∠FEC=x ,则∠FCE=x ,
∴∠DCF=∠DFC=90°-x ,
∴∠EFC=180°-2x ,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x ,
∴∠DFE=3∠AEF ,故此选项正确.
故正确的有:①②④.
故选D.
23.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143
其中正确的结论个数是
A .1个
B .2个
C .3个
D .4个
【答案】A
【解析】
【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.
【详解】
连接CF,
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90∘,
∴∠CFE+∠CFD=∠EFD=90∘,
又∵EF=DF
∴△EDF是等腰直角三角形(故(1)正确).
当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
即当DF⊥AC时,DE最小,此时
1
4
2
DF BC
== .
∴242
DE DF=故(3)错误).
∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴S四边形CDFE=S△AFC,
∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1
即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1
当S△ADF:S△CDF=1:2时,S△ADF=1
3
S△ACF=
1116
84
323
⨯⨯⨯=
又∵S△ADF=1
42
2
AD AD ⨯⨯=
∴2AD=16 3
∴AD=8
3
(故(4)错误).
故选:A.
【点睛】
本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.
24.如图,在正方形
ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23
AE AB =,则313
DHC
EDH S
S =.其中结论正确的有( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 分析:①根据题意可知∠ACD=45°,则GF=FC ,则EG=EF-GF=CD-FC=DF ;
②由SAS 证明△EHF ≌△DHC 即可;
③根据△EHF ≌△DHC ,得到∠HEF=∠HDC ,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°; ④若AE AB =23
,则AE=2BE ,可以证明△EGH ≌△DFH ,则∠EHG=∠DHF 且EH=DH ,则∠DHE=90°,△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,设HM=x ,则
DM=5x ,26x ,CD=6x ,则S △DHC =
12×HM×CD=3x 2,S △EDH =12
×DH 2=13x 2. 详解:①∵四边形ABCD 为正方形,EF ∥AD ,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG 为等腰直角三角形,
∴GF=FC ,
∵EG=EF−GF ,DF=CD−FC ,
∴EG=DF ,故①正确;
②∵△CFG 为等腰直角三角形,H 为CG 的中点,
∴FH=CH,∠GFH=12
∠GFC=45°=∠HCD , 在△EHF 和△DHC 中,
EF=CD ;∠EFH=∠DCH ;FH=CH ,
∴△EHF ≌△DHC(SAS),故②正确;
③∵△EHF ≌△DHC(已证),
∴∠HEF=∠HDC ,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE
AB
=
2
3

∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
EG=DF;∠EGH=∠HFD;GH=FH,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
如图,过H点作HM⊥CD于M,
设HM=x,则DM=5x,DH=26x,CD=6x,
则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选D.
点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.
25.在和中,,高,则和的关系是( ) A.相等B.互补
C.相等或互补D.以上都不对
【答案】C
【解析】
试题解析:当∠C′为锐角时,如图1所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ADC≌Rt△A′D′C′,
∴∠C=∠C′;
当∠C为钝角时,如图3所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ACD≌Rt△A′C′D′,
∴∠C=∠A′C′D′,
∴∠C+∠A′C′B′=180°.
故选C.
26.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
A.1 B.1或3 C.1或7 D.3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
27.下列两个三角形中,一定全等的是( )
A.两个等边三角形
B.有一个角是40︒,腰相等的两个等腰三角形
C.有一条边相等,有一个内角相等的两个等腰三角形
D.有一个角是100︒,底相等的两个等腰三角形
【答案】D
【解析】
【分析】
根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】
解:A、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;
B、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;
C、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;
D、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA或AAS证得它们全等,故本选项正确;
故选D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
28.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长
线上的点,∠EAF=1
2
∠BAD,若DF=1,BE=5,则线段EF的长为()
A.3 B.4 C.5 D.6【答案】B
【解析】
【分析】
在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】
在BE上截取BG=DF,
∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠B=∠ADF,
在△ADF与△ABG中
AB AD
B ADF
BG DF
=


∠=∠

⎪=


∴△ADF≌△ABG(SAS),
∴AG=AF,∠FAD=∠GAB,
∵∠EAF=
1
2
∠BAD,
∴∠FAE=∠GAE,
在△AEG与△AEF中
AG AF
FAE GAE
AE AE
=


∠=∠

⎪=


∴△AEG≌△AEF(SAS)
∴EF=EG=BE﹣BG=BE﹣DF=4.
故选:B.
【点睛】
考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.
29.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
A.①②③B.①②④C.①②D.①②③④
【答案】A
【解析】
【分析】
根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】
如图,
∵∠EAF=∠BAC ,
∴∠BAF=∠CAE ;
在△AFB 与△AEC 中,
AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩
===, ∴△AFB ≌△AEC (SAS ),
∴BF=CE ;∠ABF=∠ACE ,
∴A 、F 、B 、C 四点共圆,
∴∠BFC=∠BAC=∠EAF ;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
30.如图,在△ABC 中,P 是BC 上的点,作PQ ∥AC 交AB 于点Q ,分别作PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若PR=PS ,则下面三个结论:①AS=AR ;②AQ=PQ ;③△PQR ≌△CPS ;④AC ﹣AQ=2SC ,其中正确的是(

A .②③④
B .①②
C .①④
D .①②③④
【答案】B
【解析】
【分析】 连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR ≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】。

相关文档
最新文档