(完整word版)高中数学选择填空题专项训练.docx
(word完整版)高中数学必修二练习题(人教版,附答案)
高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
(完整word版)高三数学基础训练题集(上)1-10套(含答案)
俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一班级:姓名:座号:成绩:一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5a( )A.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,( ) 则(2)f-=( )A.14B.4-C.41-D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是( )A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是( )A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是( )A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为 ( ) A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 ( ) A .()()+∞-∞-,11,YB .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222,Y C .()()+∞-∞-,,2222YD .()()+∞-∞-,,22Y二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二班级: 姓名: 座号: 成绩:一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a =-p ,命题q :()(){}230B x x x =--f ,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(三)Word版含答案
(推荐时间:45分钟)一、选择题1. 设A ,B 是非空集合,定义A ×B ={x |x ∈(A ∪B )且x ∉(A ∩B )},已知A ={x |0≤x ≤2},B={y |y ≥0},则A ×B 等于( )A .(2,+∞)B .[0,1]∪[2,+∞)C .[0,1)∪(2,+∞)D .[0,1]∪(2,+∞)答案 A解析 由题意知,A ∪B =[0,+∞),A ∩B =[0,2]. 所以A ×B =(2,+∞).2. 命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3-x 2+1≤0B .存在x ∈R ,x 3-x 2+1≥0C .存在x ∈R ,x 3-x 2+1>0D .对任意的x ∈R ,x 3-x 2+1>0 答案 C3. 给出下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是( )A .①②B .②③C .③④D .②④答案 D解析 当a 平行于b 所在平面时,a ,b 可能异面,故①不正确;当a 、b 不相交时,可能a ∥b ,故③不正确;由此可排除A 、B 、C ,故选D.4. 设向量a =(cos α,sin α),b =(cos β,sin β),其中0<α<β<π,若|2a +b |=|a -2b |,则β-α等于( )A.π2B .-π2C.π4D .-π4答案 A解析 由|2a +b |=|a -2b |得3|a |2-3|b |2+8a·b =0,而|a |=|b |=1,故a·b =0,即cos(α-β)=0,由于0<α<β<π,故-π<α-β<0,故α-β=-π2,即β-α=π2.选A.5. 已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110答案 D解析 a 7是a 3与a 9的等比中项,公差为-2, 所以a 27=a 3·a 9,所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10=10×20+10×92×(-2)=110.6. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3B .2C. 5D. 6答案 C解析 设切点P (x 0,y 0),则切线的斜率为y ′|x =x 0=2x 0. 由题意有y 0x 0=2x 0,又y 0=x 20+1,解得x 20=1,所以ba =2,e =1+⎝⎛⎭⎫b a 2= 5.7. 设随机变量ξ服从正态分布N (16,σ2),若P (ξ>17)=0.35,则P (15<ξ<16)=( )A .0.35B .0.85C .0.3D .0.15答案 D解析 由正态分布的对称性知,P (ξ>16)=0.5, 又P (ξ>17)=0.35,所以P (16<ξ<17)=0.5-0.35=0.15. 于是P (15<ξ<16)=P (16<ξ<17)=0.15.8. 若某空间几何体的三视图如图所示,则该几何体的体积是( )A .4 2B .2 2C.423 D.223答案 B解析 该几何体是底面是直角三角形的直三棱柱,由三棱柱体积公式V =S底h 可得V=2 2.9. 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .y =f (x )在⎝⎛⎭⎫0,π4上单调递减 B .y =f (x )在⎝⎛⎭⎫π4,3π4上单调递减 C .y =f (x )在⎝⎛⎭⎫0,π2上单调递增 D .y =f (x )在⎝⎛⎭⎫π4,3π4上单调递增 答案 A解析 变形f (x )=sin(ωx +φ)+cos(ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ+π4. 又f (-x )=f (x ),得函数为偶函数,故φ+π4=k π+π2(k ∈Z ).∴φ=k π+π4(k ∈Z ).∵|φ|<π2,∴φ=π4.又T =π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 结合图象知A 正确.10.(2013·山东)函数y =x cos x +sin x 的图象大致为( )答案 D解析 函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.11.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为( )A .(1,1+2)B .(1+2,+∞)C .(1,3)D .(3,+∞)答案 A解析 画出可行域,可知z =x +my 在点⎝⎛⎭⎫11+m ,m1+m 取最大值,由11+m +m 21+m<2解得1<m <1+ 2. 12.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 f ′(x )>2转化为f ′(x )-2>0, 构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1. 二、填空题13.若直线y =kx -1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为________. 答案 ±3解析 圆心O 到直线y =kx -1的距离d =1k 2+1=12, ∴k =±3.14.若执行如图所示的程序框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于________.答案 23解析 通过框图可以看出本题的实质是求x 1,x 2,x 3的方差,根据方差公式得 输出S =13[(1-2)2+(2-2)2+(3-2)2]=23.15.若圆x 2+y 2-4x -4y -10=0上至少有三个不同点到直线l :ax +by =0的距离为22,则直线l 的斜率的取值范围是________. 答案 [2-3,2+3]解析 圆x 2+y 2-4x -4y -10=0可转化为(x -2)2+(y -2)2=(32)2,∴圆心的坐标为(2,2),半径为32,要求圆上至少有三个不同的点到直线l :ax +by =0的距离为22,则圆心到直线l 的距离应小于等于2, ∴|2a +2b |a 2+b 2≤2,∴⎝⎛⎭⎫a b 2+4⎝⎛⎭⎫a b +1≤0,∴-2-3≤a b ≤-2+3,又直线l 的斜率k =-ab ,∴2-3≤k ≤2+3,即直线l 的斜率的取值范围是[2-3,2+3]. 16.已知如下等式:3-4=17(32-42),32-3×4+42=17(33+43),33-32×4+3×42-43=17(34-44),34-33×4+32×42-3×43+44=17(35+45),则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *).答案17[]3n +1-(-4)n +1。
(完整word版)高中数学二项式定理练习题.doc
选修 2-3 1.3.1 二项式定理一、选择题1.二项式 (a + b)2n 的展开式的项数是 ( )A .2nB .2n +1C .2n - 1D .2(n +1)2.(x -y)n 的二项展开式中,第 r 项的系数是 ()A .C rr +1nB .C nr -1D .(- 1) r -1 r -1C .C n C n.在 - 10 的展开式中, x 6的系数是 ( )3 (x 3)64A .- 27C 10B .27C 106 4C .- 9C 10D .9C 104.(2010 全·国Ⅰ理, 5)(1+2x)3(1- 3x)5 的展开式中 x 的系数是 ( )A .- 4B .- 2C .2D .45.在 2x 3+ 12 n ∈ * 的展开式中,若存在常数项,则n 的最小值是 ( )x (n N )A .3B .5C .8D .10.在 - 3 + x) 10的展开式中 x 5的系数是 ( )6 (1 x )(1 A .- 297 B .- 252C .297D .2077.(2009 北·京 )在 x 2-1 n的展开式中,常数项为 15,则 n 的一个值可以是x()A .3B .4C .5D .6a 53的系数为 10,则实数 a 等于8.(2010 陕·西理, 4)(x +x ) (x ∈R)展开式中 x ()19.若 (1+ 2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值范围是()11 1 1A.12< x < 5B.6<x <51 21 2C.12< x < 3D.6<x <5.在3120的展开式中,系数是有理数的项共有 ()102x - 2A .4 项B .5 项C .6 项D .7 项二、填空题. + + 2·- x) 10 的展开式中, x 5 的系数为 ____________. 11 (1 x x ) (1. + 2 - x) 5 的展开式中 x 3的系数为 ________. 12 (1 x) (12 + 1 63 5 .若 x 的二项展开式中 x 的系数为 ,则 a =________(用数字作答 ).13 ax 2. ·宁理,辽 + + 2-1 6 的展开式中的常数项为 ________. 14 (201013)(1x x )(xx)三、解答题15.求二项式 (a +2b)4的展开式.16. m 、 n ∈ N * ,f(x)= (1+x)m +(1+x)n 展开式中 x 的系数为 19,求 x 2 的系数的最小值及此时展开式中 x 7 的系数.17.已知在 (3x -1)n 的展开式中,第 6 项为常数项.3(1)求 n ;(2)求含 x 2 的项的系数; (3)求展开式中所有的有理项.118.若x +4n 展开式中前三项系数成等差数列.求:展开式中系数最 2 x大的项.1.[答案 ]B2[答案 ] D 3 [ 答案 ] D[ 解析 ]r 10- r(- 3) r.令 10-r = 6,∵ T r +1 =C 10x解得 r = 4.∴系数为 (-4443) C 10=9C 10. 4[答案 ] C[ 解析 ] (1+ 2 x)3(1- 3 x)5=(1 +6 x + 12x + 8x x)(1-3x)5,故(1+ 2 33 5 3 (- 3 3 0=- 10x + 12x = 2x ,所以 x 的系数为 x) (1- x) 的展开式中含 x 的项为 1×C 5 x) + 12xC 5 2.5[答案 ] Br3 n - r1 rn - rr 3n - 5r[ 解析 ] T r +1= C n (2x ) (x 2) = 2·C n x .令 3n -5r =0,∵ 0≤r ≤ n ,r 、 n ∈ Z .∴n 的最小值为 5.6[答案 ] D[ 解析 ] x 5 应是 (1+ x)10 中含 x 5 项与含 x 2 项. ∴其系数为 C 5 + C 2 (- 1)= 207.10107[答案 ] D[ 解析 ] r2 n - r1 rr r 2n -3rr通项 T r + 1=C 10( x ) (- x ) = (- 1) C n x,常数项是 15,则 2n = 3r ,且 C n = 15,验证 n =6时, r =4 合题意,故选 D.8[答案 ] D [ 解析 ]r r a 5- rr 5- r 2r - 5 ,令 2r -5=3, ∴r = 4,C 5·x ( x ) = C 5·a x4由 C 5·a = 10,得 a =2.9[答案 ]AT 2>T 11[ 解析 ] 由C 62x>1∴1< x <1.T 2>T 3 得 1 2 2C 62x>C 6(2x) 12510[ 答案 ]Ar320- r- 1 r 2 r320- r r20-r[ 解析 ] T r +1= C 20( 2x) 2 = - 2·( 2) C 20·x ,∵系数为有理数,20- r∴( 2)r与 2 3 均为有理数,∴ r 能被 2 整除,且 20- r 能被 3 整除,故 r 为偶数, 20-r 是 3 的倍数, 0≤r ≤ 20.∴ r = 2,8,14,20.11[答案 ] - 16212[ 答案 ] 5[ 解析 ] 解法一: 先 形 (1+x)2(1 -x)5=(1 -x)3·(1- x 2) 2= (1-x)3(1 +x 4- 2x 2) ,展开式中 x 3 的系数 -1+ (- 2) ·C 1( -1)= 5;3331222 1-1)= 5.解法二: C 5( -1) +C 2 ·C 5(- 1) +C 2C 5( 13[ 答案 ] 232 31 320 35 3[ 解析 ] C 6(x ) ·(ax) = a 3 x= 2x , ∴a =2.14[ 答案 ] -51[ 解析 ] (1+ x +x 2)(x - x )61 1 1 =(x -x)6+ x (x - x )6+x 2(x -x )6,1 6 1 1r 6 rr rr 6 2r∴要找出 (x - x )中的常数 ,x 的系数, x 2 的系数, T r + 1=C 6x- (- 1) x -r= C 6( -1) x-,令 6- 2r =0, ∴r = 3,令 6- 2r =- 1,无解.令 6- 2r =- 2,∴ r =4.∴常数 -34C6+ C 6=- 5. 15[ 解析 ] 根据二 式定理n0 n 1 n -1k n - k kn n(a +b) = C n a + C n a b + ⋯+ C n a b + ⋯+ C n b n 得40 41 32 22 3 3 4 4 4 3 2 2 3 4(a +2b) =C 4 a + C 4a (2b)+ C 4a (2b) + C 4a(2b) + C 4(2b) =a +8a b + 24a b +32ab +16b .16[ 解析 ] 由 m + n =19,∵m , n ∈ N *.m =1 m =2 m = 18∴ , , ⋯,n = 1 . n =18 n = 1722 2 = 1 2 1 2 2 - 19m +171. x 的系数 C m +C n 2(m -m)+ 2 (n -n)= m∴当 m =9 或 10 , x2的系数取最小7 的系数 7781,此 xC 9+C 10= 156. 17[ 解析 ] r 3 x) n - r ·(- 1 r(1)T r +1 =C n ·( )2 3xr1 n - r1 ·x - 1 ) r=C n ·(x )·(-332=( -1)r ·C r ·xn - 2r. n23∵第 6 常数 ,n -2r∴r = 5 时有 = 0, ∴n = 10.3n -2r1(2)令3 =2,得 r =2( n -6)= 2,∴所求的系数为 2 1 2 45 C 10(- ) =4 .210- 2r∈Z(3)根据通项公式,由题意得:30≤ r ≤ 10r ∈Z10-2r= k(k ∈ Z),则 10- 2r =3k , 令310-3k 3 即 r =2 =5-2k.∵r ∈ Z ,∴ k 应为偶数, ∴ k 可取 2,0,- 2,∴r = 2,5,8,∴ 第 3 项、第 6 项与第 9 项为有理项.21 22 51 5它们分别为 C 10·(-2)·x ,C 10(-2) ,C 8 ·(-1)8·x - 2. 102rn - r1 r[ 解析 ]x) · 4 . 通项为: T r +1= C n ·( x 22 11 1由已知条件知: C n +C n ·2n ·,解得: n = 8.2 = 2C 2 记第 r 项的系数为 t r ,设第 k 项系数最大,则有:t k ≥ t k + 1 且 t k ≥ t k - 1.又 t =C r - 1·2-r +1,于是有:r8k 1 ·2-k +1 k·2-k C 8-≥C 8k 1 ·2-k +1k 2 ·2- k + 2 C 8-≥C 8-8! × 2≥ 8!( k -1)! ·(9 -k) ! ,k ! (8-k)! 即8!8!≥( k -1)! ·(9 -k) ! × 2.(k - 2)!·(10- k) !2≥1,9- kk∴解得 3≤ k ≤4.12≥.37 ∴系数最大项为第 3 项 T3= 7·x5和第 4 项 T4=7·x4.。
高中数学 必修二 习题:第3章 直线与方程3.2.2 Word版含解析
第三章 3.2 3.2.2一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( )A .2,5B .2,-5C .-2,-5D .-2,5[答案] B[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1 [答案] C[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李,行李费用y (元)与行李质量x (kg)的关系如图所示,则旅客最多可免费携带行李的重量为( )A .20 kgB .25 kgC .30 kgD .80 kg [答案] C[解析] 由图知点A (60,6)、B (80,10),由直线方程的两点式,得直线AB 的方程是y -610-6=x -6080-60,即y =15x -6.依题意,令y =0,得x =30,即旅客最多可免费携带30千克行李.4.如右图所示,直线l 的截距式方程是x a +yb=1,则有( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[答案] B[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.5.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[答案] A[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C .25D .2[答案] A[解析] 直线方程为y -91-9=x -3-1-3,化为截距式为x -32+y 3=1,则在x 轴上的截距为-32.二、填空题7.已知点P (-1,2m -1)在经过M (2,-1)、N (-3,4)两点的直线上,则m =________[答案] 32[解析] 解法一:MN 的直线方程为:y +14+1=x -2-3-2,即x +y -1=0,代入P (-1,2m -1)得m =32.解法二:M 、N 、P 三点共线, ∴4-(2m -1)-3+1=4-(-1)-3-2,解得m =32.8.过点(0,3),且在两坐标轴上截距之和等于5的直线方程是________.[答案] 3x +2y -6=0[解析] 设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧b =3a +b =5,解得a =2,b =3,则直线方程为x 2+y3=1,即3x +2y -6=0. 三、解答题9.已知点A (-1,2)、B (3,4),线段AB 的中点为M ,求过点M 且平行于直线x 4-y2=1的直线l 的方程.[解析] 由题意得M (1,3),直线x 4-y 2=1的方程化为斜截式为y =12x -2,其斜率为12,所以直线l 的斜率为12.所以直线l 的方程是y -3=12(x -1),即x -2y +5=0.10.求分别满足下列条件的直线l 的方程:(1)斜率是34,且与两坐标轴围成的三角形的面积是6;(2)经过两点A (1,0)、B (m,1);(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等. [解析](1)设直线l 的方程为y =34x +b .令y =0,得x =-43b ,∴12|b ·(-43b )|=6,b =±3. ∴直线l 的方程为y =43x ±3.(2)当m ≠1时,直线l 的方程是 y -01-0=x -1m -1,即y =1m -1(x -1) 当m =1时,直线l 的方程是x =1. (3)设l 在x 轴、y 轴上的截距分别为a 、b . 当a ≠0,b ≠0时,l 的方程为x a +yb =1;∵直线过P (4,-3),∴4a -3b =1.又∵|a |=|b |,∴⎩⎪⎨⎪⎧4a -3b =1a =±b,解得⎩⎪⎨⎪⎧ a =1b =1,或⎩⎪⎨⎪⎧a =7b =-7. 当a =b =0时,直线过原点且过(4,-3), ∴l 的方程为y =-34x .综上所述,直线l 的方程为x +y =1或x 7+y -7=1或y =-34x .一、选择题1.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( )A .2 014B .2 015C .2 016D .2 017[答案] D[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.2.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )[答案] B[解析] 直线x m -yn =1化为y =n m x -n ,直线x n -ym=1化为 y =mnx -m ,故两直线的斜率同号,故选B .3.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为( )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[答案] C[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧ x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .4.过P (4,-3)且在坐标轴上截距相等的直线有( )A .1条B .2条C .3条D .4条[答案] B[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0). 令y =0得x =3+4kk ,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B . 二、填空题5.直线l 过点P (-1,2),分别与x 、y 轴交于A 、B 两点,若P 为线段AB 的中点,则直线l 的方程为________.[答案] 2x -y +4=0 [解析] 设A (x,0)、B (0,y ). 由P (-1,2)为AB 的中点,∴⎩⎨⎧x +02=-10+y 2=2,∴⎩⎪⎨⎪⎧x =-2y =4.由截距式得l 的方程为 x -2+y4=1,即2x -y +4=0. 6.已知A (3,0)、B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.[答案] 3[解析] 直线AB 的方程为x 3+y4=1,∴y =4-4x3,∴xy =x (4-43x )=4x -43x 2=-43(x 2-3x )=-43[(x -32)2-94]=-43(x -32)2+3,∴当x =32时,xy 取最大值3.三、解答题7.△ABC 的三个顶点分别为A (0,4)、B (-2,6)、C (-8,0).(1)分别求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边的中垂线所在直线的方程; (4)求AC 边上的高所在直线的方程; (5)求经过两边AB 和AC 的中点的直线方程.[解析] (1)由A (0,4),C (-8,0)可得直线AC 的截距式方程为x -8+y4=1,即x -2y +8=0.由A (0,4),B (-2,6)可得直线AB 的两点式方程为y -46-4=x -0-2-0,即x +y -4=0.(2)设AC 边的中点为D (x ,y ),由中点坐标公式可得x =-4,y =2,所以直线BD 的两点式方程为y -62-6=x +2-4+2,即2x -y +10=0.(3)由直线AC 的斜率为k AC =4-00+8=12,故AC 边的中垂线的斜率为k =-2.又AC 的中点D (-4,2),所以AC 边的中垂线方程为y -2=-2(x +4), 即2x +y +6=0.(4)AC 边上的高线的斜率为-2,且过点B (-2,6),所以其点斜式方程为y -6=-2(x +2),即2x +y -2=0.(5)AB 的中点M (-1,5),AC 的中点D (-4,2), ∴直线DM 方程为y -25-2=x -(-4)-1-(-4),即x -y +6=0.8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形为平行四边形,求点M 的坐标.[解析] 容易求得抛物线与x 轴的交点分别为(-3,0)、(1,0)不妨设A (-3,0)、B (1,0),由已知,设M (a ,b )、N (0,n ),根据平行四边形两条对角线互相平分的性质,可得两条对角线的中点重合.按A 、B 、M 、N 两两连接的线段分别作为平行四边形的对角线进行分类,有以下三种情况:①若以AB 为对角线,可得a +0=-3+1,解得a =-2;②若以AN为对角线,可得a+1=-3+0,解得a=-4;③若以BN为对角线,可得a+(-3)=1+0,解得a=4.因为点M在抛物线上,将其横坐标的值分别代入抛物线的解析式,可得M(-2,3)或M(-4,-5)或M(4,-21).。
甘肃省武威市铁路中学2014届高三数学(文)专题训练:选择填空限时练(六)Word版含答案
(推荐时间:45分钟)一、选择题1.已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是() A.-1 B.0 C.1 D.2答案 D解析因为A∪B=R,所以m>1,故选D.2.已知z1-i=2+i,则复数z的共轭复数为() A.3+i B.3-iC.-3-i D.-3+i答案 A解析z=(1-i)(2+i)=3-i,复数z的共轭复数为3+i,故选A.3.采用系统抽样方法从480人中抽取16人做问卷调查,为此将他们随机编号为1,2,…,480,分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的16人中,编号落入区间[1,160]的人做问卷A,编号落入区间[161,320]的人做问卷B,其余的人做问卷C,则被抽到的人中,做问卷B的人数为() A.4 B.5 C.6 D.7答案 B解析本题考查系统抽样知识.采用系统抽样方法从480人中抽取16人做问卷调查,抽取的号码成等差数列8,38,68,…,458,编号落入区间[161,320]的人做问卷B人数5人.4.若数列{a n}满足1a n+1-1a n=d(n∈N*,d为常数),则称数列{an}为“调和数列”.已知正项数列{1b n}为“调和数列”,且b1+b2+…+b9=90,则b4·b6的最大值是() A.10 B.100 C.200 D.400答案 B解析∵{1b n}为“调和数列”,∴{b n}为等差数列,b1+b2+…+b9=90,b4+b6=20,b4·b6≤100.5.下图为一个算法的程序框图,则其输出的结果是()A .0B .2 012C .2 011D .1答案 D解析 本题考查程序框图.根据算法的程序框图可知,p 的值周期出现,周期为4,所以p =1.6. 已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C的一条渐近线,则C 的方程为 ( )A.y 22-x 2=1 B .2x 2-y 22=1C.y 22-x 2=1或2x 2-y 22=1 D.y 22-x 2=1或x 2-y 22=1 答案 A解析 画出图形分析知,双曲线焦点在y 轴上, 设方程为y 2a 2-x 2b 2=1(a >0,b >0).∴ab=2,① 4a 2-1b 2=1;②解得a 2=2,b 2=1.选A.7. 函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是( )答案 C解析 因为函数f (x ),g (x )都为偶函数, 所以f (x )·g (x )也为偶函数,所以图象关于y 轴对称,排除A ,D ; f (x )·g (x )=(-x 2+2)log 2|x |,当0<x <1时,f (x )·g (x )<0,排除B ,故选C.8. 等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( )A .6B .7C .8D .9答案 C解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0, 即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C.9. (2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞) 答案 D解析 圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n +1=mn ≤14(m +n )2,所以m +n ≥2+22或m +n ≤2-2 2.10.已知点F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 A ⎝⎛⎭⎫-c ,b 2a ,B ⎝⎛⎭⎫-c ,-b2a , F 2A →=⎝⎛⎭⎫-2c ,b 2a ,F 2B →=⎝⎛⎭⎫-2c ,-b 2a .F 2A →·F 2B →=4c 2-⎝⎛⎭⎫b 2a 2>0,e 2-2e -1<0,1<e <1+ 2.11.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,若目标函数z =ax +y (其中a 为常数)仅在点⎝⎛⎭⎫12,12处取得最大值,则实数a 的取值范围是( )A .(-2,2)B .(0,1)C .(-1,1)D .(-1,0)答案 C解析 由x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,画出此不等式组表示的平面区域如图中阴影部分所示. 由目标函数z =ax +y ,得y =-ax +z , 因为z 仅在点⎝⎛⎭⎫12,12处取得最大值,所以得-1<-a <1,得实数a 的取值范围是(-1,1).12.已知函数f (x )=⎩⎪⎨⎪⎧|sin x |,x ∈[-π,π],lg x ,x >π,x 1,x 2,x 3,x 4,x 5是方程f (x )=m 的五个不等的实数根,则x 1+x 2+x 3+x 4+x 5的取值范围是 ( )A .(0,π)B .(-π,π)C .(lg π,1)D .(π,10)答案 D解析 函数f (x )的图象如图所示,结合图象可得x 1+x 2=-π,x 3+x 4=π, 若f (x )=m 有5个不等的实数根,需lg π<lg x 5<1,得π<x 5<10, 又由函数f (x )在[-π,π]上对称, 所以x 1+x 2+x 3+x 4=0,故x 1+x 2+x 3+x 4+x 5的取值范围为(π,10). 二、填空题13.已知0<α<π,sin 2α=sin α,则tan ⎝⎛⎭⎫α+π4=________. 答案 -2- 3解析 由sin 2α=sin α,可得2sin αcos α=sin α, 又0<α<π,所以cos α=12.故sin α=32,tan α= 3. 所以tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=3+11-3=-2- 3. 14.已知函数f (x )=-3x 2+ax +b ,若a ,b 都是区间[0,4]内任取的一个数,那么f (1)>0的概率是________. 答案2332解析 由f (1)>0得-3+a +b >0,即a +b >3. 在0≤a ≤4,0≤b ≤4的约束条件下, 作出a +b >3满足的可行域,如图, 则根据几何概型概率公式可得, f (1)>0的概率P =42-12×3242=2332. 15.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表面积为________.答案 16π解析 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为34×(4π×22)+2×π×222=16π.16.某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50, 60),…,[90,100]后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.答案 75% 71解析 及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.。
(word完整版)历年高考数学真题(全国卷整理版)43964.doc
实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。
甘肃省武威市铁路中学2014届高三数学(文)专题训练:选择填空限时练(五)Word版含答案
(推荐时间:45分钟)一、选择题1. 若集合A ={x |0≤x +3≤8},B ={x |x 2-3x -4>0},则A ∩B 等于( )A .{x |-3≤x <-1或4<x ≤5}B .{x |-3≤x <4}C .{x |-1<x ≤5}D .{x |-1<x <4} 答案 A解析 A ={x |-3≤x ≤5},B ={x |x <-1或x >4},由数轴可知A ∩B ={x |-3≤x <-1或4<x ≤5}.2. 复数z =4-3i1-2i的虚部是( )A .2B .-2C .1D .-1答案 C解析 z =4-3i 1-2i =(4-3i )(1+2i )(1-2i )(1+2i )=4+8i -3i +65=2+i.3. 甲、乙两组数据的茎叶图如图所示,则甲、乙两组数据的中位数依次是( )A .83,83B .85,84C .84,84D .84,83.5 答案 D解析 甲组数据的中位数是84,乙组数据的中位数是83.5. 4. 函数y =2|log 2x |的图象大致是( )答案 C解析 当log 2x ≥0,即x ≥1时,f (x )=2log 2x =x ; 当log 2x <0,即0<x <1时,f (x )=2-log 2x =1x.所以函数图象在0<x <1时为反比例函数y =1x 的图象,在x ≥1时为一次函数y =x 的图象. 5. 已知a >b >1,c <0,给出下列四个结论:①c a >c b ;②a c <b c ;③log b (a -c )>log a (b -c );④b a -c >a b -c . 其中所有正确结论的序号是( )A .①②③B .①②④C .①③④D .②③④答案 A解析 a >b >1⇒1a <1b ,又c <0,故c a >cb,故①正确;由c <0知,y =x c 在(0,+∞)上是减函数,故a c <b c .故②正确. 由已知得a -c >b -c >1. 故log b (a -c )>log b (b -c ).由a >b >1得0<log a (b -c )<log b (b -c ), 故log b (a -c )>log a (b -c ).故③正确.6. 已知双曲线x 225-y 29=1的左支上一点M 到右焦点F 2的距离为18,N 是线段MF 2的中点,O 是坐标原点,则|ON |等于( )A .4B .2C .1D.23答案 A解析 设双曲线左焦点为F 1,由双曲线的定义知, |MF 2|-|MF 1|=2a ,即18-|MF 1|=10, 所以|MF 1|=8.又ON 为△MF 1F 2的中位线, 所以|ON |=12|MF 1|=4,所以选A.7. 如图所示的程序框图,输出的S 的值为( )A.12B .2C .-1D .-12答案 A解析 k =1时,S =2, k =2时,S =12,k =3时,S =-1, k =4,S =2,……所以S 是以3为周期的循环. 故当k =2 012时,S =12.8. 若由不等式组⎩⎪⎨⎪⎧x ≤my +n x -3y ≥0(n >0)y ≥0确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m 的值为 ( )A. 3 B .-33C.52D .-73答案 B解析 根据题意,三角形的外接圆的圆心在x 轴上, 则直线x =my +n 与直线x -3y =0垂直, ∴1m ×13=-1, 即m =-33. 9. 已知集合A ={x |x 2+a ≤(a +1)x , a ∈R },若存在a ∈R ,使得集合A 中所有整数元素之和为28,则实数a 的取值范围是( )A .[9,10)B .[7,8)C .(9,10)D .[7,8]答案 B解析 注意到不等式x 2+a ≤(a +1)x ,即(x -a )(x -1)≤0, 因此该不等式的解集中必有1与a .要使集合A 中所有整数元素之和为28,必有a >1.注意到以1为首项、1为公差的等差数列的前7项和为7×(7+1)2=28,因此由集合A 中所有整数元素之和为28得7≤a <8, 即实数a 的取值范围是[7,8).10.已知函数f (x )=a x -1+3(a >0且a ≠1)的图象过一个定点P ,且点P 在直线mx +ny -1=0(m >0,且n >0)上,则1m +4n 的最小值是( )A .12B .16C .25D . 24答案 C解析 由题意知,点P (1,4),所以m +4n -1=0, 故1m +4n =m +4n m +4(m +4n )n =17+4n m +4m n ≥25, 所以所求最小值为25.11.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则ω的值为( )A .2B .3C .4D .5答案 B解析 由图可知函数的最大值为2, 故A =2,由f (0)=2可得sin φ=22, 而|φ|<π2,故φ=π4;再由f ⎝⎛⎭⎫π12=2可得sin ⎝⎛⎭⎫ωπ12+π4=1, 故ωπ12+π4=π2+2k π(k ∈Z ), 即ω=24k +3(k ∈Z ). 又T 4>π12,即T >π3, 故0<ω<6,故ω=3.12.已知函数f (x )的定义域为[-1,5],部分对应值如下表:f (x )的导函数y =f ′(x )下列关于函数f (x )的命题: ①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数是( )A .4B .3C .2D .1答案 D解析 ①显然错误;③容易造成错觉,t max =5; ④错误,f (2)的不确定影响了正确性;②正确, 可有f ′(x )<0得到. 二、填空题13.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是________. 答案 (x -2)2+(y -1)2=1解析 设圆心坐标为(a ,b ),则|b |=1且|4a -3b |5=1.又b >0,故b =1,由|4a -3|=5得 a =-12(圆心在第一象限,舍去)或a =2,故所求圆的标准方程是(x -2)2+(y -1)2=1.14.一个棱锥的三视图如图所示,则这个棱锥的体积为________.答案 12解析 依题意得,该棱锥的体积等于13×(3×4)×3=12.15.在边长为2的正方形ABCD 内部任取一点M .(1)满足∠AMB >90°的概率为________;(2)满足∠AMB >135°的概率为________. 答案 (1)π8 (2)π-28解析 (1)以AB 为直径作圆,当M 在圆与正方形重合形成的半圆内时,∠AMB >90°,所以概率为P =π24=π8.(2)在边AB 的垂直平分线上,正方形ABCD 外部取点O ,使OA =2,以O 为圆心,OA 为半径作圆,当点M 位于正方形与圆重合形成的弓形内时,∠AMB >135°,故所求概率P =π4×(2)2-12×2×14=π-28.16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c = 22,1+tan Atan B=2cb ,则C =________. 答案 45°解析 由1+tan A tan B =2c b 和正弦定理得,cos A =12,∴A =60°.由正弦定理得,23sin A =22sin C ,∴sin C =22.又c <a ,∴C <60°,∴C =45°.。
(完整word版)高三数学练习题1.docx
高三数学练习题1高三数学练习一班级姓名学号一、选择题(每小题 3 分,共 42 分)1.下列说法中,正确的是()A.第二象限的角是钝角B.第三象限的角必大于第二象限的角C.- 831°是第二象限角D.- 95°20′, 984°40′, 264°40′是终边相同的角2.若cos0 ,且 sin20 ,则角的终边所在的象限是().A.第一象限 B .第二象限C.第三象限D.第四象限3.已知扇形的周长是 6 cm,面积是 2 cm2,则扇形的圆心角的弧度数是()A. 1 或 4B. 1C. 4D. 84.点A(sin2015 , cos2015 )位于()A.第一象限 B .第二象限 C .第三象限 D .第四象限5.若sin(3sin cos是第三象限的角,则22()),5sin cos22A.12B.1. 2D. 2C2x6.f(x)=cos ( A)f ( 2, 则下列等式成立的是()2x) f ( x)(B)f (2x) f (x)( C)f ( x) f (x)( D)f ( x) f (x)7.函数y sin cos的图象的一个对称中心是().A., 2 B .5, 2C.,0 D .,14442 8.函数y2sin x的一个单调增区间是().4A., B .4,3C . 3 ,4D . 5 ,442444 9.已知函数f x sin x ,下列结论中错误的是A.f x 的最大值为3B .y f x 的图像关于,0中心对称21 / 4C.f x既偶函数 , 又是周期函数 D.y f x 的图像关于直线x对称210.函数y sin 2 ( x) cos2 (x)1是()1212A.周期为2的偶函数B.周期为 2的奇函数C.周期为的偶函数D.周期为的奇函数11.已知函数f x sin2x4x R,为了得到函数 g x cos2x 的图像,只需将y f x的图像()A.向左平移8个单位B.向右平移个单位8C.向左平移4个单位D.向右平移个单位412.函数f ( x)cos 2x2sin x 的最小值与最大值的和等于()A.-2B.0C.3D.1 2213.已知cos cos1, sin sin 1, 则cos()()23A.1B.5C.59D.49 667272114.已知sin x cos y,则cos x sin y的取值范围是()2A. [1,1] B.[ 3 , 1 ] C.[1,3]D.[ 1 ,1 ] 222222二、填空题(每小题 3 分,共 18 分)15.sin15sin 75.3的 x 的集合为.16.满足sin x217.已知函数 f x sin x 3 cos x,,,且函数 f x是偶函数,22则的值为 ______.18.若0x,则函数 y cos(x2)sin( x) 的最大值是___________.2619.若sin()12)=______.,则cos(33320.求值:tan 200tan 400 3 tan 200 tan 400.答案第 2 页,总 4 页高三数学练习题1三、解答题(每小题8 分,共 40 分)21.已知函数f x3sin 2x, x R .6( 1)求f的值;12( 2)若sin40,5,,求f521222.已知函数f x Asin( x)( x R, A 0,0,| | ) 的部分图象如图所示2( 1)试确定函数f x 的解析式;( 2)若f ()1,求 cos( 2) 的值.23323.已知函数 f ( x) 4cos x sin( x) 1.6(Ⅰ)求 f ( x) 的最小正周期及递增区间;(Ⅱ)求 f ( x) 在区间,上的最大值和最小值.643 / 424.已知函数 f ( x) sin 2 x 2 3 sin x cos x 3cos 2 x m( m R) .(Ⅰ)求函数 f ( x) 的单调递增区间及对称轴方程;(Ⅱ)当 x [0,] 时, f ( x) 的最大值为9,求实数m的值.3r3r25.(本小题满分 12 分)已知向量a(sin x,), b (cos x, 1).2( 1)当a // b时,求2cos2x sin 2x的值;( 2)求f x a b b 在,0上的值域2答案第 4 页,总 4 页。
(完整word版)高等数学练习题(附答案).docx
《高等数学》专业 年级 学号 姓名一、判断题 . 将√或 ×填入相应的括号内 .(每题 2 分,共 20 分)( ) 1. 收敛的数列必有界 .( ) 2. 无穷大量与有界量之积是无穷大量. ( ) 3. 闭区间上的间断函数必无界 . ( ) 4. 单调函数的导函数也是单调函数.() 5. 若 f (x) 在 x 0 点可导,则 f (x ) 也在 x 0 点可导 . ( )6. 若连续函数 yf ( x) 在 x 0 点不可导,则曲线 yf ( x) 在 ( x 0 , f (x 0 )) 点没有切线 .( ) 7. 若 f (x) 在 [ a, b ] 上可积,则 f (x) 在 [ a,b ] 上连续 .() 8. 若 zf ( x, y) 在( x 0 , y 0 )处的两个一阶偏导数存在,则函数 z f ( x, y) 在( x 0 , y 0 )处可微 . ( ) 9. 微分方程的含有任意常数的解是该微分方程的通解.() 10. 设偶函数 f ( x) 在区间 (1,1 ) 内具有二阶导数,且f (0)f ( 0) 1 , 则f (0) 为 f ( x) 的一个极小值 .(每题 2 分,共 20 分)二、填空题 .1. 设 f (x 1)x 2 ,则 f (x 1) .1若 f (x)2x12. 1 ,则 lim.2 xx 013.设 单 调 可 微 函 数 f ( x) 的 反 函 数 为 g( x) , f (1)3, f(1) 2, f(3)6 则g (3).4. 设 ux , 则 du.xyy5. 曲线 x 26 y y 3 在 ( 2 , 2) 点切线的斜率为.6. 设 f (x) 为可导函数 , f (1)1, F ( x)f ( 1) f ( x 2 ) ,则 F (1).xf (x )x 2(1 x), 则 f (2)7. 若t2dt .8. f ( x) x 2 x 在 [0,4] 上的最大值为.9. 广义积分e 2 x dx.10. 设 D 为圆形区域 x 2y 21, y1 x 5 dxdy.D三、计算题 (每题 5 分,共 40 分)1. 计算 lim ( 121 2 1 2 ) .nn(n 1)(2n)2. 求 y ( x 1)(x2) 2 ( x 3) 3(x 10)10 在( 0,+)内的导数 .1 3. 求不定积分dx .x(1 x)4. 计算定积分sin 3 x sin 5 xdx .5. 求函数 f ( x, y)x 3 4x 2 2xy y 2 的极值 .6. 设平面区域 D 是由 yx, y x 围成,计算sin ydxdy .Dy7. 计算由曲线8. 求微分方程xy 1, xy 2, y x, y3x 围成的平面图形在第一象限的面积 .y2 x 的通解 .yy四、证明题 (每题 10分,共 20 分)1. 证明: arc tan xx (x) .arcsin1 x 22. 设 f (x) 在闭区间 [ a, b] 上连续,且f ( x) 0,xx1F ( x)f (t )dtdtbf (t )证明:方程 F ( x)0 在区间 (a, b) 内有且仅有一个实根 .《高等数学》参考答案一、判断题 . 将√或×填入相应的括号内(每题2 分,共 20 分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ; 10.√.二、 填空题 . (每题 2 分,共 20 分)1. x 24x 4 ; 2. 1;3. 1/2;4. ( y 1/ y) dx ( x x / y 2 )dy ;5. 2/3 ;6. 1 ;7.336 ;8. 8 ;9.1/2 ; 10. 0.三、计算题(每题 5 分,共 40 分)1.解: 因为n 1 11L1n 1(2n)2n 2(n1)2(2n)2n2且lim n1n 120 , lim2 =0n(2 n)nn由迫敛性定理知:lim (12(n 121 2 )=0n n1)(2n)2.解: 先求对数 ln yln( x 1) 2 ln( x 2) 10ln( x10)1 y 11210 yx x 2 x 10y ( x1)(x 10)(1 210x1x 2x )103.解: 原式 = 21d x1x= 21d x1 ( x )2=2 arcsin x c4.解:原式 =sin 3 x cos2 xdx33=2 cos x sin 2xdx cosxsin 2xdx233=2 sin 2xd sin x sin 2xd sin x22525x] 02[sin2 x]=[sin 2552=4/55.解: f x3x 28x 2 y 0 f y2x 2 y 0故x0或x2 y0y2当x0时 f xx( 0,0)8 , f yy (0,0)2, f xy ( 0,0)2 y0( 8) ( 2) 220 且A=8 0( 0, 0)为极大值点且 f ( 0,0)0当x2时 f xx( 2,2) 4 , f yy (2,2)2, f xy ( 2,2)2 y24(2)220无法判断6.解: D= (x, y) 0y1, y2x ysin y dxdy dy21yD y0ysin y1 sin y ydydx =[ x]y2y y1= (sin y y sin y)dy= [ cos y]11yd cos y=1cos1[ ycos y]11cos ydy= 1 sin17.解: 令 uxy , vy;则 1 u2 , 1 v3xx ux v 1uJ2 uv2v v 1y uy vv u2v2 uvAd2 31 ln31du dvD12v8.解: 令y 2u ,知 (u)2u 4x由微分公式知: uy 22 dx2dxdxc)e ( 4xee 2 x ( 4xe 2 x dx c)e 2 x (2xe 2xe 2xc)四 . 证明题(每题 10 分,共 20 分)1.解: 设f ( x)arctan x x arcsinx 211 1 1 x 2x 2 2f ( x)1 x 1 x2x21x2=011 x2f (x)cx令 x 0f (0) 0 0 0 c0 即:原式成立。
甘肃省武威市铁路中学2014届高三数学(文)专题训练:选择填空限时练(二)Word版含答案
(推荐时间:45分钟)一、选择题1. 设两集合A ={x |y =ln(1-x )},B ={y |y =x 2},则用阴影部分表示A ∩B 正确的是( )答案 A解析 A ={x |y =ln(1-x )}=(-∞,1), B ={y |y =x 2}=[0,+∞),A ∩B =[0,1),故选A. 2. i 为虚数单位,则⎝⎛⎭⎪⎫1+i 1-i 2 014=( )A .-iB .-1C .iD .1答案 B 解析 ⎝⎛⎭⎪⎫1+i 1-i 2 014=i 2 014=i 2=-1.3. 设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 设等比数列{a n }的公比为q ,若a 1<a 2<a 3,则q >0,且a 1<a 1q <a 1q 2,解得a 1>0,q >1,或a 1<0,0<q <1,所以数列{a n }为递增数列;反之,若数列{a n }是递增数列,显然有a 1<a 2<a 3,所以a 1<a 2<a 3是数列{a n }是递增数列的充要条件.故选C. 4. 平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |的值为( )A. 3 B .2 3 C .4 D .12答案 B解析 由已知|a |=2,|a +2b |2=a 2+4a ·b +4b 2 =4+4×2×1×cos 60°+4=12, 所以|a +2b |=2 3.5. 已知函数f (x )=x 2-ln|x |x,则函数y =f (x )的大致图象为( )答案 A解析 依题意,①当x >0时, f ′(x )=2x -1-ln x x 2=2x 3+ln x -1x 2,记g (x )=2x 3+ln x -1,则函数g (x )在(0,+∞)上是增函数, 注意到g (e -2)=2e -6-3<0,g (1)=1>0,函数g (x )在(e-2,1)上必存在唯一零点x 0,e -2<x 0<1,g (x 0)=0, 当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0,即函数f (x )在(0,x 0)上是减函数,在(x 0,+∞)上是增函数; ②当x <0时,f (x )=x 2-ln (-x )x ,f (-1)=1>0,结合各选项知,选A.6. 阅读下边的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6答案 B解析 第一次循环,i =1,a =2; 第二次循环,i =2,a =5;第三次循环,i =3,a =16; 第四次循环,i =4,a =65>50; ∴输出i =4.7. 设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数 答案 A解析 由题意知f (x )与|g (x )|均为偶函数.A 项,偶+偶=偶;B 项,偶-偶=偶,错;C 项与D 项分别为偶+奇=偶,偶-奇=奇,均不恒成立.8. 已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB等于( ) A.45B.35 C .-35D .-45答案 D解析 方法一 由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二 由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.9. 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是 ( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]答案 C解析 OA →·OM →=-x +y ,令z =-x +y ,做出可行域,求线性规划问题. 10.已知一空间几何体的三视图如图所示,则该几何体的体积为( )A.65π cm 3 B .3π cm 3 C.23π cm 3D.73π cm 3 答案 D解析 由三视图可知,此几何体是一个底面半径为1 cm 、高为3 cm 的圆柱的上部去掉一个半径为 1 cm 的半球所形成的几何体,所其体积为V =πr 2h -23πr 3=3π-23π=73π(cm 3).11.函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象如图所示.为了得到g (x )=-A cos ωx (A >0,ω>0)的图象,可以将f (x )的图象( ) A .向右平移π12个单位长度B .向右平移5π12个单位长度C .向左平移π12个单位长度D .向左平移5π12个单位长度答案 B解析 由图象知,f (x )=sin ⎝⎛⎭⎫2x +π3,g (x )=-cos 2x ,代入B 选项得sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -5π12+π3=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x . 12.设函数f (x )=x -2m sin x +(2m -1)sin x cos x (m 为实数)在(0,π)上为增函数,则m 的取值范围为( )A .[0,23]B .(0,23)C .(0,23]D .[0,23)答案 A解析 ∵f (x )在区间(0,π)上是增函数, ∴f ′(x )=1-2m cos x +2(m -12)cos 2x=2[(2m -1)cos 2x -m cos x +1-m ] =2(cos x -1)[(2m -1)cos x +(m -1)]>0 在(0,π)上恒成立,令cos x =t ,则-1<t <1,即不等式(t -1)[(2m -1)t +(m -1)]>0在(-1,1)上恒成立, ①若m >12,则t <1-m 2m -1在(-1,1)上恒成立,则只需1-m 2m -1≥1,即12<m ≤23,②当m =12时,则0·t +12-1<0,在(-1,1)上显然成立;③若m <12,则t >1-m 2m -1在(-1,1)上恒成立,则只需1-m 2m -1≤-1,即0≤m <12.综上所述,所求实数m 的取值范围是[0,23].二、填空题13.已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α-π4的值为________. 答案 -142解析 将sin α-cos α=12两边平方,得2sin α·cos α=34,(sin α+cos α)2=74,sin α+cos α=72,cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142. 14.已知各项不为零的等差数列{a n }的前n 项和为S n .若m ∈N *,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. 答案 10解析 a m -1+a m +1=2a m ,得2a m -a 2m =0,又a m ≠0.所以a m =2,则S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =2(2m -1)=38,所以m =10.15.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则a 的取值范围是________. 答案 [1,+∞)解析 由k =f (x 1)-f (x 2)x 1-x 2知f ′(x )=ax +x ≥2,x ∈(0,+∞)恒成立.即a ≥x (2-x )恒成立,因为x (2-x )的最大值为1.所以a ≥1.16.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则AP →·(PB →+PC →)=________. 答案 49解析 由AP →=2PM →知,P 为△ABC 的重心, 所以PB →+PC →=2PM →,则AP →·(PB →+PC →)=2AP →·PM →=2|AP →||PM →|cos 0°=2×23×13×1=49.。
(完整word版)高二数学期末考试试题及其答案
禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷、选择题:本大题共 12个小题,每小题 5分,共60分.1. (5分)已知集合 M={1, 2, 3}, N={2, 3, 4},则下列式子正确的是( A. M?NB. N?MC. MAN={2, 3} D. M U N={1 , 4}C.向左平移单位B.向右平移单位 ……冗、,D.向右平移亏单位7 .下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量 x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,若求出y关于x 的线性回归方程为 ? 0.7x 0.35 ,那么表中t 的值为B. 3.158 .已知 f (x) = (x — m) (x — n) +2,并且 m, n, a, 3的大小关系可能是(2.已知向量 a=(-b l)f 正⑵ -3),则 2%-b 等于() A. (4, - 5) B. (—4, 5) C. (0, T) D. (0, 1) 3.在区间(1, 7)上任取一个数,这个数在区间 5, 8)上的概率为4.要得到函数B-i7Ty=sin (4x-F-)的图象,只需将函数y=sin4x 的图象 5.已知两条直线m, n,两个平面鹏 8给出下面四个命题:①m H n, m± a? n± a ② a// & m? a, n?仅 m // n @ aJ & m " n, m± ? n± 3 其中正确命题的序号是 A.①③B.②④C.①④D.②③ 6.执行如图所以的程序框图,如果输入 a=5 ,那么输出 n=(A. 2B. 3C. 4D. 5A.向左平移 ,单位x 3 4 5 6y 2.5 t 4 4.5A. 3 a 、 D. 4.53是方程f (x ) =0的两根,则实数A. a< mvnv 3 B- m< a< 3< n C. m< a< n< 3 D. a< mv 3< n 9 .已知某锥体的三视图(单位: cm )如图所示,则该锥体的体积为( )10 .在等月ABC 中,/BAC=90°, AB=AC=2,同=2而I,菽=3凝,则前■刘的值为()Dy11 .已知一个三角形的三边长分别是 5, 5, 6, 一只蚂蚁在其内部爬行, 若不考虑蚂蚁的大小,13.若直线 2X + (m+1) y+4=0 与直线 mX+3y+4=0 平行,则 m=y<l15 .若变量x 、y 满足约束条件 y+y>口 ,则z=x-2y 的最大值为bkx 3,x 016 .已知函数f X 1k,若方程f f X 2 0恰有三个实数根,则实数k 的-,x 02取值范围是三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17 .在△ ABC 中,a, b, c 分别为内角 A, B, C 的对边,2bsinB= (2a+c) sinA+ (2c+a) sinC. (I) 求B 的大小;(n) 若 b=" A=T\求^ ABC 的面积.r . ..-18 .已知:a 、b 、c是同一平面上的三个向量,其中a=(l, 2).A. 2cm 3B. 4cm 3C. 6cm 3D . 8cm 3B.则某时刻该蚂蚁距离三角形的三个顶点的距离均超过 2的概率是(B. 1-C. 1 -12.已知函数f (x )= ,X 1 , X 2 , X 3, X 4, X 5 是方程 f (x) =m 的五个不等的实数根,则 X 1+X 2+X 3+X 4+X 5的取值范围是(A. (0,同 B .(一兀,兀) C. (lg ,兀 1) D. ( 为 10)二、填空题(每题 5分,,茜分20分)14.已知sinOL IcosCl①若|C 1=2 j5,且c // a,求C的坐标.… .. 5②右|b |=——,且a +2 b与2 a -b垂直,求a,与b的夹角219.设S n是等差数列{a n}的前n项和,已知S3=6, a4=4.(1)求数列{a n}的通项公式;(2) 若bn=3 — 3 %,求证:—+---+ , , •+ ——<—.b L b2 L 420为了了解某省各景点在大众中的熟知度,随机对15〜65岁的人群抽样了n人,回答问题15 25 35 45 55 e5 学龄(1)分别求出a,b,x,y的值;(2)从第2, 3, 4组回答正确的人中用分层抽样的方法抽取6人,求第2, 3, 4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三柱ABC-A i B i C i中,△ ABC是边长为2的正三角形,侧面BB i C i C是矩形,D、E分别是线段BB i、AC i的中点.(i)求证:DE//平面A i B i C i;(2)若平面ABC,平面BB i C i C, BB i=4 ,求三棱锥A- DCE的体积.22.已知圆C: x2+y2+2x- 3=0.(i)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A (xi, yi)、B (X2, y2)两点, 求证:1 :工为定值;町K2(3)斜率为i的直线m与圆C相交于D、E两点,求直线m的方程,使^ CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案选择题(每小题分,共分) 1 2 3 4 5 6 7 8 9 10 11 12 CBCBCBABAACD、填空题(每小题 5分,共12分),、M A TV - n 2n 兀 兀 n 解:A =——,,C =兀- =———4 q 3 3 2••,|b=V3, B =-^-JbsinC V5 ^/218.解:①设 c (x, y) • •• c // a 且|C |二2 J52x y 0•• 2 2 x 2 y 2 202 c =(2,4)或 c =(-2, -4).13.-3 14. — 15. 3 16.1,17 (I)解::2bsinB= (2a+c) sinA+ (2c+a) sinC,由正弦定理得, 2b 2= (2a+c) a+ (2c+a) c, 化简彳导,a 2+c 2B=2TT...sinC=sin (2L 』)=、3 「 JT由正弦定理得,SliTT-COS-^-COS-SLIT^ bI sinC sinBcsinBsin号X 炳乂配yXsin-TT 3^/3b 2+ac=0.・•.△ABC 的面积②「( a+2b ) ± (2a-b),( a+2b) (2a-b) =0,-r -to- -► —*■• -2a 2+3a b-2 b 2=0• •.2|a |2+3| a | b||cos -2|b |2=02X 5+3X v -'5 X — cos -2X - =0, cos = -1 2 4打九 2k Tt, 长[0,兀]「. 0 =Tt.9 CL— 2520解:(1)由频率表中第 4组数据可知,第 4组总人数为 —再结合频率分布直方图可知n ----------- 1000.025 10a 100 0.01 10 0.5 519.解:(1)设公差为 d,则解得=1-a n =n. (2)证明:b n =3—3 、=3n+1— 3n=2?3n,0.36 (1分)•}是等比数列.,q1b 100 0.03 10 0.9 2乙x 180.9, y — 0,220 15(2)因为第2, 3, 4组回答正确的人数共有 54人,所以利用分层抽样在 54人中抽取6人,每组分别抽取的人数为:(3)设第2组2人为:A 1, A 2;第3组3人为:B 1, B 2, B 3;第4组1人为:C 1 .则从6人中随机抽取2人的所有可能的结果为:(A1,A 2), (A 1,B 1), (A 1,B 2), (A 1,B 3), (A 1C1),(A 2,B 1), (A 2, B 2), (A 2,B 3), (A2,C I ), (B I ,B2), (B I ,B3), (B 1,C 1), (B 2,B 3), (B2,C I ), (B 3,C I )共15个基本事件,其中恰好没有第3组人共3个基本事件, ……,一,…— …31,所抽取的人中恰好没有第 3组人的概率是:P - -155贝U 由EF 是△ AA 1C 1的中位线得 EF // AA 1, 又 DB 1//AA 1, DB 1卷AA 1 所以 EF // DB 1, EF = DB 1所以DE //平面A 1B 1C 1(n)解:因为E 是 AC 1 的中点,所以 V A DCE =V D ACE =2过A 作AH ,BC 于H 因为平面平面 ABC ,平面BB 1C 1C,所以AHL 平面BB 1C 1C,所以 V A DCE =V D —ACE =「5二「7 (4)第2组:18 54 2人;第3组:27 54 3人;第4组:9 54…(8分)21. (1)证明:取棱A i C i 的中点F,连接EF 、B 1F…(10分)…(12分)故四边形DEFB 1是平行四边形,从而 DE// B1FEF122.解:(1)圆 C: x 2+y 2+2x-3=0,配方得(x+1) 2+y 2=4,则圆心C 的坐标为(-1,0),圆的半径长为 2;(2)设直线l 的方程为y=kx,联立方程组工卜了 +2x3=。
(完整word版)苏教版高中数学必修二练习及答案
苏教版高中数学必修二练习及答案一、选择题(每题3分,共54分)1、在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6πB .3π C .65π D .32π 2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4、已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为ο45,则直线2l 的方程是( ) A .1-=x y B .5331+=x y C .73+-=x y D .73+=x y5、不等式062>--y x 表示的平面区域在直线062=--y x 的() A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10、下列命题中,正确的是()A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11、由点)3,1(P 引圆922=+y x 的切线的长是 ()A .2B .19C .1D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为ο60,则k 的值是 ( )A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于()A .1B .31-C .32-D .2-15、若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于()A .3-B .6-C .23-D .32 16、由422=+=y x x y 和圆所围成的较小图形的面积是() A .4πB .πC .43πD .23π 17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是()A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x 18、参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( ) A .圆心为)3,3(-,半径为9的圆 B .圆心为)3,3(-,半径为3的圆 C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆二、填空题(每题3分,共15分)19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分) 24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。
(完整word版)高等数学第一章函数与极限试题
高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11 C ) X1 D ) x4.下列各式正确的是 ( ) A )lim0+→x )x1+1(x=1 B ) lim 0+→x )x1+1(x=e C ) lim ∞→x )x 11-(x=-e D ) lim ∞→x )x1 +1(x-=e 5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D.21.10.极限: xxx x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sin lim 2+∞→x xx x = . 12. lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14.=→x xx x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x xx 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合()()x x x x f 25lg 12-+-+=19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。
高中数学必修二人教B版练习:2.3 圆的方程2.3.4 Word版含解析
第二章 2.3 2.3.4A级基础巩固一、选择题1.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为导学号92434866 (C)A.1B.2C.3D.4[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.2.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为导学号92434867(D)A.4 B.42-1C.22-2 D.2[解析]∵|CC′|=5<R-r=7,∴圆C内含于圆C′,则|MN|的最小值为R-|CC′|-r=2.3.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是导学号92434868(C)A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有导学号92434869(B)A.1条B.2条C.3条D.4条[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是导学号 92434870( B )A .(1,-2)B .(3,-2)C .(2,-1)D .(2+2,2-3)[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B .6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为导学号 92434871( B )A .x 2+y 2=1B .x 2+y 2=1(x ≠±1)C .x 2+y 2=1(x ≠0)D .y =1-x 2[解析] 直接法,设P (x ,y ),由k P A =yx +1,k PB =y x -1及题设条件y x +1·yx -1=-1(x ≠±1)知选B .二、填空题7.圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是__相交__. 导学号 92434872[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是__x =23导学号 92434873[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23.三、解答题9.判断下列两圆的位置关系. 导学号 92434874 (1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=(2+6)2+(3+3)2=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=(2+1)2+(3-1)2=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l :mx +y -7=0与C 2相切. 导学号 92434875求:(1)圆C 2的标准方程; (2)m 的值.[解析] (1)由题知C 1:(x -1)2+(y -2)2=18, C 2:(x -a )2+(y -3)2=8.因为C 1与C 2相外切,所以圆心距d =r 1+r 2, 即(a -1)2+(3-2)2=32+22,所以a =8或-6(舍去).所以圆C 2的标准方程为(x -8)2+(y -3)2=8. (2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22, 所以m =1或17.B 级 素养提升一、选择题1.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x -5)2+(y +7)2=16相外切,则动圆圆心的轨迹方程是导学号 92434876( A )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=9C .(x -5)2+(y +7)2=15D .(x +5)2+(y -7)2=25 [解析] 设动圆圆心为P (x ,y ),则(x -5)2+(y +7)2=4+1,∴(x -5)2+(y +7)2=25. 故选A .2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是导学号 92434877( A )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0. 3.(2016·山东文)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是导学号 92434878( B )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2. 圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题4.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为__60x 2-4y 2-240x +225=0__. 导学号 92434879[解析] ⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=(x -4)2+y 2=R +2,∴(x -4)2+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.5.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值范围是导学号 92434880[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2.三、解答题6.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程. 导学号 92434881[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝⎛⎭⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.C 级 能力拔高1.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. 导学号 92434882[解析] ⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3, 圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.2.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程. 导学号 92434883[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0.② ∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0.③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝⎛⎭⎫t +352+215≥215,所以t =-35时,r min =215. 此时,圆B 的方程是⎝⎛⎭⎫x +352+⎝⎛⎭⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B . 则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点. ∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4.欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝⎛⎭⎫-35,-65,r min =215, 故圆B 的方程是⎝⎛⎭⎫x +352+⎝⎛⎭⎫y +652=215.。
(word完整版)高一数学必修一试题含答案,推荐文档
11. 下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A. 一次函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为 ( )
1 我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
D、(4)(1)(2)
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题 4 小题,每小题 5 分,共 20 分. 把正确答案填在题中横线上.
13.函数 y x 4 的定义域为
.
x 2
14. 若 f (x) 是一次函数, f [ f (x)] 4x 1且,则 f (x) =
.
15. 已知幂函数 y f (x) 的图象过点(2, 2),则f (9)
.
16. 若一次函数 f (x) ax b 有一个零点 2,那么函数 g(x) bx2 ax 的零点是
.
三、解答题:本大题共 5 小题,共 56 分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题 10 分)
已知集合 A {x | a 1 x 2a 1} , B {x | 0 x 1},若 A B ,求实数 a 的取值范围。
A、1 个
B、2 个
C、3 个
D、4 个
4、如果函数 f (x) x2 2(a 1)x 2 在区间, 4上单调递减,那么实数a 的取值范围是
(
)
A、 a ≤ 3
(完整word版)高等数学试题及答案(word文档良心出品)
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
(完整word版)高中数学导数压轴题专题训练
高中数学导数尖子生指导(填选压轴)一.选择题(共 30 小题)1.( 2013?文昌模拟)如图是322+x 2 2的值是()f ( x ) =x +bx +cx+d 的图象,则 x 1 A . B . C .D .考点 : 利用导数研究函数的极值;函数的图象与图象变化. 专题 : 计算题;压轴题;数形联合.剖析: 先利用图象得: f (x ) =x ( x+1 )( x ﹣ 2)=x 3﹣ x 2﹣2x ,求出其导函数,利用 x 1, x 2 是原函数的极值点,求出 x 1+x 2= ,,即可求得结论.解答: 解:由图得: f ( x ) =x ( x+1 )(x ﹣ 2) =x 3﹣ x 2﹣ 2x ,∴ f'( x ) =3x 2﹣ 2x ﹣ 2∵ x 1, x 2 是原函数的极值点所以有 x 1+x 2= ,,222.故 x 1 +x 2 =(x 1+x 2) ﹣ 2x 1x 2== 应选 D .评论: 本题主要考察利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考察,属于基础题.2.( 2013?乐山二模)定义方程 f ( x ) =f ′( x )的实数根 x 0 叫做函数 f ( x )的 “新驻点 ”,若函数 g ( x ) =x , h ( x )=ln ( x+1), φ( x )=x 3﹣ 1 的 “新驻点 ”分别为 α, β, γ,则 α, β,γ的大小关系为( ) A .α> β> γB . β> α> γC . γ> α>βD .β> γ>α考点 : 导数的运算. 专题 : 压轴题;新定义.剖析: 分别对 g ( x ),h (x ),φ( x )求导,令g ′( x ) =g ( x ),h ′( x )=h ( x ),φ′( x ) =φ( x ),则它们的根分别32为 α, β, γ,即 α=1, ln ( β+1) =, γ﹣ 1=3γ,而后分别议论 β、 γ的取值范围即可.解答:解: ∵ g ′( x ) =1, h ′( x ) =, φ′(x ) =3x 2,由题意得:α=1, ln ( β+1) = 32, γ﹣ 1=3γ,① ∵ ln ( β+1) =,β+1∴ ( β+1 ) =e ,当 β≥1时, β+1≥2, ∴ β<1,这与 β≥1矛盾,∴ 0< β< 1;32② ∵ γ﹣ 1=3 γ,且 γ=0 时等式不行立,2∴ 3γ>3∴ γ> 1, ∴ γ> 1.∴ γ> α> β. 应选 C .评论: 函数、导数、不等式密不行分,本题就是一个典型的代表,此中对对数方程和三次方程根的范围的议论是一个难点.3.( 2013?山东)抛物线 C 1:的焦点与双曲线C 2: 的右焦点的连线交C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则p=()A .B .C .D .考点 : 利用导数研究曲线上某点切线方程;双曲线的简单性质. 专题 : 压轴题;圆锥曲线的定义、性质与方程.剖析: 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在 x 取直线与抛物线交点 M 的横坐标时的导数值,由其等于双曲线渐近线的斜率获得交点横坐标与 p 的关系,把 M 点的坐标代入直线方程即可求得 p 的值.解答:解:由,得 x 2=2py ( p > 0),所以抛物线的焦点坐标为 F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即① .设该直线交抛物线于M ( ),则 C 1 在点 M 处的切线的斜率为 .由题意可知,得 ,代入 M 点得 M ( )把 M 点代入 ① 得:.解得 p=.应选 D .评论: 本题考察了双曲线的简单几何性质,考察了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.( 2013?安徽) 已知函数3 2 +bx+c 有两个极值点1211 2 ,则对于 x 的方程 3( f (x )) f ( x )=x +axx,x,若 f ( x)=x < x2+2af (x ) +b=0 的不一样实根个数为( )A .3B . 4C . 5D .6考点 : 利用导数研究函数的极值;根的存在性及根的个数判断.专题 : 压轴题;导数的综合应用.剖析: 由函数 f ( x )=x 32′ 2有两个不相等的实数根,必有+ax +bx+c 有两个极值点 x 1, x 2,可得 f ( x )=3x +2ax+b=0 △ =4a 2﹣ 12b > 0.而方程 3(f ( x ))2+2af ( x )+b=0 的 △ 1=△ >0,可知此方程有两解且 f ( x )=x 1 或 x 2.再分别议论利用平移变换即可解出方程f ( x ) =x 1 或 f ( x )=x 2 解得个数.解答: 解: ∵ 函数 f ( x ) =x 3 212+ax +bx+c 有两个极值点 x, x ,′2∴ f ( x )=3x +2ax+b=0 有两个不相等的实数根,∴ △ =4a 2﹣ 12b > 0.解得= .∵ x 1< x 2,∴,.而方程 3(f (x ))21=△ > 0, ∴ 此方程有两解且1 2+2af (x ) +b=0的△f ( x ) =x 或 x .不如取 0<x 1< x 2, f ( x 1)> 0.y=f ( x )﹣ x 的图象, ∵ f ( x )=x ,可知方程 f ( x )=x① 把 y=f ( x )向下平移 x个单位即可获得1有两1 1 1 1 解.② 把 y=f ( x )向下平移 x 2 个单位即可获得y=f ( x )﹣ x 2 的图象, ∵f (x 1) =x 1, ∴f (x 1)﹣ x 2<0,可知方程 f ( x ) =x 2 只有一解.综上 ①② 可知:方程 f ( x )=x 1 或 f ( x )=x 2.只有 3 个实数解. 即对于 x 的方程 3(f (x ))2+2af ( x )+b=0的只有 3 不一样实根.应选 A .评论: 本题综合考察了利用导数研究函数得单一性、极值及方程解得个数、平移变换等基础知识,考察了数形联合的思想方法、推理能力、分类议论的思想方法、计算能力、剖析问题和解决问题的能力.5.( 2013?湖北)已知 A .a 为常数,函数 B .f ( x ) =x ( lnx ﹣ ax )有两个极值点C .x 1,x 2( x 1< x 2)(D .)考点 : 利用导数研究函数的极值;函数在某点获得极值的条件.专题 : 压轴题;导数的综合应用.剖析: 先求出 f ′( x ),令 f ′( x )=0,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x ) =lnx+1 ﹣ 2ax 有且只有两个零点 ? g ′( x )在( 0, +∞)上的独一的极值不等于 0.利用导数与函数极值的关系即可得出.解答:解: ∵=lnx+1 ﹣ 2ax ,( x >0)令 f ′( x )=0 ,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x )=lnx+1 ﹣ 2ax 有且只有两个零点? g ′( x )在( 0, +∞)上的独一的极值不等于 0..① 当 a ≤0 时, g ′( x )> 0, f ′(x )单一递加,所以 g ( x ) =f ′(x )至多有一个零点,不切合题意,应舍去.② 当 a > 0 时,令 g ′( x ) =0 ,解得 x= ,∵ x, g ′( x )> 0,函数 g ( x )单一递加;时, g ′( x )< 0,函数 g ( x )单一递减.∴ x=是函数 g ( x )的极大值点,则> 0,即> 0,∴ ln ( 2a )< 0,∴ 0< 2a <1,即.∵, f ′( x ) =lnx +1﹣2ax =0, f ′( x ) =lnx +1﹣ 2ax 2=0.11122且 f ( x 1) =x 1( lnx 1﹣ ax 1) =x 1(2ax 1﹣ 1﹣ ax 1) =x 1( ax 1 ﹣1)< x 1(﹣ ax 1) =< 0,f (x 2) =x 2( lnx 2﹣ ax 2) =x 2( ax 2﹣1)>=﹣.().应选 D .评论: 娴熟掌握利用导数研究函数极值的方法是解题的要点.6.( 2013?辽宁)设函数 f ( x )知足 x 2f ′(x ) +2xf ( x ) =,f (2) = ,则 x >0 时, f ( x )()A .有 极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D .既 无极大值也无极小值考点 : 函数在某点获得极值的条件;导数的运算.专题 : 压轴题;导数的综合应用.剖析: 先利用导数的运算法例,确立 f (x )的分析式,再结构新函数,确立函数的单一性,即可求得结论.解答:,解: ∵ 函数 f ( x )知足∴∴ x > 0 时,dx∴∴令 g ( x )=,则令 g ′(x ) =0,则 x=2 , ∴x ∈( 0, 2)时, 数单一递加∴ g ( x )在 x=2 时获得最小值g ′( x )< 0,函数单一递减,x ∈( 2, +∞)时,g ′( x )> 0,函∵ f ( 2) =, ∴ g (2) = =0∴ g ( x ) ≥g ( 2) =0∴≥0即 x > 0 时, f ( x )单一递加∴ f ( x )既无极大值也无极小值应选 D .评论: 本题考察导数知识的运用,考察函数的单一性与极值,考察学生剖析解决问题的能力,难度较大.7.( 2013?安徽)若函数f ( x )=x 3+ax 2+bx+c 有极值点 x 1,x 2,且 f ( x 1)=x 1,则对于 x 的方程 3( f ( x ))2+2af ( x ) +b=0 的不一样实根个数是( )A .3B . 4C . 5D .6考点 : 函数在某点获得极值的条件;根的存在性及根的个数判断. 专题 : 综合题;压轴题;导数的综合应用.剖析: 求导数 f ′( x ),由题意知 x 1, x 2 是方程 3x 2+2ax+b=0 的两根,从而对于 f ( x )的方程 3( f ( x ))2+2af ( x )+b=0 有两个根,作出草图,由图象可得答案.解答: 解: f ′( x ) =3x 2+2ax+b , x 1, x 2 是方程 3x 2+2ax+b=0 的两根,不如设 x 2>x 1,由 3( f ( x ))2+2af ( x ) +b=0,则有两个 f ( x )使等式成立, x 1=f ( x 1),x 2> x 1=f ( x 1),以下表示图象:如图有三个交点,应选 A .评论: 考察函数零点的观点、以及对嵌套型函数的理解,考察数形联合思想.8.( 2014?海口二模)设f (x )是定义在R 上的奇函数,且f ( 2) =0,当x > 0 时,有恒成立,则不等式 x 2f ( x )> 0 的解集是()A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣2, 0) ∪ ( 0, 2)C . (﹣ ∞,﹣2)∪(2,+∞)D .(﹣ ∞,﹣ 2) ∪ ( 0,2)考点 : 函数的单一性与导数的关系;奇偶函数图象的对称性;其余不等式的解法. 专题 : 综合题;压轴题.剖析:第一依据商函数求导法例,把 化为 [] ′< 0;而后利用导函数的正负性, 可判断函数y=在( 0, +∞)内单一递减;再由f ( 2)=0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得f ( x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因 当 x > 0 ,有 恒成立,即 [ ]′<0 恒成立,所以在( 0, +∞)内 减.因 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0.又因 f ( x )是定 在R 上的奇函数,所以在( ∞, 2)内恒有 f ( x )> 0;在( 2, 0)内恒有f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案 ( ∞, 2)∪ ( 0,2).故 D .点 :本 主要考 函数求 法 及函数 性与 数的关系,同 考 了奇偶函数的 象特色.9.( 2014?重 三模) 于三次函数 f ( x )=ax 3+bx 2+cx+d ( a ≠0), 出定 : f ′(x )是函数 y=f ( x )的 数, f ″ ( x )是 f ′( x )的 数,若方程 f ′′(x )=0 有 数解 x 0, 称点( x 0, f (x 0)) 函数 y=f ( x )的 “拐点 ”.某同学研究 :任何一个三次函数都有 “拐点 ”;任何一个三次函数都有 称中心,且“拐点 ”就是 称中心. 函数g ( x ) =, g ( ) +=()A .2011B . 2012C . 2013D .2014考点 : 数的运算;函数的 ;数列的乞降. : ; 数的观点及 用.剖析: 正确求出 称中心,利用 称中心的性 即可求出.解答: 解:由 意,′2 ″g (x ) =x x+3 , ∴ g ( x ) =2x 1, ″,解得,令 g ( x )=0又, ∴ 函数 g ( x )的 称中心 .∴,, ⋯∴ g ( ) +=2012 .故 B .点 : 正确求出 称中心并掌握 称中心的性 是解 的关 .10.( 2014?上海二模) 已知 f ( x )=alnx+ 2x 1,x 2,都有x ( a > 0),若 随意两个不等的正 数 > 2 恒成立, a 的取 范 是( )A .( 0, 1]B . ( 1, +∞)C . (0, 1)D .[1, +∞)考点 : 数的几何意 ;利用 数研究函数的 性.: 算 ; .剖析:先将条件 “ 随意两个不等的正 数 x 1,x 2,都有> 2 恒成立 ” 成当 x > 0 ,f'( x )≥2 恒成立,而后利用参 量分别的方法求出a 的范 即可.解答:解:对随意两个不等的正实数x 1, x 2,都有> 2 恒成立则当 x > 0 时, f'( x )≥2 恒成立f' ( x ) = +x ≥2 在( 0, +∞)上恒成立则 a ≥( 2x ﹣ x 2) max =1 应选 D .评论: 本题主要考察了导数的几何意义,以及函数恒成立问题,同时考察了转变与划归的数学思想,属于基础题.11.(2012?桂林模拟)已知在(﹣ ∞, +∞)上是增函数,则实数 a 的取值范围是()A .(﹣ ∞, 1]B . [﹣ 1, 4]C . [﹣ 1,1]D .(﹣ ∞, 1)考点 : 利用导数研究函数的单一性.专题 : 计算题;压轴题.剖析: 假如一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要知足递加,当于 0 时,要使的函数是一个减函数,求导此后导函数横小于0,注意两个端点处的大小关系.解答: 解: ∵ 假如一个分段函数在实数上是一个增函数.x 小需要两段都是增函数且两个函数的交点处要知足递加,当 x < 0 时, y ′=3x 2﹣( a ﹣1)> 0 恒成立,∴ a ﹣ 1< 3x 2∴ a ﹣ 1≤0∴ a ≤1,当 x=0 时, a 2﹣ 3a ﹣ 4≤0 ∴ ﹣ 1≤a ≤4,综上可知﹣ 1≤a ≤1 应选 C .评论: 本题考察函数的单一性,分段函数的单一性,解题的要点是在两个函数的分界处,两个函数的大小关系必定要写清楚.12.( 2012?河北模拟)定义在 [1, +∞)上的函数 f ( x )知足: ① f ( 2x ) =cf ( x )( c 为正常数);② 当 2≤x ≤4 时,f ( x ) =1﹣( x ﹣ 3) 2,若函数 f ( x )的图象上全部极大值对应的点均落在同一条直线上,则 c 等于( ) A .1 B . 2 C . 1 或 2 D .4 或 2 考点 : 利用导数研究函数的极值;抽象函数及其应用. 专题 : 计算题;压轴题.剖析: 由已知可得分段函数f ( x )的分析式,从而求出三个函数的极值点坐标,依据三点共线,则任取两点确立的直线斜率相等,能够结构对于c 的方程,解方程可得答案.解答: 解: ∵ 当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3)2当 1≤x < 2 时, 2≤2x < 4,则 f ( x ) = f ( 2x ) = [1﹣( 2x ﹣ 3) 2]此时当 x= 时,函数取极大值当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3) 2此时当 x=3 时,函数取极大值 1当 4< x≤8 时, 2<x≤4则f( x) =cf ( x) =c (1﹣( x﹣ 3)2,此时当 x=6 时,函数取极大值c∵ 函数的全部极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得 c=1 或 2.应选 C评论:本题考察的知识点是三点共线,函数的极值,此中依据已知剖析出分段函数 f ( x)的分析式,从而求出三个函数的极值点坐标,是解答本题的要点.13.( 2012?桂林模拟)设x﹣xf ′( x),且 f′( x)是奇函数.若曲线y=f ( x)的a∈R,函数 f ( x) =e+a?e 的导函数是一条切线的斜率是,则切点的横坐标为()A .ln2B .﹣ ln2C. D .考点:简单复合函数的导数.专题:压轴题.剖析:已知切线的斜率,要求切点的横坐标一定先求出切线的方程,我们可从奇函数下手求出切线的方程.解答:解:对f( x) =e x+a?e﹣x求导得 f ′( x) =e x﹣ ae﹣x又 f′( x)是奇函数,故f′( 0) =1﹣ a=0解得 a=1,故有f′( x) =e x﹣ e﹣x,设切点为( x0, y0),则,得或(舍去),得 x0=ln2 .评论:熟习奇函数的性质是求解本题的要点,奇函数定义域若包括x=0,则必定过原点.14.( 2012?太原模拟)已知定义在 R 上的函数 y=f( x﹣ 1)的图象对于点( 1,0)对称,且 x∈(﹣∞,0)时, f( x)+xf(′x)<0 成立,(此中 f(′x)是(f x)的导函数),a=( 30.3)(f 30.3),b=( log π3).(f logπ3),则 a, b, c 的大小关系是()A .a> b> cB . c> b>a C. c> a>b D .a> c> b 考点:利用导数研究函数的单一性;函数单一性的性质;导数的乘法与除法法例.专题 : 计算题;压轴题.剖析: 由 “当 x ∈(﹣ ∞, 0)时不等式f ( x )+xf ′(x )< 0 成立 ”知只需比较的大小即可.解答: 解: ∵ 当 x ∈(﹣ ∞, 0)时不等式 f ( x ) +xf ′(x )< 0 成立即:( xf ( x )) ′< 0,∴ xf ( x )在 (﹣ ∞, 0)上是减函数.又 ∵ 函数 y=f ( x ﹣ 1)的图象对于点( 1,0)对称,∴ 函数 y=f (x )的图象对于点( 0, 0)对称, xf ( x )是减函数,要获得a ,b ,c 的大小关系,∴ 函数 y=f (x )是定义在 R 上的奇函数∴ xf ( x )是定义在 R 上的偶函数∴ xf ( x )在 ( 0, +∞)上是增函数.又 ∵=﹣ 2,2=.∴> 30.3 0.3)>( log π π?f ( 3 3)?f ( log 3) 即> 30.3 0.3)>( log π π?f ( 33) ?f ( log 3) 即: c > a >b 应选 C .评论: 本题考察的考点与方法有: 1)全部的基本函数的奇偶性; 2)抽象问题详细化的思想方法,结构函数的思想; 3)导数的运算法例: ( uv )′=u ′v+uv ′; 4)指对数函数的图象; 5)奇偶函数在对称区间上的单一性:奇 函数在对称区间上的单一性同样;偶函数在对称区间上的单一性相反.本题联合已知结构出 h (x )是正确解答的要点所在.15.( 2012?广东模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,且e 为自然对数的底,则()A .f ( 1)> e?f (0), f ( 2012)> e2012?f ( 0) B . f (1)< e?f ( 0), f ( 2012)> e 2012?f ( 0)C . f ( 1)> e?f (0), f ( 2012)< e 2012?f ( 0)D .f (1)< e?f ( 0), f ( 2012)< e2012?f ( 0)考点 : 导数的运算. 专题 : 计算题;压轴题. 剖析:结构函数 y=的导数形式,并判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0即> 0,所以函数 y= 单一递加,故当 x > 0 时,=f ( 0),整理得出 f ( x )> e xf (0)当 x=1 时 f ( 1)> e?f ( 0),当x=2012 时 f( 2012)> e 2012?f( 0).应选 A .评论: 本题主要考察函数的单一性与其导函数的关系,函数单一性的关系,考察转变、结构、计算能力.16.( 2012?无为县模拟)已知定义在R 上的函数 f ( x )、g ( x )知足 ,且 f ′( x )g ( x )< f ( x )g ′(x ),,如有穷数列( n ∈N *)的前 n 项和等于,则 n 等于 ()A .4B . 5C . 6D .7考点 : 导数的运算;数列的乞降.专题 : 压轴题.剖析: 利用导数研究函数的单一性获得a 的范围,再利用等比数列前n 项和公式即可得出.解答:解: ∵=′′, f ( x ) g ( x )< f ( x ) g ( x ),∴= <0,即函数单一递减, ∴ 0<a < 1.又,即 ,即 ,解得 a=2(舍去)或 .∴,即数列 是首项为 ,公比 的等比数列,∴= = ,由解得 n=5 ,应选 B .评论: 娴熟掌握导数研究函数的单一性、等比数列前n 项和公式是解题的要点.17.( 2012?福建)函数 (f x )在[a ,b] 上有定义,若对随意 x1,x ∈[a ,b],有2则称 f ( x )在 [a , b] 上拥有性质 P .设 f ( x )在 [1, 3]上拥有性质 P ,现给出以下命题:① f ( x )在 [1, 3]上的图象是连续不停的;② f ( x 2)在 [1, ] 上拥有性质 P ;③ 若 f ( x )在 x=2 处获得最大值 1,则 f ( x )=1, x ∈[1, 3] ;④ 对随意 x 1,x 2, x 3, x 4∈[1, 3] ,有[f ( x 1) +f ( x 2) +f (x 3) +f ( x 4)]此中真命题的序号是( )A .① ②B . ① ③C . ② ④D .③ ④考点 : 利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题 : 压轴题;新定义.剖析: 依据题设条件,分别举出反例,说明 ① 和② 都是错误的;同时证明 ③ 和④ 是正确的.解答:解:在 ① 中,反例: f ( x ) =在 [1, 3] 上知足性质 P ,但 f ( x )在 [1, 3] 上不是连续函数,故 ① 不行立;在 ② 中,反例: f ( x ) =﹣ x 在 [1, 3]上知足性质 P ,但 f (x 2) =﹣ x 2在 [1, ] 上不知足性质 P ,故 ②不行立;在 ③ 中:在 [1 , 3] 上, f (2) =f () ≤ ,∴,故 f ( x ) =1,∴ 对随意的 x 1, x 2∈[1,3] , f ( x ) =1, 故 ③ 成立;在 ④ 中,对随意 x 1,x 2, x 3, x 4∈[1 ,3] ,有=≤≤= [f ( x 1) +f (x 2) +f ( x 3) +f ( x 4 )] ,∴[f (x 1) +f ( x 2) +f (x 3) +f ( x 4) ],故 ④ 成立. 应选 D .评论: 本题考察的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对全部的状况都成立.18.( 2013?文昌模拟)设动直线 x=m 与函数 f ( x ) =x 3,g ( x ) =lnx 的图象分别交于点M 、N ,则 |MN| 的最小值为 ( )A .B .C .D .l n3﹣ 1考点 : 利用导数求闭区间上函数的最值. 专题 : 计算题;压轴题.剖析: 结构函数 F ( x ) =f ( x )﹣ g ( x ),求出导函数,令导函数大于 0 求出函数的单一递加区间,令导函数小于0 求出函数的单一递减区间,求出函数的极小值即最小值.解答: 解:绘图能够看到 |MN| 就是两条曲线间的垂直距离.设 F ( x ) =f (x )﹣ g (x ) =x 3﹣lnx ,求导得: F'( x )=.令 F ′( x )> 0 得 x >;令 F ′( x )< 0 得 0< x < ,所以当 x=时, F (x )有最小值为 F ( ) = + ln3=( 1+ln3 ),应选 A评论: 求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.( 2011?枣庄二模)设 f ′( x )是函数 f ( x )的导函数,有以下命题: ① 存在函数 f ( x ),使函数 y=f ( x )﹣ f ′( x )为偶函数;② 存在函数 f ( x ) f ′( x ) ≠0,使 y=f ( x )与 y=f ′( x )的图象同样;③ 存在函数 f ( x ) f ′( x ) ≠0 使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称.此中真命题的个数为( )A .0B . 1C . 2D .3考点 : 导数的运算;函数奇偶性的判断.专题 : 计算题;压轴题.剖析: 对于三个命题分别找寻知足条件的函数,三个函数分别是x, f ( x )=e ﹣ x,从而获得结f ( x ) =0, f ( x )=e 论.解答: 解:存在函数 f ( x ) =0,使函数 y=f ( x )﹣ f ′( x )=0 为偶函数,故 ① 正确存在函数 f (x ) =e x,使 y=f ( x )与 y=f ′( x )的图象同样,故 ② 正确存在函数 f (x ) =e ﹣x使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称,故 ③ 正确. 应选 D .评论: 本题主要考察了函数的奇偶性以及函数图象的对称性,解题的要点就是找寻知足条件的函数,属于基础题.20.( 2011?武昌区模拟)已知f ( x )是定义域为R 的奇函数,f (﹣ 4)=﹣ 1, f ( x )的导函数f ′( x )的图象如图所示.若两正数a ,b 知足f ( a+2b )< 1,则的取值范围是()A .B .C . (﹣ 1, 10)D .(﹣ ∞,﹣ 1)考点 : 函数的单一性与导数的关系;斜率的计算公式.专题 : 计算题;压轴题;数形联合.剖析: 先由导函数 f ′( x )是过原点的二次函数下手,再联合f ( x )是定义域为 R 的奇函数求出f ( x );而后依据a 、b 的拘束条件画出可行域,最后利用的几何意义解决问题.解答: 解:由 f ( x )的导函数f ′( x )的图象,设 f ′( x ) =mx 2,则∵ f ( x )是定义域为 R 的奇函数, ∴ f ( 0) =0,即 n=0 .f ( x )=+n .又 f (﹣ 4) = m ×(﹣ 64) =﹣ 1, ∴ f ( x ) =x 3=.且 f ( a+2b ) =又 a > 0, b > 0,则画出点(< 1, ∴< 1,即 a+2b <4.b ,a )的可行域以以下图所示.而可视为可行域内的点(b, a)与点 M (﹣ 2,﹣ 2)连线的斜率.又因为 k AM =3,k BM = ,所以<< 3.应选 B .评论:数形联合是数学的基本思想方法:碰到二元一次不定式组要考虑线性规划,碰到的代数式要考虑点(x,y)与点( a, b)连线的斜率.这都是由数到形的转变策略.21.(2011?雅安三模)以下命题中:①函数, f ( x) =sinx+( x∈( 0,π))的最小值是 2;② 在△ ABC 中,若 sin2A=sin2B ,则△ ABC 是等腰或直角三角形;③假如正实数a, b, c 知足 a + b> c 则+>;④ 如果 y=f ( x)是可导函数,则f′( x0) =0 是函数 y=f (x)在 x=x 0处取到极值的必需不充足条件.此中正确的命题是()A .① ②③④B .① ④C.② ③④ D .② ③考点:函数在某点获得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:惯例题型;压轴题.剖析:依据基本不等式和三角函数的有界性可知真假,利用题设等式,依据和差化积公式整理求得cos(A+B )=0或 sin(A ﹣B ) =0,推测出 A+B=或 A=B ,则三角形形状可判断出.结构函数y=,依据函数的单一性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:① f ( x)=sinx+≥2 ,当 sinx=时取等号,而 sinx 的最大值是 1,故不正确;② ∵ sin2A=sin2B ∴ sin2A ﹣ sin2B=cos( A+B ) sin( A ﹣ B) =0∴ cos( A+B ) =0 或 sin( A ﹣B )=0∴ A+B=或 A=B∴ 三角形为直角三角形或等腰三角形,故正确;③可结构函数 y=,该函数在(0.+∞)上单一递加, a+b> c 则+>,故正确;④ ∵ f( x)是定义在R 上的可导函数,当 f′( x0)=0 时, x0可能 f ( x)极值点,也可能不是 f (x)极值点,当 x0为 f( x)极值点时, f ′( x0)=0 必定成立,故 f′( x0)=0 是 x0为 f ( x)极值点的必需不充足条件,故④ 正确;应选 C.评论:考察学生会利用基本不等式解题,注意等号成立的条件,同时考察了极值的相关问题,属于综合题.22.( 2011?万州区一模)已知 f ( x ) =2x的最小值是( )A .﹣ 37B .﹣ 29考点 : 利用导数求闭区间上函数的最值.专题 : 惯例题型;压轴题.3﹣ 6x 2 +m ( m 为常数)在 [ ﹣ 2, 2] 上有最大值 3,那么此函数在 [ ﹣ 2, 2]上 C .﹣5 D .以 上都不对剖析: 先求导数,依据单一性研究函数的极值点,在开区间(﹣2, 2)上只有一极大值则就是最大值,从而求出m ,经过比较两个端点﹣2 和 2 的函数值的大小从而确立出最小值,获得结论.2∵ f ( x )在(﹣ 2, 0)上为增函数,在( 0, 2)上为减函数, ∴ 当 x=0 时, f ( x ) =m 最大,∴ m=3,从而 f (﹣ 2) =﹣ 37, f ( 2) =﹣5. ∴ 最小值为﹣ 37.应选: A评论:本题考察了利用导数求闭区间上函数的最值, 求函数在闭区间 [a ,b] 上的最大值与最小值是经过比较函数在( a ,b )内全部极值与端点函数 f ( a ), f ( b ) 比较而获得的,属于基础题.23.(2010?河东区一模)已知定义在 R 上的函数 (fx )是奇函数,且(f 2)=0,当 x > 0 时有,则不等式 x 2?f ( x )> 0 的解集是( )A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣∞,﹣ 2)∪( 0,2)C . (﹣ 2, 0)∪ ( 0, 2)D .(﹣ 2, 2) ∪ ( 2,+∞)考点 : 函数的单一性与导数的关系;函数单一性的性质. 专题 : 计算题;压轴题.剖析:第一依据商函数求导法例,把化为 [ ]′< 0;而后利用导函数的正负性,可判断函数 y=在( 0,+∞)内单一递减;再由 f ( 2) =0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得 f (x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因为当 x > 0 时,有恒成立,即 []′< 0 恒成立,所以在( 0,+∞)内单一递减.因为 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0. 又因为 f ( x )是定义在 R 上的奇函数,所以在(﹣ ∞,﹣ 2)内恒有 f ( x )> 0;在(﹣ 2, 0)内恒有 f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案为(﹣ ∞,﹣ 2)∪ ( 0,2). 应选 B .评论: 本题主要考察函数求导法例及函数单一性与导数的关系,同时考察了奇偶函数的图象特色.24.( 2010?惠州模拟)给出定义:若函数 f ( x )在 D 上可导,即 f ′( x )存在,且导函数 f ′(x )在 D 上也可导,则称 f (x )在 D 上存在二阶导函数,记 f ″( x ) =( f ′( x )) ′,若 f ″( x )< 0 在 D 上恒成立,则称f ( x )在 D 上为凸函数.以下四个函数在上不是凸函数的是()A .f ( x ) =sinx+cosxB . f ( x )=lnx ﹣2xC . f ( x )=﹣ x 3+2x ﹣ 1﹣D .f ( x ) =﹣ xex考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析: 对 ABCD 分别求二次导数,逐个清除可得答案.解答:解:对于 f ( x )=sinx+cosx ,f ′(x )=cosx ﹣sinx ,f ″(x )=﹣ sinx ﹣ cosx ,当 x ∈ 时, f ″( x )< 0,故为凸函数,清除A ;对于 f ( x ) =lnx ﹣2x , f ′( x ) = , f ″(x ) =﹣,当 x ∈时, f ″( x )< 0,故为凸函数,清除 B ;对于 f ( x ) =﹣x 3+2x ﹣ 1, f ′(x ) =﹣ 3x 2+2, f ″(x ) =﹣ 6x ,当 x ∈时, f ″( x )< 0,故为凸函数,清除 C ;应选 D .评论: 本题主要考察函数的求导公式.属基础题.25.( 2010?黄冈模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,则 ( )A .f ( 2)> e 2f ( 0), f ( 2010)> e 2010f ( 0)B . f (2)< e 2f ( 0),f (2010)> e 2010f (0)C . f ( 2)> e 2f ( 0), f ( 2010)< e 2010f ( 0)D .f (2)< e 2f ( 0),f (2010)< e 2010f (0)考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析:先转变成函数 y=的导数形式,再判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0从而>0 从而函数 y= 单一递加,故 x=2 时函数的值大于 x=0 时函数的值,即所以 f ( 2)> e 2f ( 0).2010同理 f ( 2010)> ef ( 0);评论: 本题主要考察函数的单一性与其导函数的正负状况之间的关系,即导函数大于 0 时原函数单一递加,当导函数小于0 时原函数单一递减.26.( 2010?龙岩二模)已知f ( x )、g ( x )都是定义在R 上的函数,f ′( x )g ( x ) +f (x ) g ′( x )< 0, f ( x ) g ( x )=ax , f ( 1)g ( 1) +f (﹣ 1)g (﹣ 1) =.在区间[ ﹣3, 0]上随机取一个数x , f ( x ) g ( x )的值介于4 到 8 之间的概率是()A .B .C .D .考点 : 利用导数研究函数的单一性;几何概型.专题 : 计算题;压轴题.剖析: 依据函数积的导数公式,可知函数f ( x )g ( x )在R 上是减函数,依据f ( x )g ( x ) =a x , f ( 1)g ( 1)+f(﹣ 1) g (﹣ 1) =.我们能够求出函数分析式,从而可求出f (x )g ( x )的值介于4 到 8 之间时,变量的范围,利用几何概型的概率公式即可求得. 解答: 解:由题意, ∵ f' ( x ) g ( x )+f (x ) g'( x )< 0,∴ [f ( x ) g ( x ) ]'<0,∴ 函数 f ( x )g ( x )在 R 上是减函数∵ f ( x ) g (x ) =a x,∴ 0< a < 1∵ f ( 1) g (1) +f (﹣ 1)g (﹣ 1)= .∴∴∵ f ( x ) g (x )的值介于 4 到 8∴ x ∈[﹣ 3,﹣ 2]∴ 在区间 [﹣3, 0] 上随机取一个数 x ,f (x ) g ( x )的值介于 4 到 8 之间的概率是应选 A .评论: 本题的考点是利用导数确立函数的单一性,主要考察积的导数的运算公式,考察几何概型,解题的要点是确立函数的分析式,利用几何概型求解.27.( 2010?成都一模)已知函数 在区间( 1, 2)内是增函数,则实数m 的取值范围是( )A .B .C . (0, 1]D .考点 : 利用导数研究函数的单一性. 专题 : 压轴题.剖析: 第一求出函数的导数,而后依据导数与函数增减性的关系求出m 的范围.解答: 解:由题得 f ′( x )=x 2﹣ 2mx ﹣3m 2=( x ﹣ 3m )( x+m ),∵ 函数在区间( 1, 2)内是增函数,∴ f ′( x )> 0,当 m ≥0 时, 3m ≤1,∴ 0≤m ≤ ,当 m < 0 时,﹣ m ≤1, ∴ ﹣ 1≤m < 0,∴ m ∈[﹣ 1, ] .应选 D .点 :掌握函数的 数与 性的关系.28.( 2009?安徽) 函数 f ( x )= x 3+x 2+tan θ,此中 θ∈[0,] , 数 f (′1)的取 范 是 ()A .[ 2, 2]B . [, ]C . [ , 2]D .[ , 2]考点 : 数的运算.: .剖析: 利用基本求 公式先求出f ′( x ),而后令 x=1 ,求出 f ′(1)的表达式,从而 化 三角函数求 域 ,求解即可.2cos θ?x ,解答: 解: ∵ f ′( x ) =sin θ?x +∴ f ′( 1)=sin θ+ cos θ=2sin ( θ+ ).∵ θ∈[0, ],∴ θ+ ∈[ , ] . ∴ sin (θ+ ) ∈[ , 1] . ∴ 2sin ( θ+) ∈[, 2].故 D .点 : 本 合考 了 数的运算和三角函数求 域 ,熟 公式是解 的关 .29.( 2009?天津) 函数 f ( x )在 R 上的 函数f ′(x ),且 2f ( x ) +xf ′( x )> x 2,下边的不等式在R 内恒成立的是( )A .f ( x )> 0B . f ( x )< 0C . f ( x )> xD .f ( x )< x考点 : 数的运算. : .剖析: 于 参数取 , 些没有固定套路解决的 ,最好的 法就是清除法.解答: 解: ∵ 2f ( x ) +xf ′( x )> x 2,令 x=0 , f (x )> 0,故可清除 B ,D .假如 f ( x )=x 2+0.1, 已知条件 2f ( x ) +xf ′( x )> x 2成立,但 f ( x )>x 未必成立,所以 C 也是 的,故 A 故 A .点 :本 考 了运用 数来解决函数 性的 .通 剖析分析式的特色,考 了剖析 和解决 的能力.30.( 2009? 西) 曲 y=x n+1(n ∈N * )在点( 1, 1) 的切 与x 的交点的横坐 x n1 2n的, x ?x ?⋯?x( )A .B .C .D .1考点 : 利用 数研究曲 上某点切 方程;直 的斜率. : 算 ; . 剖析:欲判 x 1?x 2?⋯?x n 的 ,只 求出切 与x 的交点的横坐 即可,故先利用 数求出在 x=1 的 函数 ,再 合 数的几何意 即可求出切 的斜率.从而 解决.n+1*n解答: 解: y=x ( n ∈N )求 得 y ′=( n+1 )x ,令 x=1 得在点( 1,1) 的切 的斜率 k=n+1 ,在点( 1, 1) 的切 方程 y 1=k ( x n 1) =( n+1)( x n 1),不如 y=0,x 1?x 2?x 3⋯?x n = × × ,故 B .点 :本小 主要考 直 的斜率、利用 数研究曲 上某点切 方程、数列等基 知 ,考 运算求解能力、化 与 化思想.属于基 .高中数学导数尖子生指导(解答题)一.解答 (共30 小 )21.( 2014?遵 二模) 函数 f ( x ) =x +aln ( 1+x )有两个极 点x 1、x 2,且 x 1< x 2,( Ⅱ ) 明: f ( x 2)>.考点 : 利用 数研究函数的极 ;利用 数研究函数的 性;不等式的 明. : 算 ; 明 ; .剖析: ( 1)先确立函数的定 域而后求 数f ( x ),令g ( x )=2x 2+2x+a ,由 意知 x 1、 x 2 是方程 g ( x ) =0 的 两个均大于 1 的不相等的 根,成立不等关系解之即可,在函数的定 域内解不等式f ( x )> 0 和 f ( x )< 0,求出 区 ;( 2)x 2 是方程 g ( x ) =0 的根,将 a 用 x 2 表示,消去 a 获得对于 x 2 的函数,研究函数的 性求出函数的最大 ,即可 得不等式.解答:解:( I )令 g ( x )=2x2,其 称 .+2x+a由 意知x 1、 x 2 是方程 g ( x )=0 的两个均大于1 的不相等的 根,其充要条件,得( 1)当 x ∈( 1,x 1) , f'( x )> 0,∴ f ( x )在( 1, x 1)内 增函数; ( 2)当 x ∈( x 1, x 2) , f'(x )< 0, ∴f (x )在( x 1 ,x 2)内 减函数;( 3)当 x ∈( x 2, +∞) , f' ( x )> 0, ∴ f ( x )在( x 2, +∞)内 增函数;( II )由( I ) g ( 0) =a > 0, ∴,a= ( 2x222+2x )222∴ f ( x 2) =x 2 +aln ( 1+x 2) =x 2( 2x 2+2x 2) ln (1+x 2),h'( x ) =2x 2(2x+1 )ln ( 1+x ) 2x= 2( 2x+1 ) ln ( 1+x )( 1)当, h'(x )> 0,∴ h ( x )在 增;( 2)当 x ∈( 0, +∞) , h'( x )< 0, h (x )在( 0, +∞) 减. ∴故 .点 : 本 主要考 了利用 数研究函数的 性,以及利用 数研究函数的极 等相关知 ,属于基 .2﹣x2.( 2014?武汉模拟)己知函数 f ( x) =x e(Ⅰ)求 f ( x)的极小值和极大值;(Ⅱ)当曲线 y=f ( x)的切线 l 的斜率为负数时,求l 在 x 轴上截距的取值范围.考点:利用导数研究函数的极值;依据实质问题选择函数种类;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转变思想;导数的综合应用.剖析:(Ⅰ )利用导数的运算法例即可得出f′( x),利用导数与函数单一性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ )利用导数的几何意义即可获得切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单一性、极值、最值即可.2 ﹣ x﹣x 2 ﹣ x ﹣ x2解答:解:(Ⅰ)∵ f( x) =x e,∴ f′( x) =2xe﹣ x e =e( 2x﹣ x ),令f′( x)=0 ,解得 x=0 或 x=2 ,令f′( x)> 0,可解得 0<x< 2;令 f′( x)< 0,可解得 x< 0 或 x> 2,故函数在区间(﹣∞, 0)与( 2,+∞)上是减函数,在区间( 0, 2)上是增函数.∴ x=0 是极小值点, x=2 极大值点,又f( 0) =0, f ( 2)=.故 f( x)的极小值和极大值分别为0,.( II )设切点为(),则切线方程为y﹣=(x﹣x0),令 y=0 ,解得 x==,因为曲线y=f ( x)的切线 l 的斜率为负数,∴(<0,∴ x0<0或x0>2,令,则=.①当 x0< 0 时,0,即 f′( x0)> 0,∴ f( x0)在(﹣∞, 0)上单一递加,∴ f(x0)< f( 0) =0;② 当x0> 2 时,令f′( x0) =0,解得.当时, f′( x0)> 0,函数 f ( x0)单一递加;当时, f ′( x0)< 0,函数f( x0)单一递减.故当时,函数f( x0)获得极小值,也即最小值,且=.综上可知:切线l 在 x 轴上截距的取值范围是(﹣∞,0)∪.评论:本题考察利用导数求函数的极值与利用导数研究函数的单一性、切线、函数的值域,综合性强,考察了推理能力和计算能力.3.( 2014?四川模拟)已知函数 f ( x) =lnx+x 2.( Ⅰ )若函数 g ( x ) =f ( x )﹣ ax 在其定义域内为增函数,务实数 a 的取值范围;( Ⅱ )在( Ⅰ )的条件下,若 a > 1, h ( x ) =e 3x ﹣ 3ae xx ∈[0, ln2] ,求 h ( x )的极小值;( Ⅲ )设 F ( x )=2f ( x )﹣ 3x 2﹣kx ( k ∈R ),若函数 F ( x )存在两个零点 m ,n ( 0< m <n ),且 2x 0=m+n .问:函数 F ( x )在点( x 0 ,F ( x 0))处的切线可否平行于x 轴?若能,求出该切线方程;若不可以,请说明原因.考点 : 函数的单一性与导数的关系;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题 : 计算题;压轴题;导数的观点及应用.剖析:( Ⅰ )先依据题意写出: g (x )再求导数, 由题意知, g ′( x )≥0,x ∈( 0,+∞)恒成立, 即由此即可求得实数 a 的取值范围;( Ⅱ )由( Ⅰ )知,利用换元法律t=e x ,则 t ∈[1,2] ,则 h ( t )=t 3﹣ 3at ,接下来利用导数研究 此函数的单一性,从而得出h (x )的极小值;( Ⅲ )对于可否问题,可先假定能,即设F (x )在( x 0,F ( x 0))的切线平行于 x 轴,此中 F ( x ) =2lnx﹣ x 2﹣ kx 联合题意,列出方程组,证得函数在( 0,1)上单一递加,最后出现矛盾,说明假定不行立,即切线不行否平行于x轴.解答:解:( Ⅰ ) g ( x ) =f ( x )﹣ ax=lnx+x 2﹣ax ,由题意知, g ′(x ) ≥0,对随意的x ∈( 0, +∞)恒成立,即又 ∵ x > 0,,当且仅当 时等号成立∴,可得( Ⅱ )由( Ⅰ )知,,令 t=e x,则 t ∈[1,2] ,则h ( t ) =t 3﹣3at ,由 h ′(t )=0,得或(舍去),∵ , ∴若 ,则 h ′( t )< 0,h ( t )单一递减;若 ,则 h ′( t )> 0, h ( t )单一递加∴ 当时, h ( t )获得极小值,极小值为x 轴,此中 F (x ) =2lnx ﹣ x 2﹣kx( Ⅲ )设 F ( x )在( x 0, F ( x 0))的切线平行于联合题意,有① ﹣ ② 得所以,由 ④ 得所以。
(完整word版)高中数学必修一第三章测试题
1高中数学必修一第三章测试题一、选择题:1.已知p >q >1,0<a <1,则下列各式中正确的是( )A .q p aa >B .a a qp >C .q pa a--> D .a a q p -->2、已知(10)xf x =,则(5)f = ( ) A 、510 B 、105 C 、lg10 D 、lg 5 3.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或 C .21≤<a D .2101≤<≥a a 或 4.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61) ( ) A .10% B .16.4% C .16.8% D .20% 5. 设g (x )为R 上不恒等于0的奇函数,)(111)(x g b a x f x⎪⎭⎫⎝⎛+-=(a >0且a ≠1)为偶函数,则常数b 的值为( )A .2B .1C .21 D .与a 有关的值6.当a ≠0时,函数y ax b =+和y b ax=的图象只可能是( )7、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >>8.设f (x )=a x ,g (x )=x 31,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有 ( ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .f(x )<g (x )<h (x ) D .f (x )<h (x )<g (x )9、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减 10. 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f +2C . )2(21x x f +=2)()(21x f x f +D . 无法确定二、填空题11.已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 .12.我国2000年底的人口总数为M ,要实现到2010年底我国人口总数不超过N (其中M<N ),则人口的年平均自然增长率p 的最大值是 . 13.将函数xy 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .14.已知-1<a <0,则三个数331,,3a a a由小到大的顺序是 .15.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .16.函数y=)124(log 221-+x x 的单调递增区间是 . 17.方程log 2(2x+1)log 2(2x +1+2)=2的解为 三、解答题:18、判断函数)()lg f x x =的奇偶性单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合小测 1一、选择题1.函数 y=2x+1 的图象是2.△ ABC 中, cosA= 5 , sinB=3,则 cosC 的值为135A.5656 16 16B. -C.-D.656565653.过点( 1, 3)作直线 l ,若 l 经过点( a,0)和 (0,b),且 a,b ∈N* ,则可作出的l 的条数为A.1B.2C.3D. 多于 34.函数 f( x)=log x(a > 0 且 a ≠ 1)对任意正实数 x,y 都有aA. f(x · y)=f(x) · f(y)B. f(x · y)=f( x)+f(y)C.f(x+y)=f(x)· f(y)D. f(x+y)=f(x)+f(y)5.已知二面角 α— l — β的大小为 60°, b 和 c 是两条异面直线,则在下列四个条件中,能使 b 和 c 所成的角为 60°的是A. b ∥ α,c ∥ βB.b ∥ α,c ⊥ βC.b ⊥ α,c ⊥ βD. b ⊥ α,c ∥ β6.一个等差数列共 n 项,其和为 90,这个数列的前 10 项的和为 25,后 10 项的和为 75,则项数 n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 A.8 种B.10 种C.12 种D.32 种8.若 a,b 是异面直线, a α,b β ,α∩ β=l ,则下列命题中是真命题的为A. lC.l 与 a 、 b 分别相交至多与 a 、 b 中的一条相交B. l 与 a 、 b 都不相交D. l 至少与 a 、 b 中的一条相交9.设 F1, F2是双曲线x2- y2=1的两个焦点,点P 在双曲线上,且PF1· PF2=0,则4| PF1 |· | PF2 |的值等于A.2B.22C.4D.810.f(x)=(1+2 x)m+(1+3x) n(m,n∈ N*) 的展开式中x 的系数为13,则 x2的系数为A.31B.40C.31 或 40D.71 或 8011.从装有 4 粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率A. 小B. 大C.相等D. 大小不能确定12.如右图, A、B、C、D 是某煤矿的四个采煤点, l 是公路,图中所标线段为道路, ABQP、BCRQ 、CDSR 近似于正方形 .已知 A、B、 C、 D 四个采煤点每天的采煤量之比约为 5∶1∶ 2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比 .现要从 P、Q、R、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在A. P 点B. Q 点C.R 点D. S点题号1234567891011答案二、填空题13.抛物线 y2=2x 上到直线x- y+3=0 距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是 2 , 3 , 6 ,这个长方体对角线的长是 _________.15.设定义在R 上的偶函数f(x)满足f(x+1)+ f(x)=1, 且当x∈[ 1,2]时, f(x)=2 - x,则f(8.5)=_________.综合小测 2一、选择题:A F1.如图,点 O 是正六边形 ABCDEF 的中心,则以图中点 A 、B 、C、OD、 E、F、O 中的任意一点为始点,与始点不同的另一点为终点的所B E 有向量中,除向量OA 外,与向量 OA 共线的向量共有A .3 个B. 5 个C. 7 个 D . 9 个C D2.已知曲线C:y2=2px 上一点 P 的横坐标为4,P 到焦点的距离为5,则曲线 C 的焦点到准线的距离为1A .2B. 1C. 2 D . 413.若 (3a2- 2a 3) n展开式中含有常数项,则正整数n 的最小值是A .4B . 5C. 6 D . 84.从 5 名演员中选 3 人参加表演,其中甲在乙前表演的概率为3311A .20B.10C.20D.105.抛物线y2=a(x+1) 的准线方程是x= - 3,则这条抛物线的焦点坐标是A. (3, 0)B.( 2, 0)C.( 1, 0)D.( -1, 0)6.已知向量m a, b,向量m n ,且 m n ,则 n 的坐标可以为A. (a,-b)B. (-a,b)C. (b,-a)D. (-b,-a)7. 如果S={x|x=2n+1, n∈ Z}, T={x|x=4n± 1, n∈ Z} , 那么A.S TB.T SC.S=TD.S ≠T8.有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有A .36 种B. 48 种C. 72 种D. 96 种9.已知直线l 、 m,平面α、β,且 l⊥α ,mβ.给出四个命题:(1)若α∥β,则l⊥m;(2)若 l ⊥ m,则α∥β ;(3)若α⊥β,则 l∥ m;(4) 若 l∥ m,则α⊥β,其中正确的命题个数是A.4B.1C.3D.210.已知函数 f(x) = log 2(x2- ax+ 3a)在区间 [2,+∞)上递增,则实数 a 的取值范围是()A.( -∞, 4)B.( - 4, 4]C.(-∞,- 4)∪ [2,+∞)D.[ -4, 2)11.4 只笔与 5 本书的价格之和小于22 元,而 6 只笔与 3 本书的价格之和大于24 元,则2 只笔与3 本书的价格比较()A .2 只笔贵B. 3 本书贵C.二者相同D.无法确定12.若是锐角, sin1,则 cos的值等于63261B.261231231A.66C.4D.3题号123456789101112答案二、填空题:13.在等差数列{ a n}中,a1 = 1,第 10 项开始比 1 大,则公差 d 的取值范围是__________ .2514.已知正三棱柱ABC — A1B 1C1,底面边长与侧棱长的比为 2 : 1,则直线AB1与CA1所成的角为.15.若sin 20, sincos1sin1cos,化简 cossinsin= _________ .11cos16.已知函数f( x)满足: f(p+q)= f(p)f(q) , f(1)=3 ,则f 2 (1) f (2) f 2 ( 2) f (4) f 2 (3) f (6) f 2 (4) f (8).f (1) f (3) f ( 5) f (7)=综合小测 3一、选择题:1.设集合 P={3 , 4,5} , Q={4 ,5,6, 7} ,定义 P★ Q={ (a, b) | a P, b Q} 则P★Q中元素的个数为()A .3B. 7C. 10 D . 121x2e 3的部分图象大致是()2.函数y2A B C D3.在(1x)5(1 x)6(1 x) 7的展开式中,含x4项的系数是首项为- 2 ,公差为3的等差数列的()A .第 13 项B.第 18 项C.第 11 项 D .第 20 项4.有一块直角三角板ABC ,∠ A=30 °,∠ C=90°, BC 边在桌面上,当三角板所在平面与桌面成45°角时, AB 边与桌面所成的角等于()A .arcsin 6B.C. D .arccos10 46445.若将函数y f ( x) 的图象按向量 a 平移,使图象上点P 的坐标由( 1, 0)变为( 2,2),则平移后图象的解析式为A .y f ( x1)2B.C.y f ( x1)2D.()y f (x1)2y f (x1)26.直线x cos140y sin 40 10 的倾斜角为()A .40°B. 50°C. 130° D . 140°7.一个容量为 20 的样本,数据的分组及各组的频数如下:( 10,20 ],2;(20, 30 ],3;( 30, 40 ],4;( 40, 50 ],5;( 50, 60 ], 4;( 60,70 ], 2. 则样本在区间(10, 50 ]上的频率为()A .0.5B . 0.7C . 0.25D . 0.058.在抛物线 y 2 4x 上有点 M ,它到直线 y x 的距离为4 2 ,如果点 M 的坐标为( m, n ),且 m, nR , 则 m()的值为1nB . 1C . 2D . 2A .2x2y21(a, bR )的离心率 e [ 2,2] ,在两条渐近线所构成的角9.已知双曲线b 2a 2中,设以实轴为角平分线的角为,则 的取值范围是()A . [, ] B . [, ] C . [ , 2]D . [ 2, )6 23 22 3310.按 ABO 血型系统学说, 每个人的血型为 A ,B ,O ,AB 型四种之一, 依血型遗传学,当且仅当父母中至少有一人的血型是 AB 型时,子女的血型一定不是O 型,若某人的血型为 O 型,则父母血型的所有可能情况有()A .12 种B . 6 种C . 10 种D . 9 种11.正四面体的四个顶点都在一个球面上,且正四面体的高为 4,则球的表面积为 ()A .16( 12-6 3)B . 18C .36D . 64(6- 4 2)12.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进 3 步,然后再后退 2步的规律移动 .如果将此机器狗放在数轴的原点,面向正方向,以1 步的距离为 1 单位长移动,令 P ( n )表示第 n 秒时机器狗所在位置的坐标,且P ( 0) =0,则下列结论中错 . 误的是( ) .A .P ( 3)=3B . P ( 5)=5C . P ( 101) =21D . P ( 101) <P(104) 二、填空题:13.在等比数列 { a n }中,a 3 a 8 124, a 4 a 7512 ,且公比 q 是整数,则 a 10 等于.x214.若 y2,则目标函数 z x3y 的取值范围是.xy 62 cot 21, 那么 (1 sin )( 2 cos ).15.已知sin116.取棱长为 a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体 .则此多面体: ①有 12 个顶点;②有 24 条棱;③有 12 个面;④表面积为3a 2 ;⑤体积为5a3.以上结论正确的是.(要求填上的有正确结论的序号)6综合小测 4一、选择题1.满足 |x-1|+|y- 1|≤ 1 的图形面积为A.1B. 2C.2D.42.不等式 |x+log3x|<|x|+|log x|的解集为3A.(0 ,1)B.(1, +∞ )C.(0,+ ∞ )D.(-∞ ,+∞ )3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的 2 倍,则双曲线的离心率 e 的值为A. 25C.3D.2 B.34.一个等差数列n1项的平均值是5,若从中抽取一项,余下项{ a } 中,a =- 5,它的前 11的平均值是 4,则抽取的是A. a11B.a10C.a9D.a8-1等于5.设函数 f(x)=log a x(a>0,且 a≠ 1)满足 f(9)=2,则 f (log 92)A.2B. 21D. ±2 C.26.将边长为 a 的正方形ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D —ABC 的体积为A. a3B. a3C. 3 a3D. 2 a361212127.设 O、A、B、C 为平面上四个点,OA =a,OB =b,OC =c,且 a+b+c=0 ,a·b=b·c=c·a=-1,则 |a|+|b|+|c|等于A.22B.23C.32D.338.将函数 y= f( x)sinx 的图象向右平移个单位,再作关于 x 轴的对称曲线,得到函数4y=1- 2sin2 x 的图象,则f(x)是A.cosxB.2cosxC.sinxD.2sin x9.椭圆 x2y 2 =1 上一点 P 到两焦点的距离之积为 m ,当 m 取最大值时, P 点坐标259为A. ( 5, 0),(- 5,0)B.( 2 ,32 )( 5, 3 2 )52 2 2C.( 5 2 , 3 )(-5 2, 3) D.( 0,- 3)( 0,3)22 22P 箱中有红球 1 个,白球 9 个, Q 箱中有白球 7 个,(P 、 Q 箱中所有的球除.现随意从 P 箱中取出 3 个球放入 Q 箱,将 Q 箱中的球充分搅匀后, 再 3个球放入 P 箱,则红球从 P 箱移到 Q 箱,再从 Q 箱返回 P 箱中的A.19 C.1 35B.100D.100511.如图,正方体ABCD — A 1B 1C 1D 1 中,点 P 在侧面1 1及其边界上运动, 并且总是保持1BCC B AP ⊥BD ,则动点 P的轨迹是A . 线段B 1CB. 线段 BC 1C . BB 1 中点与 CC 1 中点连成的线段D. BC 中点与 11中点连成的线段B C题号 1答案二、填空题2 3 4 5 6 7 8 9 10 1112.已知 (2 x x 2 p)6 的展开式中,不含 x 的项是 20 , 则 p 的值是 ______.2713.点 P 在曲线 y=x 3- x+ 2上移动,设过点 P 的切线的倾斜角为, 则 的取值范围3是 _____.14.在如图的 1× 6 矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格, 且相邻两格不同色, 则不同的涂色方案有 ______种 .颜色外完全相同)从 Q 箱中随意取出概率等于10.已知能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).综合小测 5一、选择题1.在数列 { a n }中, a 11, a n 1a n 2 1则此数列的前 4 项之和为 ()A .0B . 1C . 2D .- 22.函数 ylog 2 x log x (2x) 的值域是()A . (, 1]B . [3,)C . [ 1,3]D . (, 1] [3, )3.对总数为 N 的一批零件抽取一个容量为30 的样本,若每个零件被抽取的概率为1 ,4则 N 的值( )A .120B . 200C . 150D . 1004.若函数 yf (x)的图象和 ysin( x)的图象关于点 P( ,0)对称 ,则 f ( x) 的表达4 4式是( )A . cos(x) B . cos(x4) C .cos(x)D . cos(x)4445.设 (ab)n 的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是()A .第 5 项B .第 4、 5 两项C .第 5、6 两项D .第 4、 6 两项6.已知 ab0,全集 UR,集合 M{ x | bxa b}, N { x | abx a} ,2P { x | bx ab }, 则 P, M , N 满足的关系是( )A . P MNB .C . PM(C U N )D .P MNP (C U M )N7. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有 k 条有记号,则能估计湖中有鱼()n k条M kA .M条B.M C.n条 D .n条k n k M8.函数f (x) | x |,如果方程f ( x) a 有且只有一个实根,那么实数 a 应满足()A .a<0B. 0<a<1C. a=0 D . a>19.设M (cos xcosx,sin x sinx)( x R) 为坐标平面内一点,O 为坐标原点,3535记 f(x)=|OM| ,当 x 变化时,函数f(x)的最小正周期是()A .30πB. 15πC. 30 D . 1510.若函数 f (x)x3ax2bx 7 在 R 上单调递增,则实数 a, b 一定满足的条件是()A .a23b 0B.a23b 0C.a23b 0 D .a23b 1题号12345678910答案二、填空题:11.“面积相等的三角形全等”的否命题是命题(填“真”或者“假”)12 .已知tan3(1 m)且3(tan tan m) tan0, ,为锐角,则的值为13.某乡镇现有人口 1 万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的 0.8%和 1.2%,则经过 2 年后,该镇人口数应为万 . (结果精确到 0.01)14.(理 )“渐升数”是指每个数字比其左边的数字大的正整数(如34689) .则五位“渐升数”共有个,若把这些数按从小到大的顺序排列,则第100个数为.10 / 21综合小测 6一、选择题1. 给出两个命题: p :|x|=x 的充要条件是 x 为正实数; q :存在反函数的函数一定是单调函数,则下列哪个复合命题是真命题()A .p 且 qB . p 或 q┐┐C . p 且 qD . p 或 q2.给出下列命题:其中正确的判断是( )A. ①④B. ①②C.②③D. ①②④3.抛物线 y=ax 2(a<0) 的焦点坐标是 ()A. (0, a)B.(0,1 ) C.(0,-1 ) D.( - 1 ,0)44a4a4a4.计算机是将信息转换成二进制进行处理的,二进制即“逢2 进 1”如( 1101) 2 表示二进制数,将它转换成十进制形式是1× 23+1× 22+0 ×21 +1× 20=13 ,那么将二进制数转换成十进制形式是 ( )A.2 17- 2B.216- 2C.216- 1D.2 15- 15.已知 f(cosx)=cos3x,则 f(sin30 °)的值是 ( )A.1B.3C.0D. - 124,当 x ∈[- 3,-1]时,记 f(x)的最大值6.已知 y=f(x)是偶函数,当 x>0 时, f(x)=x+x为 m ,最小值为 n ,则 m - n 等于()A.2B.1C.3D.32(x3)2 y 2 =1 上的动点,则△7.已知两点 A (- 1,0), B ( 0, 2),点 P 是椭圆42PAB 面积的最大值为()A.4+ 2 3B.4+ 32C.2+ 2 3D.2+ 3232328.设向量 a=(x 1 ,y 1),b=(x 2,y 2),则下列为 a 与 b 共线的充要条件的有 ()①存在一个实数λ ,使得 a=λb 或 b=λa ;② |a· b|=|a|· |b|;③x1y1;④ (a+b)∥ (a- b). x2y2A.1 个B.2 个C.3 个D.4个9. 如图,点 P 是球 O 的直径 AB 上的动点, PA=x,过点 P 且与 AB 垂直的截面面积记为 y,则 y=1)f(x)的大致图象是(210.三人互相传球,由甲开始发球,并作为第一次传球,经过 5 次传球后,球仍回到甲手中,则不同的传球方式共有()A.6 种B.10 种C.8 种D.16 种11.已知点 F 1、 F2分别是双曲线x2y2=1 的左、右焦点,过F1且垂直于 x 轴的直a2b2线与双曲线交于A、B 两点,若△ ABF 2为锐角三角形,则该双曲线的离心率 e 的取值范围是()A.(1,+ ∞)B.(1, 3 )C.( 2 -1,1+ 2 )D.(1,1+ 2 )题号1234567891011答案二、填空题12.方程 log 2|x|=x2- 2 的实根的个数为 ______.13.1996 年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由 60 个 C 原子组成的分子,它结构为简单多面体形状.这个多面体有 60 个顶点,从每个顶点都引出3 条棱,各面的形状分为五边形或六边形两种,则 C60分子中形状为五边形的面有______个,形状为六边形的面有 ______个 .14.在底面半径为 6 的圆柱内,有两个半径也为 6 的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.15.定义在 R 上的偶函数 f(x)满足 f(x+1)= - f( x),且在[- 1,0]上是增函数,给出下列关于 f(x)的判断:① f(x)是周期函数;② f(x)关于直线 x=1 对称;③ f(x)在[ 0, 1]上是增函数;④ f(x)在[ 1, 2]上是减函数;⑤出所有正确判断的序号).f(2)= f(0),其中正确判断的序号为____________( 写综合小测 7一、选择题1.准线方程为x 3的抛物线的标准方程为()A .y26x B.y212 x C.y26x D .y212x2.函数y sin 2x 是()A .最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数3.函数y x21( x0) 的反函数是()A .y x1(x 1)B .y x 1(x1)C.y x1(x1) D.y x1(x 1) 4.已知向量 a(2,1), b(x, 2)且a b与2a b 平行,则 x 等于()A .- 6B. 6C.- 4 D . 45.a1是直线ax( 2a1) y 1 0和直线 3x ay 3 0 垂直的()A .充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分又不必要的条件6.已知直线 a、 b 与平面α,给出下列四个命题①若 a∥ b, b α,则 a∥α ;②若 a∥α, bα,则 a∥ b ;③若 a∥α, b∥α,则 a∥ b;④a⊥α, b∥α,则 a⊥ b.其中正确的命题是()A .1 个B. 2 个C. 3 个 D . 4 个7.函数y sin x cos x, x R 的单调递增区间是()A.[ 2k,2k3]( k Z )B.[2k3,2k]( k Z )4444C.[2k,2k]( k Z )D.[k3, k]( k Z )82288.设集合 M= { y | y 2 x , x R}, N { y | y x21, x R}, 则 M N 是()A .B.有限集C. M D . N9.已知函数f ( x)满足2 f (x) f (11,则 f ( x) 的最小值是())| x |x2B. 2C.22D .2 2A .3310.若双曲线x2y21的左支上一点P( a, b)到直线y x 的距离为2, 则 a +b的值为()A .1B.1C.- 2 D . 22211.若一个四面体由长度为1, 2,3 的三种棱所构成,则这样的四面体的个数是()A .2B. 4C. 6 D . 812.某债券市场常年发行三种债券, A 种面值为 1000 元,一年到期本息和为 1040 元; B 种贴水债券面值为1000 元,但买入价为960 元,一年到期本息和为1000 元; C 种面值为1000 元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a, b, c,则 a, b, c 的大小关系是()A .a c且a b B.a b cC.a c b D.c a b题号123456789101112答案二、填空题13.某校有初中学生 1200 人,高中学生900 人,老师120 人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60 人,那么N=.14.在经济学中,定义Mf ( x) f ( x1) f ( x), 称Mf ( x)为函数 f (x) 的边际函数,某企业的一种产品的利润函数P(x)x330x 21000( x[10,25]且 x N *),则它的边际函数 MP( x)=.(注:用多项式表示)15.已知a,b,c分别为△ ABC 的三边,且3a23b 23c 22ab0,则 tanC.16 .已知下列四个函数:①y log 1 ( x2); ②y3 2 x1; ③ y 1x2 ; ④2y3( x2) 2 .其中 象不 第一象限的函数有.(注:把你 符合条件的函数的序号都填上)综合小测8一、1. 直x cosy 1 0 的 斜角的取 范 是()A.0,B. 0,C., 3D.0,3,24 4442. 方程xlg x3的根 α,[ α ]表示不超 α的最大整数,[ α ]是()A . 1B . 2C . 3D . 43. 若“ p 且 q ”与“ p 或 q ”均 假命 , ( )A. 命 “非 p ”与“非 q ”的真 不同B. 命 “非 p ”与“非 q ”至少有一个是假命C. 命 “非 p ”与“ q ”的真 相同D. 命 “非 p ”与“非 q ”都是真命4. 1!, 2!, 3!,⋯⋯, n !的和 S nn(),S 的个位数是A . 1B . 3C . 5D . 75. 有下列命 ①AB BCAC = 0 ;② a b c = a c b c ;③若 a = ( m ,4),| a | = 23 的充要条件是 m = 7 ;④若 AB 的起点 A(2,1) , 点 B( 2,4) ,BA 与 x 正向所 角的余弦 是4, 其中正确命 有 ( )个5A.0B.1C.2D.36. 左下 中 , 阴影部分的面 是 ( )A.16B.18C.20D.22yx 4D 1C1B 14A 1·N·R- 2P ·D·My2Q ·C2 xBA7. 如右上 , 正四棱柱 ABCD – A 1B 1C 1D 1 中,AB=3,BB 1=4.1 的 段 PQ 在棱 AA 1 上移 , 3 的 段 MN 在棱 CC 上移 ,点 R 在棱 BB 上移 , 四棱 R – PQMN 的体 是()118. 用 1, 2, 3, 4 这四个数字可排成必须含有重复数字的四位数有()..A.265 个B.232 个C.128 个D.24个9.已知定点A(1,1) , B(3,3) ,动点P在 x 轴正半轴上,若APB取得最大值,则 P 点的坐标()A.( 2 ,0) B.( 3,0) C.( 6,0) D. 这样的点P不存在10.设 a 、b 、 x 、y均为正数,且 a 、b 为常数,x 、y为变量.若 x y 1 ,则 axby的最大值为 ()a b a b1a b D.( a b) 2A. B.2C.2211.如图所示,在一个盛水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水面以上拉动时,圆柱形容器内水面的高度h 与时间 t 的函数图像大致是()h h h hO t1 23t O t1 t2t3t O t1t2 3tO t1 t2t3tt t tA B C D12.4 个茶杯和 5 包茶叶的价格之和小于22 元 , 而 6 个茶杯和 3 包茶叶的价格之和大于 24,则 2 个茶杯和 3 包茶叶的价格比较()A.2 个茶杯贵B.2 包茶叶贵C. 二者相同D.无法确定二、填空题13.对于在区间 [ a ,b ]上有意义的两个函数 f ( x) 和 g (x) ,如果对任意 x[ a, b] ,均有f ( x)g( x)1, 那么我们称f (x)和 g( x)在 [ a, b ] 上是接近的.若函数y x 23x 2 与y 2x3在[a , b ]上是接近的,则该区间可以是.14.在等差数列 a n中 , 已知前20 项之和S20170 , 则a6a9a11a16.15.如图,一广告气球被一束入射角为的平行光线照射,其投影是长半轴长为 5 的椭,制作个广告气球至少需要的面料.16. 由y 2 及 x y x 1 成几何形的面是.综合小测 9一、1.集合 A={ x|x=2 k,k∈ Z}, B={ x|x=2k+1,k∈ Z}, C={ x|x=4k+1,k∈ Z}, 又 a∈ A,b∈ B,有A. a+b∈ AB. a+b∈BC.a+b∈ CD.a+b 不属于 A, B,C 中的任意一个2.已知 f(x)=sin( x+),g(x)=cos( x-), f(x) 的象22A. 与 g(x)的象相同B. 与 g(x)的象关于 y 称C.向左平移个位,得到g(x)的象D. 向右平移个位,得到 g(x)的象223.原点的直与x2+y2+4x+3=0 相切,若切点在第三象限,直的方程是A. y= 3 xB. y=- 3 xC.y=3D. y=-3 x x 334.函数 y=1-1下列法正确的是,x 1A. y 在 (- 1,+∞ )内增B. y 在 (-1,+ ∞ )内减C.y 在 (1,+ ∞ )内增D. y 在 (1,+ ∞ )内减5.已知直 m,n 和平面,那么 m∥ n 的一个必要但非充分条件是A. m∥ ,n∥B.m⊥,n⊥C.m∥且 nD.m,n 与成等角6.在 100 个零件中,有一品20 个,二品30 个,三品 50 个,从中抽取 20 个作本:①采用随机抽法,将零件号00,01,02,⋯, 99,抽出 20 个;②采用系抽法,将所有零件分成20 ,每 5 个,然后每中随机抽取 1 个;③采用分抽法,随机从一品中抽取 4 个,二品中抽取 6 个,三品中抽取10 个;A. 不采取哪种抽方法,1 100 个零件中每个被抽到的概率都是5B. ①②两种抽方法,100 个零件中每个被抽到的概率都是1,③并非如此C.①③两种抽样方法,这 100 个零件中每个被抽到的概率都是1,②并非如此5D.采用不同的抽样方法,这100 个零件中每个被抽到的概率各不相同7.曲线 y=x 3 在点 P 处的切线斜率为 k ,当 k=3 时的 P 点坐标为A.( - 2,- 8)B.( - 1,- 1),(1,1)C.(2,8)1 1D.(- ,-)288.已知 y=log a (2- ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是A.(0 , 1)B.(1 ,2)C.(0, 2)D.[ 2,+∞ )19.已知 lg3,lg(sin x - ),lg(1 -y)顺次成等差数列,则2A. y 有最小值11,无最大值B. y 有最大值1,无最小值12C.y 有最小值11,最大值 1D. y 有最小值- 1,最大值 11210.若 OA =a , OB =b ,则∠ AOB 平分线上的向量 OM 为a bB.a bA.| b |(), 由 OM 决定| a || a || b |a bD.| b | a | a | bC.b || a | | b || a 11.一对共轭双曲线的离心率分别是 e 1 和 e 2,则 e 1+e 2 的最小值为 A. 2B.2C.2 2D.412.式子 1 22 32n 2的值为lim222nC 2C 3C nA.0B.1C.2D.3二、填空题13.从 A={ a ,a ,a ,a } 到 B={ b ,b ,b ,b } 的一一映射中,限定a 的象不能是b ,且 b12 34123411 4的原象不能是 a 4 的映射有 ___________个 .14.椭圆 5x 2- ky 2=5 的一个焦点是 (0, 2),那么 k=___________.15.已知无穷等比数列首项为 2,公比为负数, 各项和为 S ,则 S 的取值范围是 _______.16.已知 a n 是 (1+ x)n 的展开式中 x 2的系数,则 lim (111) =___________.na 2 a 3a n综合小测 10一、选择题1.(理)全集设为 U ,P 、S 、T 均为 U 的子集,若P (U T )=( U T )S 则( )A . PT S SB . P =T = SC . T = UD . P U S = T( 文 ) 设 集 合 M { x | x m0} , N{ x | x 22x 8 0} , 若 U = R , 且UMN,则实数 m 的取值范围是()A .m <2B . m ≥2C . m ≤ 2D . m ≤ 2 或 m ≤ - 42.(理)复数( 55i) 3 (3 4i ) ( )4 3iA .10 5i 10 5B . 10 5 10 5iC . 10 5 10 5iD . 10 5 10 5i(文)点 M ( 8, - 10),按 a 平移后的对应点M 的坐标是( - 7, 4),则 a =( )A .( 1, - 6)B .( - 15, 14)C .(- 15, - 14)D .(15, - 14)3.已知数列 { a n } 前 n 项和为 S n1 59 13 1721( 1) n 1( 4n 3) ,则S 15S22S 31 的值是()A .13B . - 76C . 46D .764.若函数 f ( )(x 3 )33 x a x的递减区间为 (,33),则 a 的取值范围是 ( )A .a > 0B . - 1< a <0C . a >1D .0< a < 15.与命题“若 a M 则 b M ”的等价的命题是( )A .若 a M ,则 b MB .若 b M ,则 a MC .若 a M ,则 b MD .若 b M ,则 a M6.(理)在正方体 ABCDA 1B 1C 1D 1 中, M ,N 分别为棱 AA 1 和 BB 1 之中点,则 sin( CM , D 1N )的值为()A .1B . 45C .25D .295 93(文)已知三棱锥S- ABC 中, SA , SB ,SC 两两互相垂直,底面 ABC 上一点 P 到三个面 SAB , SAC , SBC 的距离分别为2 ,1,6 ,则 PS 的长度为( )A .9B .5C .7D . 37.在含有 30 个个体的总体中,抽取一个容量为5 的样本,则个体 a 被抽到的概率为()A .1B.1C.1D .5 306x2568.(理)已知抛物线C:y mx2与经过 A( 0, 1), B( 2, 3)两点的线段AB 有公共点,则m 的取值范围是()A .(, 1][3 ,)B. [3,)C.(, 1]D. [- 1, 3](文)设 x R ,则函数 f (x)(1| x |)(1x) 的图像在x轴上方的充要条件是()A .- 1< x< 1B. x< - 1 或 x> 1C.x< 1D. - 1< x<1 或 x< - 19.若直线 y= kx+ 2与双曲线 x2y 2 6 的右支交于不同的两点,则k 的取值范围是()A .(15 , 15 )B.(0,15)C.(15, 0) D .(15, 1)33333 10. a, b, c (0,+∞)且表示线段长度,则a, b,c 能构成锐角三角形的充要条件是()A .a2b2c2B .| a2b2 | c2C.| a b | c | a b | D .| a2b2 | c 2a2b211.今有命题 p、q,若命题 S 为“ p 且 q”则“或”是“”的()A .充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(理)函数y x 4153x 的值域是()A .[1, 2]B. [0, 2]C.( 0,3] D .[1,3](文)函数 f (x) 与g(x) (76)x2图像关于直线x- y 0对称,则 f ( 4 x)的=单调增区间是()A .( 0, 2)B .( - 2, 0)C.( 0,+∞)D.( - ∞, 0)二、填空题13.等比数列{ a n}的前 n 项和为S n,且某连续三项正好为等差数列{ b n } 中的第1,5, 6 项,则lim Sn 2________.n na114.若lim ( x2x 1 x k ) 1,则k=________.x15.有 30 个顶点的凸多面体,它的各面多边形内角总和是________.16.长为 l ( 0< l< 1 )的线段 AB 的两个端点在抛物线y x2上滑动,则线段AB 中点 M 到 x 轴距离的最小值是________.21 / 21。