【好题】初三数学下期中第一次模拟试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【好题】初三数学下期中第一次模拟试卷(含答案)
一、选择题
1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图不一定相似的是( )
A .
B .
C .
D .
2.用放大镜观察一个五边形时,不变的量是( )
A .各边的长度
B .各内角的度数
C .五边形的周长
D .五边形的面积
3.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x (x >0)的图象经过顶点B ,则反比例函数的表达式为( )
A .y=12x
B .y=24x
C .y=32x
D .y=40x
4.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBC
V V 的值是( )
A .
12
B .13
C .14
D .19 5.若37a b =,则b a a
-等于( ) A .34 B .43 C .73 D .37 6.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正
确的是( )
A.AB2=AC•BC B.BC2=AC•BC C.AC=51
2
-
BC D.BC=
51
2
-
AC
7.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()
A.a B.a C.a D.a
8.在△ABC中,若=0,则∠C的度数是()
A.45°B.60°C.75°D.105°
9.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()
A.2 B.3 C.4 D.5
10.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()
A.
1
2
a
-B.
1
(1)
2
a
-+C.
1
(1)
2
a
--D.
1
(3)
2
a
-+
11.若反比例函数
2
y
x
=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-
x+m的图象上,则m的取值范围是()
A.22
m>B.-22
m<C.22-22
m m
>或<
D.-2222
m
<<
12.下列变形中:
①由方程
12
5
x-
=2去分母,得x﹣12=10;
②由方程2
9
x=
9
2
两边同除以
2
9
,得x=1;
③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
53
62
x x
-+
=两边同乘以6,得12﹣x﹣5=3(x+3).
错误变形的个数是()个.
A.4B.3C.2D.1
二、填空题
13.如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.
14.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.
15.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.
16.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.
17.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么
BF的长度是______________.
18.若a
b
=
3
4
,则
a b
b
+
=__________.
19.近视眼镜的度数(y度)与镜片焦距(x米)呈反比例,其函数关系式为
120
.
y
x
=如果
近似眼镜镜片的焦距0.3
x=米,那么近视眼镜的度数y为______.
20.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.
三、解答题
21.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=320m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时.
(1)居民楼是否会受到噪音的影响?请说明理由;
(2)如果行驶的速度为72km/h,居民楼受噪音影响的时间为多少秒?
22.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.
(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).
(2)求景点C与景点D之间的距离.(结果精确到1km)
(参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,
tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,
cos75°=0.26,tan75°=3.73).
23.如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7
=,DE 2=,求EF 的长.
24.已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD ,作BF ⊥CD ,垂足为点F ,BF 与AC 交于点C ,∠BGE=∠ADE .
(1)如图1,求证:AD=CD ;
(2)如图2,BH 是△ABE 的中线,若AE=2DE ,DE=EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.
25.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900
, 求证:△ADQ ∽△QCP .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.
【详解】
正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件,故A不符合题意;锐角三角形、菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、D不符合题意;矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A符合题意;故选C.
【点睛】
本题主要考查了相似图形判定,解决本题的关键是要注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.
2.B
解析:B
【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;
∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.
∵相似三角形的面积比等于相似比的平方,∴C选项错误;
∵相似三角形的周长得比等于相似比,∴D选项错误.
故选B.
点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.3.C
解析:C
【解析】
【分析】
过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入
y=kx求出k即可.
【详解】
过A作AM⊥x轴于M,过B作BN⊥x轴于N,
则∠AMO=∠BNC=90°,
∵四边形AOCB是菱形,
∴OA=BC=AB=OC,AB∥OC,OA∥BC,
∴∠AOM=∠BCN,
∵A(3,4),
∴OM=3,AM=4,由勾股定理得:OA=5,
即OC=OA=AB=BC=5,
在△AOM 和△BCN 中
AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△AOM ≌△BCN(AAS),
∴BN=AM=4,CN=OM=3,
∴ON=5+3=8,
即B 点的坐标是(8,4),
把B 的坐标代入y=kx 得:k=32,
即y=
32x
, 故答案选C.
【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.
4.D
解析:D
【解析】
分析:根据相似三角形的性质进行解答即可.
详解:∵在平行四边形ABCD 中,
∴AE ∥CD ,
∴△EAF ∽△CDF , ∵12
EAF CDF C C V V ,= ∴
12AF DF =, ∴11123
AF BC ==+, ∵AF ∥BC ,
∴△EAF ∽△EBC , ∴2
1139
EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.
点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 5.B
解析:B
【解析】
由比例的基本性质可知a=3
7
b
,因此
b a
a
-
=
3
4
7
33
7
b b
b
-
=.
故选B. 6.D
解析:D 【解析】【分析】
根据黄金分割的定义得出
51
2
BC AC
AC AB
-
==,从而判断各选项.
【详解】
∵点C是线段AB的黄金分割点且AC>BC,
∴
51
BC AC
AC AB
-
==,即AC2=BC•AB,故A、B错误;
∴AC=51
-
AB,故C错误;
BC=51
-
AC,故D正确;
故选D.
【点睛】
本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.C
解析:C
【解析】
【分析】
【详解】
解:∵∠DAC=∠B,∠C=∠C,
∴△ACD∽△BCA,
∵AB=4,AD=2,
∴△ACD的面积:△ABC的面积为1:4,
∴△ACD的面积:△ABD的面积=1:3,
∵△ABD的面积为a,
∴△ACD的面积为a,
故选C.
【点睛】
本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.8.C
解析:C
【解析】
【分析】
根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
【详解】
由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.
9.C
解析:C
【解析】
试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.
考点:反比例函数k的几何意义.
10.D
解析:D
【解析】
【分析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣1
2
(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
11.C
解析:C
【解析】
【分析】
根据题意可知反比例函数2y x =-
的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x
=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.
【详解】 ∵反比例函数2y x =-
上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x
=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m
⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,
∵有两个不同的交点
∴220x mx -+=有两个不相等的实数根,
∴△=m 2-8>0,
∴m >
m <
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.
12.B
解析:B
【解析】
【分析】
根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.
【详解】 ①方程
125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.
③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.
④方程2﹣5362
x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.
故②③④变形错误.
故选B .
【点睛】
在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.
二、填空题
13.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为
解析:35米
【解析】
【分析】
利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.
【详解】
解:∵坡度为1:2,22
125
+=,且株距为6米,
∴株距:坡面距离=2:5
∴坡面距离=株距×5
35
=(米).
【点睛】
本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.
14.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(
解析:x≤-2或x>0
【解析】
【分析】
先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.
【详解】
把点A(m,2)代入y=,
得A(2,2),
∵点A(2,2)关于原点的对称点A’为(-2,-2),
故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.
【点睛】
此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性.
15.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何
解析:8
【解析】
由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.
点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.
16.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米
∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△
解析:5
【解析】
根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.
解:过P作PF⊥AB,交CD于E,交AB于F,如图所示
设河宽为x米.
∵AB∥CD,
∴∠PDC=∠PBF,∠PCD=∠PAB,
∴△PDC∽△PBA,
∴AB PF CD PE
=,
∴AB15x CD15
+
=,
依题意CD=20米,AB=50米,
∴
15
20
5015x
=
+
,
解得:x=22.5(米).
答:河的宽度为22.5米.
17.5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况有两种情况:①B′FC∽△ABC时B′FAB=CF/BC又因为AB=AC=8BC=10BF=BF所以解得BF=;②△B′CF∽△
解析:5或(答对一个得1分)
【解析】
根据△B′FC与△ABC相似时的对应情况,有两种情况:① B′FC∽△ABC时,B′F AB ="CF/BC" ,
又因为AB=AC=8,BC=10,B'F=BF,
所以
10
810
BF BF
-
=,
解得BF=;
②△B′CF∽△BCA时,B′F/BA ="CF/CA" ,
又因为AB=AC=8,BC=10,B'F=CF,BF=B′F,
又BF+FC=10,即2BF=10,
解得BF=5.
故BF的长度是5或.
18.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键
解析:7 4
【解析】
【分析】
由比例的性质即可解答此题.【详解】
∵
3
4
a
b
=,
∴a=3
4 b,
∴a b
b
+
=
37
44
b b b
b b
+
=,
故答案为7 4
【点睛】
此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.
19.400【解析】分析:把代入即可算出y的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单
解析:400
【解析】
分析:把0.3x =代入120y x =
,即可算出y 的值. 详解:把0.3x =代入120x
, 400y =,
故答案为400.
点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.
20.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x 由题可得:17:085=x :11解得x=22则小刚举起的手臂超出头顶的高度为
解析:5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x :1.1,解得x=2.2,
则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m
【点睛】
本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.
三、解答题
21.(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.
【解析】
【分析】
(1)作AC ⊥ON 于C ,利用含30度的直角三角形三边的关系得到AC =
12
AO =160,则点A 到MN 的距离小200,从而可判断学校会受到影响;
(2)以A 为圆心,100为半径画弧交MN 于B 、D ,如图,则AB =AD =200,利用等腰三角形的性质得BC =CD ,接下来利用勾股定理计算出BC =120,所以BD =2BC =240,然后利用速度公式计算出学校受到的影响的时间.
【详解】
(1)如图:过点A 作AC ⊥ON ,
∵∠QON =30°,OA =320米,
∴AC =160米,
∵AC <200,
∴居民楼会受到噪音的影响;
(2)以A为圆心,200m为半径作⊙A,交MN于B、D两点,
即当火车到B点时直到驶离D点,对居民楼产生噪音影响,
∵AB=200米,AC=160米,
∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,
∵72千米/小时=20米/秒,
∴影响时间应是:240÷20=12秒.
【点睛】
此题是解直角三角形的应用,主要考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
22.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.
【解析】
【详解】
解:(1)如图,过点D作DE⊥AC于点E,
过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
∴AF=1
2
AD=
1
2
×8=4,∴DF=2222
8443
AD AF
-=-=,
在Rt△ABF中BF=2222
AB AF54
-=-=3,
∴BD=DF﹣BF=43﹣3,sin∠ABF=
4
5 AF
AB
=,
在Rt△DBE中,sin∠DBE=DB
BD
,∵∠ABF=∠DBE,∴sin∠DBE=
4
5
,
∴DE=BD•sin∠DBE=4
5
×(43﹣3)=
16312
5
-
≈3.1(km),
∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,
由(1)可知sin∠DBE=4
5
=0.8,所以∠DBE=53°,
∴∠DCB=180°﹣75°﹣53°=52°,
在Rt △DCE 中,sin ∠DCE=
DB DC ,∴DC= 3.1sin 520.79
DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km . 23.5
【解析】
【分析】 利用平行线分线段成比例定理得到
AB DE AC DF
=,然后把有关数据代入计算即可. 【详解】 123l //l //l Q ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,
AB DE AC DF ∴
=, AB 4AC 7
=Q ,DE 2=, 427DF
∴=, 解得:DF 3.5=,
EF DF DE 3.52 1.5∴=-=-=.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
24.(1)证明见解析;(2)△ACD 、△ABE 、△BCE 、△BHG .
【解析】
分析:(1)由AC⊥BD、BF⊥CD 知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF 得出∠DAE=∠GCF 即可得;
(2)设DE=a ,先得出AE=2DE=2a 、EG=DE=a 、AH=HE=a 、CE=AE=2a ,据此知
S △ADC =2a 2=2S △ADE ,证△ADE≌△BGE 得BE=AE=2a ,再分别求出S △ABE 、S △ACE 、S △BHG ,从而得出答案.
详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,
∴∠ADE=∠CGF,
∵AC⊥BD、BF⊥CD,
∴∠ADE+∠DAE=∠CGF+∠GCF,
∴∠DAE=∠GCF,
∴AD=CD;
(2)设DE=a ,
则AE=2DE=2a ,EG=DE=a ,
∴S △ADE =12AE ×DE=12
×2a ×a=a 2, ∵BH 是△ABE 的中线,
∴AH=HE=a,
∵AD=CD、AC⊥BD,∴CE=AE=2a,
则S△ADC=1
2
AC•DE=
1
2
•(2a+2a)•a=2a2=2S△ADE;
在△ADE和△BGE中,
∵
AED BEG DE GE
ADE BGE ∠∠
⎧
⎪
⎨
⎪∠∠
⎩
=
=
=
,
∴△ADE≌△BGE(ASA),∴BE=AE=2a,
∴S△ABE=1
2
AE•BE=
1
2
•(2a)•2a=2a2,
S△ACE=1
2
CE•BE=
1
2
•(2a)•2a=2a2,
S△BHG=1
2
HG•BE=
1
2
•(a+a)•2a=2a2,
综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.
点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.
25.证明见解析
【解析】
试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形.
试题解析:在Rt△ADQ与Rt△QCP中,
∵∠AQP=90°,
∴∠AQP+∠PQC=90°,
又∵∠PQC+∠QPC=90°,
∴∠AQP=∠QPC,
∴Rt△ADQ∽Rt△QCP.。