成都树德中学(光华校区)七年级数学上册第一章《有理数》提高卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(0分)数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()
A.94分B.85分C.98分D.96分D
解析:D
【分析】
根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.
【详解】
+-+--
解:根据题意得:859=94,854=81,8511=96,857=78,850=85
即五名学生的实际成绩分别为:94;81;96;78;85,
则这五名同学的实际成绩最高的应是96分.
故选D.
【点睛】
本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.
2.(0分)已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()
A.-a<-b<a<b B.-b<-a<a<b
C.-b<a<b<-a D.a<-b<b<-a D
解析:D
【解析】
【分析】
根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.
【详解】
∵a<0<b,且|a|>b,
∴a<-b<b<-a,
故选D.
【点睛】
本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.
3.(0分)围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()
A .109.01510⨯
B .39.01510⨯
C .29.01510⨯
D .109.0210⨯ C
解析:C
【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
901.5=9.015×102.
故选:C .
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
4.(0分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )
A .|a|>|b|
B .|ac|=ac
C .b <d
D .c+d >0B
解析:B
【分析】
先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.
【详解】
从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;
A 、|a|>|b|,故选项正确;
B 、a 、c 异号,则|ac|=-ac ,故选项错误;
C 、b <d ,故选项正确;
D 、d >c >1,则c+d >0,故选项正确.
故选B.
【点睛】
本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.
5.(0分)计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
的值( )
A .54
B .27
C .272
D .0C
解析:C
【分析】
根据有理数的加减混合运算先算括号内的,进而即可求解.
【详解】
解:原式=﹣
12+1﹣32+2﹣52+3﹣72+…+27 =27×
12 =272
. 故选:C .
【点睛】
本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.
6.(0分)如果|a |=-a ,下列成立的是( )
A .-a 一定是非负数
B .-a 一定是负数
C .|a |一定是正数
D .|a |不能是0A 解析:A
【分析】
根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可.
【详解】
∵|a|=-a ,
∴a≤0,
A 、正确,∵|a|=-a ,∴-a≥0;
B 、错误,-a 是非负数;
C 、错误,a=0时不成立;
D 、错误,a=0时|a|是0.
故选A .
【点睛】
本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
7.(0分)下列运算正确的是( )
A .()22-2-21÷=
B .311-2-8327⎛⎫= ⎪⎝⎭
C .1352535-÷⨯
=- D .133( 3.25)6 3.2532.544
⨯--⨯=- D 解析:D
【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .
【详解】
A 、()2
2-2-2441÷=-÷=-,该选项错误;
B、
3334319
12
17
-2-
332727
⎛⎫⎛⎫
==-=-
⎪ ⎪
⎝⎭⎝⎭
,该选项错误;
C、
133
5539
355
-÷⨯=-⨯⨯=-,该选项错误;
D、
1313271327
3( 3.25)6 3.25 3.25 3.25 3.25()32.5
444444
⨯--⨯=-⨯-⨯=-⨯+=,该选正确;
故选:D.
【点睛】
本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.(0分)一个数的绝对值是3,则这个数可以是()
A.3B.3-C.3或者3-D.1 3 C
解析:C
【解析】
试题
∵一个数的绝对值是3,可设这个数位a,
∴|a|=3,
∴a=±3
故选C.
9.(0分)下列关系一定成立的是()
A.若|a|=|b|,则a=b B.若|a|=b,则a=b
C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D
解析:D
【分析】
根据绝对值的定义进行分析即可得出正确结论.
【详解】
选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,
故选D.
【点睛】
本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.
10.(0分)若1<x<2,则|2||1|||
21
x x x
x x x
--
-+
--
的值是()
A.﹣3 B.﹣1 C.2 D.1D 解析:D
【分析】
在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.
【详解】
解:12x <<,
20x ∴-<,10x ->,0x >,
∴原式1111=-++=,
故选:D .
【点睛】
本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.
二、填空题
11.(0分)若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.【分析】先把
abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:
abcde=2000=
解析:【分析】
先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.
【详解】
解:abcde=2000=24×53,
为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.
故答案为:23.
【点睛】
本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键. 12.(0分)已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:
解析:±8
【分析】
首先根据绝对值的性质得出两数,进而分析得出答案.
【详解】
设|a|=5,|b|=3,
则a=±5,b=±3,
∵ab <0,
∴当a=5时,b=-3,
∴5-(-3)=8;
当a=-5时,b=3,
∴-5-3=-8.
故答案为:±8.
【点睛】
本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.
13.(0分)如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.
32【分析】观察
分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n
解析:32
【分析】
观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.
【详解】
解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列
-=-=.
的数从左往右依次减少1,所以第六行第五个数是26436432
故答案为:32.
【点睛】
本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.
14.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知
解析:5-
【分析】
根据向右移动加,向左移动减进行解答即可.
【详解】
因为点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度, 所以点P 所表示的数是 0+2-7=-5.
故答案为:-5.
【点睛】
本题考查的是数轴,熟知数轴的特点是解答此题的关键.
15.(0分)若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b
,a 的形式,则4a b -的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==
解析:15
【分析】
根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b
=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.
【详解】
解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b
、a 的形式 ∴0b ≠,
∴a b +=0, ∴
3a 3b
=-, ∴b =3-,a =3, ∴4a b -=123+=15.
故答案为15.
【点睛】
本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、
3a b
=-3是解答本题的关键.
16.(0分)在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40
解析:85
【解析】
分析:先求出总分,再求出平均分即可.
解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),
∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).
故答案为85.
点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.
17.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2
的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情
解析:2或-6
【分析】
分在-2的左边和右边两种情况讨论求解即可.
【详解】
解:如图,
在-2的左边时,-2-4=-6,
在-2右边时,-2+4=2,
所以,点对应的数是-6或2.
故答案为-6或2.
【点睛】
本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.
18.(0分)一个数的2
5

16
5
-,则这个数是______.−8【分析】把这个数看成单位1它
的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1
解析:−8
【分析】
把这个数看成单位“1”,它的2
5
对应的数量是
16
5
-,求这个数用除法
【详解】
(
16
5
-)÷
2
5
=−8.
故答案为−8.
【点睛】
此题考查有理数的除法,解题关键在于这个数看成单位“1”
19.(0分)某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)
解析:30
【分析】
分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.
【详解】
解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,
∵纸板张数为整数,
∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,
∴最多能制作5×6=30(张).
故答案为30.
【点睛】
本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.
20.(0分)绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题
解析:24
【分析】
找出绝对值小于4.5的所有负整数,求出之积即可.
【详解】
解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,
-⨯-⨯-⨯-=,
∴积为:4(3)(2)(1)24
故答案为:24.
【点睛】
此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.
三、解答题
21.(0分)如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?
解析:点M 所对应的数为24或-6.
【分析】
设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.
【详解】
设MN=x ,
①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,
∵AB=30,
∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,
∴点M 所对应的数为x+24-x=24;
②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,
∵AB=30,
∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,
∴点M 所对应的数为x-6-x=-6;
综上,点M 所对应的数为24或-6.
【点睛】
本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.
22.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭
;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.
【分析】
(1)利用乘法分配律进行简便运算,即可得出结果;
(2)先计算有理数的乘方与乘法,再进行加减运算即可.
【详解】
解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812
=-⨯-⨯+⨯ (24914)=--+
29=-;
(2)431(2)2(3)----⨯-
1(8)(6)=-----
186=-++
13=.
【点睛】
本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.
23.(0分)设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如
323|2|6=⨯=※,()414|1|a a -=⨯-※.
(1)计算20210※和()2021
2-※的值. (2)若0y <,化简()23y -※.
(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)
【分析】
(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;
(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;
(3)按照题意要求写一组具体的,,a x y 的值再验算即可.
【详解】
解:(1)根据题意得:2021
02021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;
(2)因为0y <,
所以30y ->,
所以()()232|3|236y y y y -=⨯-=⨯-=-※;
(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,
此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,
所以,()a x y a x a y +=+※※※不成立.
【点睛】
本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.
24.(0分)计算:
(1)()222112136⎡
⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦
(2)1
31121346⎛⎫-⨯-+ ⎪⎝⎭
解析:(1)1;(2)9-
【分析】
(1)先算括号里面的,再算括号外面的即可;
(2)根据乘法分配律计算即可;
【详解】
(1)()222112136⎡
⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦
, 11463⎡⎤=-+-⨯⎢⎥⎣⎦
, 121=-+=;
(2)1
31121346⎛⎫-⨯-+ ⎪⎝⎭
, ()()()431121212346
=-⨯
--⨯+-⨯, 16929=-+-=-;
【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.
25.(0分)计算:329(1)4(2)34
⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12
-
. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.
【详解】 原式311222⎛⎫=-++-
=- ⎪⎝⎭. 【点睛】
本题考查了有理数的混合运算,掌握运算法则是解题的关键.
26.(0分)计算下列各式的值:
(1)1243 3.55-+-
(2)131(48)64⎛
⎫-+⨯- ⎪⎝⎭
(3)22350(5)1--÷--
解析:(1)-24.3;(2)-76;(3)-12
【分析】
(1)先将减法化为加法,再计算加法即可;
(2)利用乘法分配律计算即可;
(3)先计算乘方,再计算除法,最后计算减法.
【详解】
解:(1)原式=24 3.2( 3.5)-++-
=-24.3;
(2)原式=131(48)(48)(48)64
⨯--⨯-+⨯- =488(36)-++-
=-76; (3)原式=950251--÷-
=921---
=9(2)(1)-+-+- =-12.
【点睛】
本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 27.(0分)把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12
,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>
12>0>-2.5>-22>-5. 【分析】
先在数轴上表示出各数,从右到左用“>”连接起来即可.
【详解】
解:|3|=3-;224=--,(1)=1--
如图所示,

由图可知,|-3|>-(-1)>
12
>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 28.(0分)计算:
(1)5721(
)()129336--÷- (2)22115()(3)(12)23
-+÷-⨯---⨯ 解析:(1)37;(2)50.
【分析】
(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;
(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.
【详解】
(1)原式=572()(36)152824371293
--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

相关文档
最新文档