简谐运动的能量问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张建斌:浅谈机械波传播过程中介质中质点的运动
浅谈机械波传播过程中介质中质点的运动
张建斌
摘要:人民教育出版社2007年11月版物理《选修3-4》认为:有正弦波传播的介质中的质点在做简谐运动。但笔者查阅了相关书籍后发现这一说法欠妥。本文将从平面简谐波的波动方程和介质波的能量出发,分析机械波能量在空间上的分布、随时间的变化与能量传递的实质,通过与简谐运动的对比,对新教材中关于机械波传播过程中介质中质点的运动作新的描述“简谐波是简谐运动在介质中的传播,但介质中各质点做得并非简谐运动,而是运动规律满足正弦(或余弦)图像的受迫振动”。
关键词:受迫振动简谐运动机械波能量传递
普通高中课程标准实验教科书《物理:选修3-4》(人民教育出版社2007年4月第2版)第27页“介质中有正弦波传播时,介质的质点在做简谐运动”。但简谐运动的能量在整个振动过程中是一个守恒量,简谐运动的过程是动能和势能的相互转化过程,这样做简谐运动的介质中的质点将无法实现传递能量的功能。
实际上,平面波传播时,若介质中质点按正弦(或余弦)规律运动时,叫做平面简谐波,是最基本的波动形式,一些复杂的波可视为平面简谐波的叠加。但平面简谐波传播时,介质中的质点并非简谐运动,只是其运动规律满足正弦(或余弦)规律。因为介质中每一个振动质点(体元)的动能和势能同时达到最大、同时达到最小,质点的机械能在最大值和最小值之间变化,每个质点都在不断吸收和放出能量的过程中实现能量的传递。本文主要阐述机械波的能量及其传递,并尝试对新教材中关于机械波传播过程中介质中质点的运动谈一点自己的看法。
一、波动方程
设一列平面简谐波沿轴正向传播,波源点的振动方程为,在轴上任意点的振动比点滞后(是振动状态传播的速度、即波速),即当点相位为时,点相位为,因此点的振动方程为,这就是平面简谐波方程,它可以描述平面简谐波在传播方向上任意点的振动规律。
二、介质中波的能量分布
一列波在弹性介质中传播时,各体元都在平衡位置附近振动,所以具有动能;同时,各体元发生形变,又有弹性势能。现以简谐横波为例,研究某体元的动能、势能和总能的变化规律。
1、动能
在有简谐横波传播的介质中,取一微元,根据平面简谐波方程可得到其振动速度
设介质密度为,微元体积为,则该体元的动能为
2、形变势能
我们选取的介质中的微元同时受到相邻的微元的作用而发生剪切形变(即在力偶作用下,两平行截面发生相对移动的形变),如图1所示,若设表示假想截面的面积,且在该面上均匀分布,则剪应力。同时,我们用平行截面间相对滑动位移与截面垂直距离之比描述剪切形变,称为剪切应变。由图1:,称为切变角。则可由剪切形变的胡克定律得:在形变范围内(为剪切模量,反映材料抵抗剪切应变的能力),且单位体积剪切形变的弹性势能为。
对于传播横波的介质中的微元而言,其剪切形变简化为如图2所示,。所以选取的微元的形变势能为
3、总能
弹性介质中横波的波动方程可写为:
对偏导运算可得:
所以弹性介质中横波的波速为:(波速由介质决定)
则形变势能为:
即波动中某一微元的动能和势能具有相同的数值,它们同时达到最大和最小。微元的总能等于两者之和,即。
实际中,常用能量密度:
也是时间和空间坐标的函数,体现出波的能量在时间和空间上的周期性。
三、机械波能量及其传递的高中教学
基于高中学生的数学基础,我们在进行这部分内容教学时,应切合学生实际,从学生已有知识基础和能力水平去构建新的知识体系。笔者在实际辅导教学中先让学生回顾弹簧拉伸形变和形变势能,然后简单介绍剪切形变和剪切形变势能。接着如下过程:
1、机械波能量在空间上的分布
机械波在传播过程中,某时刻介质中某处质点的动能决定于该处质点的振动速度的大小,而势能决定于该处介质的形变(即剪切形变)的大小。
图3所示为一列沿弹性绳传播的简谐横波,我们分别在位于平衡位置的B和位于最大位移的A、C处,取相同长度的媒质微元来讨论。
可以看出B处质点的振动速度最大,同时该处绳子的形变也最大,因此该处质点的动能和势能为最大,其总能量也就最大。而对于A、C两处的质点,此时它们的振动速度为零,且该处绳子的形变也趋于零,因此该处质点的动能和势能都为零,即总能量也就最小(为零),而A、B之间、B、C之间的质点的能量就介于最大和零之间。可见,同一时刻介质中各处的能量分布并不相同,在波峰和波谷处质点的能量最小(为零),而在平衡位置处质点的能量最大。质点离平衡位置越近,能量就越大,即能量在波的传播方向上呈现周期性的分布,随着波形的向前传播,这种能量分布的状态也以波的传播速度向前传递。
2、机械波能量随时间的变化
弹簧振子和单摆做自由的简谐运动时,只有振动系统内部的动能和势能的转化,系统的总能量是守恒的,这表明振动系统不与外界交换能量,可认为是一个“保守系统”;那么在简谐波的传播过程中,每一质点的运动规律与简谐运动相同,那么每一质点的能量是否也守恒呢? 如图4所示,随着波向前传播,经过周期后,B处质点到达了波峰,动能和势能都从最大减少到零,而A、C处质点回到平衡位置,动能和势能都变为最大。可见每一质点的总能量会随时间作周期性变化,是不守恒的。这表明每一介质质点通过振动不断地从前一质点吸收能量而又不断地向后一质点释放能量,从而把振动的能量传播出去。
3、机械波能量传递的实质
图5所示为一列沿绳子向右传播的简谐横波在某一时刻的波形图。A、B、C为绳子上三个相邻的质点,设波是由A传向B,再传向C的,则B质点的振动是由于A质点的振动使绳子发生形变而产生的弹力F带动的,这个弹力对A做负功而对B做正功,使A质点不断释放能量,而使B质点不断吸收能量,使能量从A传递给B。同理B质点又不断地向C质点传递能量。但每一质点在任一小段时间内,从前一质点吸收的能量并不等于向后一质点释放的能量,如图5中的质点B,由于两侧介质的形变大小不同,两侧质点A、C对它的弹力也就不同,左侧形变小、弹力小,右侧形变大、弹力大,因此在这一时刻附近的一小段时间内A对B 做的正功小于B克服C做的功,也就是说B从A吸收的能量小于B向C释放的能量。因而B 向上离开平衡位置的过程中总能量是减少的。同理,在B返回平衡位置的过程中总能量又是增加的,这样通过介质之间的相互作用力做功,便每一质点周期性的积累能量和释放能量,实现了能量随波的传递。
综上所述,机械波在传播过程中,每一时刻介质中各处的能量(即能量密度)在波的传播方向上呈现周期性的分布,是不均匀的,而每一质点的能量也是随时间周期性变化的,是不守恒