帕累托最优
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C = MRTS LK
PL , PK
D = MRTS LK
PL PK
即可得出生产的帕累托最优条件:
C D = MRTS LK MRTS LK
(3)最后来看生产和消费综合在一起的情况。X 产品对 Y 产品的边际转换率为:
MRTXY =
Y X
而 X 产品与 Y 产品在边际转换时,生产两种物品的成本是相同的
给定生产可能性曲线上的一点 B 和与 B 对应的消费契约曲线上的一点 C, 只要 B 点的产 品边际转换率不等于 C 点的产品边际替代率, 则 C 点仅表示消费的帕累托最优, 而非生产和 消费的帕累托最优。由此生产和消费的帕累托最优条件为:MRS=MRT,即边际替代率等于边 际转换率。
第四节 完全竞争与帕累托最优
C x4
)
OA
图 10-5 生产资源配置(Oa、Ob 代表两种物品) (B 点:资源没有充分利用,生产要素无效率配置的点,存在帕累托改进)
生产资源的配置也可以用埃奇沃斯盒状图来表示。 如图 10-5, 水平轴为生产要素劳动 (L) 的总量,垂直轴为生产要素资本(K)的总量。两个生产者生产两种商品,生产者 A 生产 X 商品,生产者 B 生产 Y 商品。 OA 为生产者 A 的原点, X 1 , X 2 , X 3 , X 4 分别为生产 X 产品 的等产量线; OB 为生产者 B 的原点, Y1 , Y2 , Y3 , Y4 分别为生产 Y 产品的等产量线。离原点 越远的等产量线产量越大。在图中两种产品 X 和 Y 的等产量线的切点依次为
Y P Y T
u2B u1B u3B
S B
u3A
c
c
u1A
u2A
c A
X
P’
X
图 10-6 生产和交换的最优 (Kt 为 A 或 B 的边际替代率,Ks 为边际转换率,当 Kt=Ks 时,才是生产和消费的帕累托最 优){生产边界上的点是生产已经达到帕累托最优}
由图 10-5,契约曲线 CC 上的点满足生产的帕累托最优。契约曲线上每一个点对应着 X 和 Y 产品的一对产出的最优组合(X,Y)。如图 10-6, 将横纵轴分别作为产品 X 和 Y 的产量, 在二维坐标上标出产出最优的两种产品的组合,可以得到生产可能性曲线 PP 。其上的点 代表用既定的资源可以生产出的 X 和 Y 最大可能的组合。在 PP 上任意选择一点 B,通过 B 点的切线 S 的斜率代表社会上生产 X 和 Y 产品的边际转换率,用 MRT 表示。通过 B 点,向横 轴引出直线 BX ,向纵轴引出直线 BY 。则矩形 AYBX 就是我们以上小节所描述过的消费 资源配置的埃奇沃斯盒状图。A 点和 B 点代表两个消费者的消费原点。消费契约线上的点 C 的切线为 T,切线 T 的斜率为消费者用 X 替代 Y 的边际替代率 MRS。经过 B 点的切线为 S, 切线 S 的斜率为产品 X 在该点上转换为产品 Y 的边际转换率 MRT。 切线 S 和切线 T 可能平行, 也可能不平行,即产品的边际转换率与边际替代率可能相等也可能不相等。若两者不相等, 则可以证明此时并未达到生产和消费的帕累托最优。 举例说明, 假设产品的边际转换率为 3, 边际替代率为 1,即边际转换率大于边际替代率。边际转换率为 3 意味着生产者通过少生产 1 单位 X 可增加 3 单位 Y 的生产。 边际替代率为 1 意味着消费者愿意通过少消费 1 单位 X 来 增加 1 单位 Y 的消费。这种情况下,生产者少生产 1 单位 X 来增加 3 单位 Y 的生产,从而少 给 1 单位 X 给消费者,补偿给消费者 1 单位 Y,最终多出了 2 单位 Y。多出的 2 单位 Y 代表 了社会福利的净增加。
A MRS XY =
C D A B
PX , PY
B MRS XY =
PX PY
即可得出消费的帕累托最优条件:
A B MRS XY = MRS XY
所以,在完全竞争经济中,产品的均衡价格实现了消费的帕累托最优。
(2)其次来看生产者,完全竞争经济中生产者利润最大化的条件这一就是,任意两种 生产要素的边际技术替代率等于这两种要素的价格比率:
第三节 帕累托最优(除非损人不能利己的状态)
如果至少有一人认为情况 1 优于情况 2,而没有人认为情况 1 劣于情况 2,则从社会观 点看情况 1 优于情况 2。这就是帕累托最优状态标准,简称为帕累托标准。 根据帕累托最优状态标准, 能够对资源的配置做出优劣评价。 如果既定的资源配置状态 的改变使得至少一个人的状况变好, 而没有任何人的状况变坏, 则认为这种资源配置状态的 改变是好的; 否则认为是坏的。 这种根据帕累托标准来衡量的资源配置状态变好的情况称为 帕累托改进。这和第二节定义的改进的帕累托最优是不矛盾的。进一步,可以根据帕累托标 准和帕累托改进定义最优资源配置。 如果对于某种资源配置状态, 任何帕累托改进都不存在, 即达到一种除非损人不能利己的资源配置状态, 就称为帕累托最优状态。 帕累托最优状态又 称做经济效率,满足帕累托最优状态就是具有经济效率。 一、消费的帕累托最优(边际替代率相等) 经济学中有关多个市场配置的模型,简单处理的话通常用埃奇沃斯盒状图分析。采用 埃奇沃斯盒状图分析法需满足两个条件:第一,分析的对象限于 A、B 两方(可以是两个消 费者,两个生产者);第二,交换活动中的产品或生产要素在数量上是固定的。如图 10-3, 盒状图的水平轴和垂直轴分别表示 X 和 Y 消费品总量, OA 和 OB 表示两个消费者 A 和 B 消费 的原点。图中任一点代表两种消费品在消费者之间的配置。如在 A 点,消费者 A 获得数量为
Y MCY X MCX
所以,
MRTXY =
Y MC X = X MCY
完全竞争经济(P=MC)中,生产者利润最大化的条件是产品的价格等于边际成本,即:
PX MCX ,
所以, MRS XY =
P Y MCY
PX = MRTXY ,即完全竞争经济时,生产和消费的最优也可实现。 PY
完全竞争的均衡和帕累托最优状态之间是什么关系呢?先给出结论:任何竞争均衡都 是帕累托最优状态,任意帕累托最优状态也都可以由一套竞争价格来实现。 首先将帕累托最优条件综合如下。假定前提是两个消费者、两种产品、两个生产者、 两种投入要素,但最优条件也适用于多个消费者、多种产品、多个生产者、多种投入要素的 情况。 (1)消费的最优条件 任意两种产品的边际替代率对所有消费者都相等。设 X 和 Y 为任意两种产品,A 和 B 为 任意两个消费者: MRS XY = MRS XY (2)生产的最优条件 任何两种生产要素的边际技术替代率对所有生产者都相等。设 L 和 K 为任意两种要素, C 和 D 为任意两个生产者: MRTS LK = MRTS LK (3)生产和消费的最优条件 任何两种产品的边际替代率等于它们的边际转换率: MRS XY = MRTXY 当以上三个条件都满足时,称经济达到了帕累托最优状态。 考虑完全竞争经济中,帕累托最优如何实现。 (1)首先来看消费者,完全竞争经济中消费者的效用最大化条件为任意两种商品的边 际替代率等于这两种商品的价格比率:
B B 效用。 离 OA 点越远, 效用越高。 同理, 以 OB 为原点的无差异曲线依次为 U1B , U 2 , U 3B , U 4
代表消费者 B 不同的效用,离 OB 点越远,效用越高。图中消费者 A 和 B 的无差异曲线的切 点依次为 E1 , E2 , E3 , E4 。这些切点的连线 CC 称为契约曲线(contract curve),在这条 契约曲线上任意一点, 消费者用以交换的商品的边际替代率相等, 也是消费资源最优配置的 点。 契约曲线之外的任何点都不是最有效率的点, 因为契约曲线之外的点都有帕累托改进的 余地,没有达到帕累托最优。如点 A,是消费者 A 的无差异曲线 U 3 与消费者 B 的无差异曲 线 U1 相交的点。若将点 A 移动到点 E1 ,则消费者 B 的效用没有变化(因为点 E1 还在无差 异曲线 U1 上),而消费者 A 的效用变大了(从无差异曲线 U 3 到无差异曲线 U 4 )。所以 在 A 点存在着帕累托改进的余地,而在 E1 点,要想提高消费者 A 的效用必须降低消费者 B 的效用,要想提高消费者 B 的效用必须降低消费者 A 的效用,即达到了帕累托最优状态。将 A 移动到点 E2 同样的道理。所以契约曲线是消费资源在两个消费者之间最优配置的点的连 线。 OB u1 Y
B
B A A B A
A u2B u3 u4
B B
C E1 E2
消 费 者 总 量
u4A
C OA
E4 u1A
E3 u2A
u3A
X 消费者总量 图 10-4 消费资源配置
(A 点:资源无效率配置的点,存在帕累托改进的余地)
二、生产的帕累托最优
OB
资 本 要 素 总 量 (
K
Y1 Y2 B Y3 Y4 E1 C x1 劳动要素总量(L) E3 E2 x2 x3 E4
E1 , E2 , E3 , E4 。在切点上两种生产要素的边际技术替代率相Fra Baidu bibliotek,达到了要素投入的最有
效配置。CC 就是生产的契约曲线,在这条曲线上所有的点都是有效率的点。例如,两产品 的等产量线 X 2 和 Y2 相交于点 B。将点 B 移动到点 E3 ,则 X 产品的产量变大了(从 X 2 水平 变为 X 3 水平),产品 Y 的产量没有变化(依然在等产量线 Y2 上)。所以,任何契约曲线 CC 之外的点都有帕累托改进的余地,契约曲线上的点达到了帕累托最优,也达到了资源配 置的有效率。 三、生产和消费的帕累托最优
在完全竞争条件下, 价格体系可以使市场经济中的无数独立决策者协调起来, 并能形成 最优的资源配置。 福利经济学将瓦尔拉斯均衡与帕累托最优状态之间的关系,通过两个基本定理加以表 述。 福利经济学第一基本定理:每一种瓦尔拉斯均衡配置都是帕累托最优状态的配置。 福利经济学第二基本定理:帕累托最优状态的配置必定是瓦尔拉斯均衡配置。
X A 的 X 消费品和数量为 YA 的 Y 消费品; 消费者 B 获得了数量为 X B 的 X 消费品和数量为 YB
的 Y 消费品。
XB
OB
YB
A
图 10-3 埃奇沃斯盒状图(Oa、Ob 代表两个人)
Y
消 费 品 总Y 量 A
OA XA X 消费品总量
如图 10-4,以 OA 为原点的无差异曲线依次为 U1A , U 2A , U 3A , U 4A 代表消费者 A 不同的
PL , PK
D = MRTS LK
PL PK
即可得出生产的帕累托最优条件:
C D = MRTS LK MRTS LK
(3)最后来看生产和消费综合在一起的情况。X 产品对 Y 产品的边际转换率为:
MRTXY =
Y X
而 X 产品与 Y 产品在边际转换时,生产两种物品的成本是相同的
给定生产可能性曲线上的一点 B 和与 B 对应的消费契约曲线上的一点 C, 只要 B 点的产 品边际转换率不等于 C 点的产品边际替代率, 则 C 点仅表示消费的帕累托最优, 而非生产和 消费的帕累托最优。由此生产和消费的帕累托最优条件为:MRS=MRT,即边际替代率等于边 际转换率。
第四节 完全竞争与帕累托最优
C x4
)
OA
图 10-5 生产资源配置(Oa、Ob 代表两种物品) (B 点:资源没有充分利用,生产要素无效率配置的点,存在帕累托改进)
生产资源的配置也可以用埃奇沃斯盒状图来表示。 如图 10-5, 水平轴为生产要素劳动 (L) 的总量,垂直轴为生产要素资本(K)的总量。两个生产者生产两种商品,生产者 A 生产 X 商品,生产者 B 生产 Y 商品。 OA 为生产者 A 的原点, X 1 , X 2 , X 3 , X 4 分别为生产 X 产品 的等产量线; OB 为生产者 B 的原点, Y1 , Y2 , Y3 , Y4 分别为生产 Y 产品的等产量线。离原点 越远的等产量线产量越大。在图中两种产品 X 和 Y 的等产量线的切点依次为
Y P Y T
u2B u1B u3B
S B
u3A
c
c
u1A
u2A
c A
X
P’
X
图 10-6 生产和交换的最优 (Kt 为 A 或 B 的边际替代率,Ks 为边际转换率,当 Kt=Ks 时,才是生产和消费的帕累托最 优){生产边界上的点是生产已经达到帕累托最优}
由图 10-5,契约曲线 CC 上的点满足生产的帕累托最优。契约曲线上每一个点对应着 X 和 Y 产品的一对产出的最优组合(X,Y)。如图 10-6, 将横纵轴分别作为产品 X 和 Y 的产量, 在二维坐标上标出产出最优的两种产品的组合,可以得到生产可能性曲线 PP 。其上的点 代表用既定的资源可以生产出的 X 和 Y 最大可能的组合。在 PP 上任意选择一点 B,通过 B 点的切线 S 的斜率代表社会上生产 X 和 Y 产品的边际转换率,用 MRT 表示。通过 B 点,向横 轴引出直线 BX ,向纵轴引出直线 BY 。则矩形 AYBX 就是我们以上小节所描述过的消费 资源配置的埃奇沃斯盒状图。A 点和 B 点代表两个消费者的消费原点。消费契约线上的点 C 的切线为 T,切线 T 的斜率为消费者用 X 替代 Y 的边际替代率 MRS。经过 B 点的切线为 S, 切线 S 的斜率为产品 X 在该点上转换为产品 Y 的边际转换率 MRT。 切线 S 和切线 T 可能平行, 也可能不平行,即产品的边际转换率与边际替代率可能相等也可能不相等。若两者不相等, 则可以证明此时并未达到生产和消费的帕累托最优。 举例说明, 假设产品的边际转换率为 3, 边际替代率为 1,即边际转换率大于边际替代率。边际转换率为 3 意味着生产者通过少生产 1 单位 X 可增加 3 单位 Y 的生产。 边际替代率为 1 意味着消费者愿意通过少消费 1 单位 X 来 增加 1 单位 Y 的消费。这种情况下,生产者少生产 1 单位 X 来增加 3 单位 Y 的生产,从而少 给 1 单位 X 给消费者,补偿给消费者 1 单位 Y,最终多出了 2 单位 Y。多出的 2 单位 Y 代表 了社会福利的净增加。
A MRS XY =
C D A B
PX , PY
B MRS XY =
PX PY
即可得出消费的帕累托最优条件:
A B MRS XY = MRS XY
所以,在完全竞争经济中,产品的均衡价格实现了消费的帕累托最优。
(2)其次来看生产者,完全竞争经济中生产者利润最大化的条件这一就是,任意两种 生产要素的边际技术替代率等于这两种要素的价格比率:
第三节 帕累托最优(除非损人不能利己的状态)
如果至少有一人认为情况 1 优于情况 2,而没有人认为情况 1 劣于情况 2,则从社会观 点看情况 1 优于情况 2。这就是帕累托最优状态标准,简称为帕累托标准。 根据帕累托最优状态标准, 能够对资源的配置做出优劣评价。 如果既定的资源配置状态 的改变使得至少一个人的状况变好, 而没有任何人的状况变坏, 则认为这种资源配置状态的 改变是好的; 否则认为是坏的。 这种根据帕累托标准来衡量的资源配置状态变好的情况称为 帕累托改进。这和第二节定义的改进的帕累托最优是不矛盾的。进一步,可以根据帕累托标 准和帕累托改进定义最优资源配置。 如果对于某种资源配置状态, 任何帕累托改进都不存在, 即达到一种除非损人不能利己的资源配置状态, 就称为帕累托最优状态。 帕累托最优状态又 称做经济效率,满足帕累托最优状态就是具有经济效率。 一、消费的帕累托最优(边际替代率相等) 经济学中有关多个市场配置的模型,简单处理的话通常用埃奇沃斯盒状图分析。采用 埃奇沃斯盒状图分析法需满足两个条件:第一,分析的对象限于 A、B 两方(可以是两个消 费者,两个生产者);第二,交换活动中的产品或生产要素在数量上是固定的。如图 10-3, 盒状图的水平轴和垂直轴分别表示 X 和 Y 消费品总量, OA 和 OB 表示两个消费者 A 和 B 消费 的原点。图中任一点代表两种消费品在消费者之间的配置。如在 A 点,消费者 A 获得数量为
Y MCY X MCX
所以,
MRTXY =
Y MC X = X MCY
完全竞争经济(P=MC)中,生产者利润最大化的条件是产品的价格等于边际成本,即:
PX MCX ,
所以, MRS XY =
P Y MCY
PX = MRTXY ,即完全竞争经济时,生产和消费的最优也可实现。 PY
完全竞争的均衡和帕累托最优状态之间是什么关系呢?先给出结论:任何竞争均衡都 是帕累托最优状态,任意帕累托最优状态也都可以由一套竞争价格来实现。 首先将帕累托最优条件综合如下。假定前提是两个消费者、两种产品、两个生产者、 两种投入要素,但最优条件也适用于多个消费者、多种产品、多个生产者、多种投入要素的 情况。 (1)消费的最优条件 任意两种产品的边际替代率对所有消费者都相等。设 X 和 Y 为任意两种产品,A 和 B 为 任意两个消费者: MRS XY = MRS XY (2)生产的最优条件 任何两种生产要素的边际技术替代率对所有生产者都相等。设 L 和 K 为任意两种要素, C 和 D 为任意两个生产者: MRTS LK = MRTS LK (3)生产和消费的最优条件 任何两种产品的边际替代率等于它们的边际转换率: MRS XY = MRTXY 当以上三个条件都满足时,称经济达到了帕累托最优状态。 考虑完全竞争经济中,帕累托最优如何实现。 (1)首先来看消费者,完全竞争经济中消费者的效用最大化条件为任意两种商品的边 际替代率等于这两种商品的价格比率:
B B 效用。 离 OA 点越远, 效用越高。 同理, 以 OB 为原点的无差异曲线依次为 U1B , U 2 , U 3B , U 4
代表消费者 B 不同的效用,离 OB 点越远,效用越高。图中消费者 A 和 B 的无差异曲线的切 点依次为 E1 , E2 , E3 , E4 。这些切点的连线 CC 称为契约曲线(contract curve),在这条 契约曲线上任意一点, 消费者用以交换的商品的边际替代率相等, 也是消费资源最优配置的 点。 契约曲线之外的任何点都不是最有效率的点, 因为契约曲线之外的点都有帕累托改进的 余地,没有达到帕累托最优。如点 A,是消费者 A 的无差异曲线 U 3 与消费者 B 的无差异曲 线 U1 相交的点。若将点 A 移动到点 E1 ,则消费者 B 的效用没有变化(因为点 E1 还在无差 异曲线 U1 上),而消费者 A 的效用变大了(从无差异曲线 U 3 到无差异曲线 U 4 )。所以 在 A 点存在着帕累托改进的余地,而在 E1 点,要想提高消费者 A 的效用必须降低消费者 B 的效用,要想提高消费者 B 的效用必须降低消费者 A 的效用,即达到了帕累托最优状态。将 A 移动到点 E2 同样的道理。所以契约曲线是消费资源在两个消费者之间最优配置的点的连 线。 OB u1 Y
B
B A A B A
A u2B u3 u4
B B
C E1 E2
消 费 者 总 量
u4A
C OA
E4 u1A
E3 u2A
u3A
X 消费者总量 图 10-4 消费资源配置
(A 点:资源无效率配置的点,存在帕累托改进的余地)
二、生产的帕累托最优
OB
资 本 要 素 总 量 (
K
Y1 Y2 B Y3 Y4 E1 C x1 劳动要素总量(L) E3 E2 x2 x3 E4
E1 , E2 , E3 , E4 。在切点上两种生产要素的边际技术替代率相Fra Baidu bibliotek,达到了要素投入的最有
效配置。CC 就是生产的契约曲线,在这条曲线上所有的点都是有效率的点。例如,两产品 的等产量线 X 2 和 Y2 相交于点 B。将点 B 移动到点 E3 ,则 X 产品的产量变大了(从 X 2 水平 变为 X 3 水平),产品 Y 的产量没有变化(依然在等产量线 Y2 上)。所以,任何契约曲线 CC 之外的点都有帕累托改进的余地,契约曲线上的点达到了帕累托最优,也达到了资源配 置的有效率。 三、生产和消费的帕累托最优
在完全竞争条件下, 价格体系可以使市场经济中的无数独立决策者协调起来, 并能形成 最优的资源配置。 福利经济学将瓦尔拉斯均衡与帕累托最优状态之间的关系,通过两个基本定理加以表 述。 福利经济学第一基本定理:每一种瓦尔拉斯均衡配置都是帕累托最优状态的配置。 福利经济学第二基本定理:帕累托最优状态的配置必定是瓦尔拉斯均衡配置。
X A 的 X 消费品和数量为 YA 的 Y 消费品; 消费者 B 获得了数量为 X B 的 X 消费品和数量为 YB
的 Y 消费品。
XB
OB
YB
A
图 10-3 埃奇沃斯盒状图(Oa、Ob 代表两个人)
Y
消 费 品 总Y 量 A
OA XA X 消费品总量
如图 10-4,以 OA 为原点的无差异曲线依次为 U1A , U 2A , U 3A , U 4A 代表消费者 A 不同的