成都嘉祥外国语学校八年级下期数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都嘉祥外国语学校初2019届八年级下期期末考试试题
(满分150分,120分钟完卷)
A 卷(100分)
一、选择题(每小题3分,共30分)
1.下列四个图案中,是轴对称图形,但不是中心对称图形的是 ( ) A 、
B 、
C 、
D 、 2.函数y
=+中自变量x 的取值范围是( )
3.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )
A .210<<m
B .021<<-m
C .0<m
D .2
1>m 4.已知⎩⎨⎧==21y x 是方程组⎩⎨⎧=--=+0
21by x y ax 的解,则b a +=( )
BC =3,则折痕CE = ( )
A .2 3
B .332
C . 3
D .6 7. 如图,正方形ABCD 的对角线AC ,BD 相交于点O ,D
E 平分∠ODA 交OA 于点E ,若AB=4,则线段OE 的长为( )
A .
B .4﹣2
C .
D .﹣2
8.已知一次函数y =kx +b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为
A .y = x +2 B
.y = ﹣x +2 C .y = x +2或y =﹣x +2 D . y = - x +2或y = x -2 9.某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )
A B C
D E O (第6题图)
(第7题图)
3
)
(第9题图) A .4小时 B .4.4小时 C .4.8小时
D .5小时
(第10题图) 10.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON 的值不变;(3)四边形PMON
的面积不变;(4)MN 的长不变,其中正确的个数为( )
10. A .4 B .3 C .2 D .1
二、填空题(每题4分,共16分)
11.因式分解22216)4(x x -+
12.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则kx +b >x +a >0的解集是
13.在平行四边形ABCD 中,AD=13,∠BAD 和∠ADC 的角平分线分别交BC 于E ,F ,且EF=6,则平行四边形的周长是
14.如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为 .
(第13题图) (第14题图)
三、解答题(共54分): 15.(每小题5分,共15分)
(1)计算|121|3
31)(331()2()31
(01-++-----π (2)解不等式组⎪⎩⎪⎨⎧-+≥--13214)2(3x x x x ,并写出不等式组的非负整数解。

(3)解分式方程:.4
1622222-+-+=+-x x x x x 16.(本题6分)已知211222-=-x x ,求⎪⎭
⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值. 17.(本题7分)对x ,y 定义一种新运算T ,规定:T (x ,y )=
(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=
=b ,已知T (1,1)=2.5,T (4,﹣2)=4.
(1
)求a ,b 的值;
(2)若关于m 的不等式组恰好有2个整数解,求实数P 的取值范围.
18.(本题8分)如图所示,已知△ABC 的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0),
(1)请直接写出点A 关于原点O 对称的点的坐标;
(2)将△ABC 绕坐标原点O 逆时针旋转90°,求出A′点的坐标。

(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.
19.(本题8分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
20.(本题10分)在菱形ABCD 中,∠BAD=60°.
(1)如图1,点E 为线段AB 的中点,连接DE ,CE ,若AB=4,求线段EC 的长;
(2)如图2,M 为线段AC 上一点(M 不与A ,C 重合),以AM 为边,构造如图所示等边三角形AMN ,线段MN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点,连接DQ ,MQ ,求证:DM=2DQ .
B 卷(50分)
一、填空题(每题4分,共20分)
21.(4分)已知1<x <2,711=+-x x ,则11
1---x x 的值是 . 22.已知直线y =x +(n 为正整数)与坐标轴围成的三角形的面积为S n ,则
S 1+S 2+S 3+…+S 2012= .
23.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在
点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________
(第23题图) (第24题图)
24.如图,四边形ABCD 中,5,2,900===∠=∠BC AD ABC A ,E 是边CD 的中点,连接BE 并延长与AD
25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C′处,最后按图3所示方式折叠,使点A 落在DE 的中点A′处,折痕是FG ,若原正方形纸片的边长为9cm ,则FG= cm .
二、解答题 (共30分)
26.(本题8分)某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:
(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?
(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.
(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)27.(本题10分)如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;
(2)求△BOC的面积;
(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.
①当OA=3MN时,求t的值;
②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.
28.(本题12分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D 为BC的中点,∠BAD=∠BAC=60°,于是= =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.。

相关文档
最新文档