高考数学压轴专题人教版备战高考《数列》易错题汇编附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学《数列》知识点练习
一、选择题
1.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90
C .72
D .24
【答案】B 【解析】
由于152436a a a a +=+=,所以1555()536
9022
a a S +⨯=
==,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.
2.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .
3
4
B .
23
C .
12
D .
13
【答案】A 【解析】 【分析】
根据等比数列前n 项和的性质求解可得所求结果. 【详解】
∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2
S S =, ∴等比数列51051510,,S S S S S --的公比为10551
2
S S S -=-, ∴()151010551
1 24
S S S S S -=--=, ∴15510513 44
S S S S =+=, ∴1553:4
S S =. 故选A . 【点睛】
在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提
高解题的效率.
3.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则
n S 的最小值为( )
A .–10
B .14-
C .–18
D .–20
【答案】D 【解析】 【分析】
利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当
4n =或5时,n S 取到最小值.
【详解】
根据题意,可知{}n a 为等差数列,公差2d =,
由134,,a a a 成等比数列,可得2
314a a a =,
∴1112
()4(6)a a a ++=,解得18a =-.
∴22(1)981
829()224
n n n S n n n n -=-+
⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】
本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.
4.执行下面程序框图输出S 的值为( )
A .
2542
B .
3764
C .
1730
D .
67
【答案】A 【解析】 【分析】
模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当
6i =,满足5i >,退出循环,输出运行的结果111111324354657
S =
++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时1
13
S =⨯,2i =,否; 第2次循环111324S =
+⨯⨯,3i =,否; 第3次循环时111132435
S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546
S =
++⨯⨯⨯⨯+,5i =,否;
第5次循环时111111324354657
S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出
111111324354657
S =
++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 111125
1226742
⎛⎫=
+--=
⎪⎝⎭ 故选:A. 【点睛】
本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.
5.在数列{}n a 中,若10a =,12n n a a n +-=,则23111
n
a a a +++L 的值 A .
1
n n
- B .
1
n n
+ C .
1
1n n -+ D .
1
n n + 【答案】A 【解析】
分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111
n
a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,
则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以
1111
(1)1n a n n n n
==--- 所以
231111111111(1)()()12231n n a a a n n n n
-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.
6.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( ) A .8 B .9
C .8或9
D .8.5
【答案】C 【解析】 【分析】
设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】
设等比数列{a n }的公比为q ,∵a n >0,∴q >0.
∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=
. ∴a n =2561
1()
2
n -⨯=29﹣n .
T n =28
•27
•……•2
9﹣n
=2
8+7+…+9﹣n
()217
289[)89242
2
22
n n n ⎛⎤--- ⎥+-⎝
⎦==.
∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】
本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
7.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =
【答案】B 【解析】 【分析】
先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】
根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;
又由2
18451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.
故选B . 【点睛】
本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.
8.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列
{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )
A .(),3-∞-
B .1,3⎛⎫-∞- ⎪⎝⎭
C .1,3⎛⎫-+∞ ⎪⎝⎭
D .()3,-+∞
【答案】B 【解析】 【分析】
先求出71a =,再根据{}n b 是递减数列,得到1
21
n λ<-+对*n N ∈恒成立,即得解. 【详解】
∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,
∴2
n b n n λ=+,又∵{}n b 是递减数列,
∴10n n b b +-<对*n N ∈恒成立, 则()()()2
2
110n n n
n λλ+++-+<,∴()2110n λ++<,
∴1
21
n λ<-
+对*n N ∈恒成立, ∴13
λ<-.
故选:B. 【点睛】
本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
9.设数列是公差
的等差数列,为前项和,若,则
取得最
大值时,的值为
A .
B .
C .或
D .
【答案】C 【解析】
,进而得到
,即

数列
是公差
的等差数列,所以前五项都是正数,
或时,
取最大值,故选C.
10.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列
1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭
的前n 项和是( ) A .11
121n +-
-
B .1
121
n -
+ C .1
121
n -
+ D .1
121
n -
- 【答案】A 【解析】
由等比数列的性质可得:2
153364,8a a a a ==∴=,
则数列的公比:31822
a q a =
==, 数列的通项公式:112n n
n a a q -==,
故:
()()()()
111211
1121212121n n n n n n n n a a a +++==-------,
则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭
的前n 项和是:
122311
1111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭
L . 本题选择A 选项.
点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.
11.已知数列}{
n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为5
4
,则5S =( ). A .35 B .33
C .31
D .29
【答案】C 【解析】
试题分析:由题意得,设等比数列的公比为q ,则2
231112a a a q a q a =⋅=,所以42a =,
又3
474452224a a a a q +=+=⨯,解得11,162
q a ==,所以
55
151
16(1())
(1)2311112
a q S q --==
=--,故选C . 考点:等比数列的通项公式及性质.
12.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) A
B .2
C
D .3
【答案】B 【解析】 【分析】
根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得
(
)()6
3
11
11911a q a q q
q
--=⨯--,解可得2q =,又由(
)5
15
1
131621a q S
a
q
-=
==-,解可得
1a 的值,即可得答案.
【详解】
根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则
(
)()6
3
11
11911a q a q q
q
--=⨯--,解可得3
8q
=,则2q =,
又由562S =,则有(
)5
151
131621a q S a
q
-===-,解可得12a =;
故选B . 【点睛】
本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.
13.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,33
4
S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]
1,0- B .11,2
⎡⎤-⎢⎥⎣

C .1,12⎡⎤⎢⎥⎣⎦
D .[]
0,1
【答案】B 【解析】 【分析】
先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】
由1220,a a += 33
4S =,得11211,,1232n
n a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦

当1n =时,n S 取最大值1,当2n =时,n S 取最小值
12
, 所以12
21
a a ⎧

⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】
本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.
14.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )
A
.4B .19 C .20 D .23
【答案】D 【解析】 【分析】
本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】
设奇数项的公差为d ,偶数项的公比为q ,
由347a a +=,5613a a +=,得127d q ++=,2
12213d q ++=, 解得2d =,2q =,所以3
7813271623a a d q +=++=+=,故选D .
【点睛】
本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.
15.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51
C .61
D .68
【答案】B 【解析】 【分析】
由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】
在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,
3156a a ∴+=.
()()117315171717176
51222
a a a a S ++⨯∴====.
故选:B . 【点睛】
本题考查等差数列的性质和前n 项和公式,属于基础题.
16.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]a
r r r +-+
C .18(1)a r +
D .18[(1)(1)]a
r r r
+-+
【答案】D 【解析】
【分析】
由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,
当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,
⋯⋯
孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,
可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:
1717
16
18(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a
S a r a r a r r r r r
++-=++++⋯⋯++==+-++-;
故选:D . 【点睛】
本题考查了不完全归纳法及等比数列前n 项和,属中档题.
17.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则
A .140,0a d dS >>
B .140,0a d dS <<
C .140,0a d dS ><
D .140,0a d dS <>
【答案】B 【解析】 ∵等差数列



成等比数列,∴

∴,∴

,故
选B.
考点:1.等差数列的通项公式及其前项和;2.等比数列的概念
18.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120
C .121
D .192
【答案】B
【解析】
【分析】 根据352
a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】
Q 352
27a q a ==, ∴ 3q =
∴ 4414(1)3(13)120113
a q S q --===--.故选:B 【点睛】
本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.
19.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )
A .23岁
B .32岁
C .35岁
D .38岁
【答案】C
【解析】
【分析】
根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.
【详解】
设这位公公的第n 个儿子的年龄为n a ,
由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072
S a ⨯=+
⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.
故选C .
【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.
20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a
的取值范围为( )
A .(1,2)
B .(0,3)
C .(0,2)
D .(0,1)
【答案】D
【解析】
【分析】
先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.
【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则111
11113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.
因为10a >,数列{}n a 是单调递增数列,
所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝⎭, 化简得11
1110113a a ⎛⎫<-<-
⎪⎝⎭,所以101a <<. 故选:D.
【点睛】
本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

相关文档
最新文档