北邮2016电磁场与电磁波实验报告
电磁场与电磁波实验报告
电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
北邮电磁场与电磁波实验一
实验一:电磁波反射折射实验一、实验目的1、熟悉S426型分光仪的使用方法2、掌握分光仪验证电磁波反射定律的方法3、掌握分光仪验证电磁波折射定律的方法二、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
电磁波斜入射到两种不同媒介分界面上时会发生发射和折射现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。
将分界面的法线与入射波构成的平面定义为入射面,入射波与界面法线的夹角定义为入射角,反射波与界面法线的夹角定义为反射角,折射波与界面的法线的夹角定义为折射角。
电场E垂直于入射面的电磁波为垂直极化波。
垂直极化波的反射系数和折射系数:R⫠=η2cosθ−η1cosθ‘’η2cosθ+η1cosθ‘’T⫠=2η2cosθη2cosθ+η1cosθ‘’式中:η1=√μ1ε1η2=√μ2ε2三、实验内容与步骤1.熟悉分光仪的结构和调整方法2.连接仪器,调整系统如图1所示,仪器连接时,两喇叭口面应互相正对,它们各自的轴线应在一条直线上。
指示两喇叭位置的指针分别指于工作平台的900刻度处,将支座放在工作平台上,并利用Figure 1反射实验仪器的布置平台上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
3.测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。
而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致。
这时小平台上的00刻度就与金属板的法线方向一致。
转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。
电磁场与电磁波实验报告
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
北邮电磁场实验报告
北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。
为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。
本报告将详细介绍我们在北邮进行的电磁场实验及其结果。
实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。
实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。
此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。
实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。
实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。
当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。
实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。
实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。
根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。
此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。
实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。
实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。
此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。
结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。
我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。
这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。
同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。
电磁场与电磁波实验报告
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场;点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204qE r r πε= r 是单位向量 1-1真空中点电荷产生的电位为04qr ϕπε= 1-2其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014ni n i i i q E E E E r r πε==+++=∑ i r 是单位向量1-3 电位为121014ni n i i q r ϕϕϕϕπε==+++=∑ 1-4 本章模拟的就是基本的电位图形;4.实验内容及步骤1 点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图;程序1:负点电荷电场示意图clearx,y=meshgrid-10:1.2:10;E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;E=-q./m1.r;surfcx,y,E;负点电荷电势示意图clearx,y=meshgrid-10:1.2:10; E0=8.85e-12;q=1.610^-19;r=;r=sqrtx.^2+y.^2+1.010^-10m=4piE0r;m1=4piE0r.^2;z=-q./m1surfcx,y,z;xlabel'x','fontsize',16ylabel'y','fontsize',16title'负点电荷电势示意图','fontsize',10程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;Z=qk1./R2-1./R1;ex,ey=gradient-Z;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminZ,maxmaxZ,40; contourX,Y,Z,cv,'k-';hold onquiverX,Y,ex,ey,0.7;clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; X,Y=meshgridx,y;R1=sqrtX+1.^2+Y.^2+1.010^-10;R2=sqrtX-1.^2+Y.^2+1.010^-10;U=qk1./R2-1./R1;ex,ey=gradient-U;ae=sqrtex.^2+ey.^2;ex=ex./ae;ey=ey./ae; cv=linspaceminminU,maxmaxU,40; surfcx,y,U;实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念;2.实验仪器计算机一台3.基本原理电场的大小和方向均不随时间变化的场称为恒定电场,如直流导线,虽说电荷在导线内运动,但电场不随时间变化而变化,所以,直流导线形成的电场是恒定电场;对于恒定电场,我们可以假设其为静电场,假设有静止不动的分布在空间中的电量q产生了这一电场;通过一些边界条件等确定自己所需要的变量,然后用静电场的方法来求解问题;4.实验内容及步骤1高压直流电线表面的电场分布仿真题目:假设两条高压导线分别是正负电流,线间距2m,线直径0.04m,电流300A,两条线电压正负110kV,求表面电场分布;程序clearx,y=meshgrid -2:0.1:2; r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx -1.^2+y.^2+0.14; k=100/log1/0.02; E=k1./r1-1./r2; surfcx,y,E;xlabel'x','fontsize',16 ylabel'y','fontsize',16 title'E','fontsize',10 RR D=2m X Y P 图2-1高压直流电线示意图 R2 R1clearx,y=meshgrid-2:0.1:2;r1=sqrtx+1.^2+y.^2+0.14; r2=sqrtx-1.^2+y.^2+0.14; k=100/log1/0.02;m=log10r2./r1;U=km;surfcx,y,U;xlabel'x','fontsize',16 ylabel'y','fontsize',16title'U','fontsize',10实验三 恒定磁场的仿真1.实验目的建立恒定磁场中磁场空间分布的直观概念;2.实验仪器计算机一台3.基本原理磁场的大小和方向均不随时间变化的场,称为恒定磁场; 线电流i 产生的磁场为:024IdldB r μπ=说明了电流和磁场之间的关系,运动的电荷能够产生磁场;4.实验内容及步骤圆环电流周围引起的磁场分布仿真题目:一个半径为0.35的电流大小为1A 的圆环,求它的磁场分布;分析:求载流圆环周围的磁场分布,可以用毕奥—萨伐尔定律给出的数值积分公式进行计算:图3-1载流圆环示意图程序 clear x=-10:0.5:10; u0=4pi10^-7; R=0.35;I=1;B=u0IR.^2./2./R.^2+x.^2.^3/2; plotx,B;RrpxdB实验四电磁波的反射与折射1.实验目的1熟悉相关实验仪器的特性和使用方法2掌握电磁波在良好导体表面的反射规律2.实验仪器DH1211型3厘米信号源1台、可变衰减器、频率调节器、电流指示器、喇叭天线、金属导体板1块、支座一台;3.基本原理电磁波在传播过程中如遇到障碍物,必定要发生反射;当电磁波入射到良好导体近似认为理想导体平板上时将发生全反射;电磁波入射到良好导体近似认为理想导体平板时,分为垂直入射和以一定角度入射称为斜入射;如图4-1所示;入射线与分界面法线的夹角为入射角,反射线与分界面法线的夹角为反射角;垂直入射斜入射入射角0°、反射角0°入射角45°、反射角45°图4-1用一块金属板作为障碍物,测量当电波以某一入射角投射到此金属板上的反射角,验证电磁波的反射规律:1电磁波入射到良好导体近似认为理想导体平板上时将发生全反射; 2入射角等于反射角;4.实验内容及步骤1熟悉仪器的特性和使用方法 2连接仪器,调整系统3测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致;而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致;这时小平台上的00刻度就与金属板的法线方向一致;转动小平台,使固定臂指针指在某一角度处,这一角度的读数就是入射角,然后转动活动臂在表头上找到一个最大指示,此时活动臂上的指针所指的刻度就是反射角;支座 喇叭天线金属导体铝板频率调节器DH1121B 3厘米信号源可变衰减器电流指示器检波器活动臂。
电磁场与电磁波实验报告
电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
北邮电磁场与微波实验报告
信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:姓名:学号:日期:2016.5.18实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。
因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。
常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。
支节匹配器分单支节、双支节和三支节匹配。
这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
此电纳或电抗元件常用一终端短路或开路段构成。
2. 微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。
微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。
三、实验内容已知:输入阻抗Zin=75Ω负载阻抗Zl=(64+j75)Ω特性阻抗Z0=75Ω介质基片面性εr=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=λ/4,两分支线之间的距离为d2=λ/8。
画出几种可能的电路图并且比较输入端反射系数幅值从1.8GHz至2.2GHz的变化。
四、实验步骤1.建立新项目,确定项目频率,步骤同实验1的1-3步。
2.将归一化输入阻抗和负载阻抗所在位置分别标在Y-Smith导纳图上,步骤类似实验1的4-6步。
3.设计单支节匹配网络,在圆图上确定分支z与负载的距离d以及分支线的长度1,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。
北京邮电大学电磁场实验报告室外
电磁场与电磁波测量实验报告无线信号场强特性的研究实验姓名学号班级班内序号伊迪2013211047 209 01沃子尧2013211048 209 02刘博闻2013211049 209 032016年03月25日1 实验目的1、通过实地测量校园内室内外的无线电信号场强值,掌握室内外电波传播的规律。
2、熟悉并掌握无线电中的传输损耗,路径损耗,穿透损耗,衰弱等概念。
3、熟练使用无线电场强仪测试空间电场的方法。
4、学会对大量数据进行统计分析,得到相关传播模型。
2 实验设备HF-4040场强仪。
3 实验原理3.1 电波传播方式电磁场在空间中的传输方式主要有反射,绕射,散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体,且这些物体的分布比较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其他不规则物体、树叶、街道、标志、灯柱。
3.2 无线信道中信号衰减无线信道中的信号衰减分为衰弱,路径损耗,建筑物穿透损耗。
此外还有很多路径传播的影响.1、移动环境下电波的衰弱包括快衰弱和慢衰弱(也叫慢衰弱),快衰弱的典型分布为Rayleigh分布和Rician分布;阴影衰弱的典型分布为正态分布。
快速衰弱和满衰弱两者构成移动通信系统中接受信号不稳定因素。
2、路径损耗:测量发射机和接收机之间信号的平均衰弱。
即定义为有效发射功率(Pt)和平均接收功率(Pr)之差(dB)。
距离是决定路径损耗大小的首要因素;除此之外,还与接收点的电波传播条件密切相关。
根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,对任意的传输距离,大尺度平局路径损耗表示为:P̅L(d)[dB]=P̅L(d0)+10n log(d∕d0)即平均接收功率为:P̅r(d)[dBm]=P t[dBm]− P̅L(d0)−10n log(d∕d0)= P̅t(d0)[dBm]+10n log(d∕d0)其中n为路径损耗指数,表明路径损耗随距离增长的速度;d0为近地参考距离;为发射机与接收机之间的距离。
电磁场与电磁波实验报告
电磁场与电磁波实验报告班级:学号:姓名:实验一:验证电磁波的反射和折射定律1学时1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律;1研究电磁波在良好导体表面上的全反射;2研究电磁波在良好介质表面上的反射和折射;3研究电磁波全反射和全折射的条件;2、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角;3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验;1、实验目的1研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面出现的衍射波强度不是均匀的,中央最强;2研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源;由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度;两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;当然电磁波通过每个缝也有狭缝现象;因此实验将是衍射和干涉两者结合的结果;为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°;因此取较大的b,则干涉强受单缝衍射影响大;干涉加强的角度为:干涉减弱的角度为:3、实验结果图2.1 单缝衍射的I-α曲线图2.2双缝干涉的I-α曲线实验三:布朗格衍射的实验1、实验目的本实验是仿造X射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替X射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件;这个条件就是布拉格方程;1掌握100面,110面点阵的反射波产生干涉的条件,得出布拉格方程;2了解直线极化和圆极化波特性参数的测试方法;2、实验原理任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关;晶体内的离子、原子或分子占据着点阵的结构, 两相邻结点的距离叫晶体的晶格常数;真实晶体的晶格常数约在10−8厘米的数量级,X 射线的波长与晶体的常数属于同一数量级,实际上晶体是起着衍射光栅的作用,因此可以利用 X 射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构得了解;本实验是仿造 X 射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替 X 射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件,这个条件就是布拉格方程;它是这样说的,当波长为入的平面波射到间距为α的晶面上,入射角为Θ°,当满足条件时n为整数发生衍射;衍射线在所考虑的晶面反射线方向;在布拉格衍射实验中采用入射线与晶面的夹角即通称的入射角,是为了在实验时方便,因为当被研究晶面的法线与分光仪上度盘的 0 度刻度一致时,入射线与反射线的方向在度盘上有相同的示数,不容易搞错,操作方便;3、实验结果图3.1 布拉格衍射I-θ关系曲线由实验数据可得,两侧发生衍射的角度大约在34°和65°附近;根据布拉格方程nλ=2aCOSθ,将λ=32mm,a=40mm代入得:当n=1时,θ=66.42°;当n=2时,θ=36.87°.实验测得数据与理论计算值比较接近,可验证布拉格方程;69°附近产生的峰值可能是由其他实验组影响造成的,不计入考虑;实验四:均匀无损耗媒质参量的测量2学时1、实验目的了解电磁波在真空中传播特性和相干原理;1在学习均匀平面电磁波的基础上,观察电磁波传播特性,E、H、S互相垂直;2推导相干波理论数学模型,自行调节测量仪器,测量基本参量;3测定自由空间内电磁波波长λ、频率f,并确定电磁波的相位常数β和波速υη的测量;4了解电磁波的其他参量,如波阻抗5利用相干波接点位移法推导测量均匀无损耗媒质参量的ε和μ的数学模型6了解均匀无损耗媒质参量λ、β、的差别7熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性;2、实验原理迈克尔逊干涉试验的基本原理见下图 13 所示:在平面波前进的方向上放置一个成45°的半透射板,由于该板的作用,将入射波分成两束波:一束由于反射向 A 方向传播;另一束透过半透射板向B 方向传播;由于A﹑B 处全反射板的作用,两列波就再次回到半透射板并到达接收喇叭处,于是接收喇叭收到两束同频率且振动方向一致的两个波;如果这两个波的位相差为2π的整数倍,则干涉加强;当相位差为π的奇数倍则干涉减弱;因此在 A 处放一固定板,让 B 处的反射板移动,当表头指示从一次极小变到又一次极小时,则 B 处的反射板就移动λ⁄2的距离,因此有这个距离就可求得平面波的波长;3、实验结果()()mm 32.341-443.5-91.5621n 0L -3L 2=⨯=-⨯=λ实验五:利用微波衰减测量湿度、厚度2学时1、实验目的学习介质特性参量:相移常数和衰减常数的测量方法,自行推导出介质厚度和湿度的数学模型,设计实验方法;1了解被测量的物质所用波为TEM 波,TEM 波产生的条件; 2相移常数和衰减常数测量方法; 3湿度、厚度测量方法 4信号处理方法 2、实验原理同迈克尔干涉实验原理 3、实验结果491.5602.5592.4067.4172.2357.2643.532.13-+-+-+-=91.2=n33221100L L L L L L L L L -'+-'+-'+-'=∆()()mm80.271-432.13-2.05521n 0-32ˊ=⨯=-''⨯'L L λ()d L /1/∆+= λλ()d /91.21/32.3480.27+=mmd 6.12≈。
电磁场与电磁波实验报告
电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。
一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。
二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。
三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。
电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。
四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。
同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。
通
过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。
综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。
北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量
电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。
选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。
2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。
北邮电磁场与电磁波实验天线部分实验报告一
电磁场与微波实验天线部分实验报告班级:2011211104姓名:序号:学号:指导老师:陈文成实验二网络分析仪测试八木天线方向图一.实验目的1. 掌握网络分析仪辅助测试方法;2. 学习测量八木天线方向图方法;3. 研究在不同频率下的八木天线方向图特性。
注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;二.实验原理:实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可)引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。
此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。
反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。
发射状态作用过程亦然。
三.实验步骤:1. 调整分析仪到轨迹(方向图)模式;2. 调整云台起点位置270°;3. 寻找归一化点(最大值点);4. 旋转云台一周并读取图形参数;5. 坐标变换、变换频率(f=600Mhz、900MHz、1200MHz),分析八木天线方向图特性;四.实验测量及数据1.频率为600MHz:(1)测量图(百分比):(2)测量数据:网络分析仪测得最大值:36.8最大值点:最大值对称:方位幅度方位(Max) 幅度(Max) 宽度(3db)279度 1 274度 1 95度方位幅度方位(Max) 幅度(Max) 宽度(3db)99度 1 274度 1 95度半功率点(1):半功率点(2):零点(1):零点(2):2.频率为900MHz: (1)测量图(百分比):方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 36度 0.497274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 176度 0.499274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 38度 0.405274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 183度 0.407274度195度(2)测量数据:网络分析仪测得最大值:100.2最大值点:最大值对称:半功率点(1):半功率点(2):零点(1):零点(2):2.频率为1200MHz: (1)测量图(百分比):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 75度0.99319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 255度0.27319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 2度0.49019度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 133度0.49919度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 327度0.16119度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 162度0.01619度1117度(2)测量数据:网络分析仪测得最大值:37.8最大值点:最大值对称:半功率点(1):半功率点(2):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 295度1270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 115度0.706270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 14度0.448270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 198度0.510270度198度零点(1):零点(2):五.实验结果分析:实验数据对比:由以上实验数据及对比可以看出:900MHz 时的天线主瓣宽度较大,侧瓣和后瓣均很小,而600MHz 和1200MHz 时的天线的方向性很不明显,后瓣和侧瓣很大。
北京邮电大学_电磁场与电磁波实验微波接收系统的测量
北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:报告撰写人:微波收发机的系统调测微波TV收系统的基本原理一、实验原理基本无线通信系统一般由发信机、收信机及其天线(含馈线)构成。
如图1所示。
天馈信源信宿图1 无线通信系统的组成1.发信机发信机的主要作用是将需要传输的信源信号进行处理并发送出去。
首先通过调制器用信源信号对高频正弦载波进行调制形成中频已调制载波,中频已调制载波经过变频器和滤波器转换成射频已调制载波,射频已调制载波送至射频放大器进行功率放大,最后送至发射天线,转换成辐射形式的电磁波发射到空间。
一个典型的无线发信机的组成框图,如图2所示。
图2 无线发信机的组成框图2.收信机收信机的主要作用是将天线接收下来的射频载波还原成要传输的信源信号。
收信机的工作过程实际上是发信机的逆过程,首先对来自接收天线的射频载波信号进行低噪声放大,然后经过下变频器、中频滤波器中频放大器变换称为满足解调电平要求的中频已调制载波,最后经过解调器还原出原始的信源信号。
一个典型的无线收信机的组成框图,如图3所示。
输出信号图3 无线收信机的组成框图3.天线天线是无线通信系统不可缺少的重要组成部分之一。
天线的主要作用是把发信机送来的射频载波变换成空间电磁波并辐射出去(发射端)或者把收到的空间电磁波变换成射频载波并送给收信机(接收端)。
本实验将对使用的额微波收发系统(SD3200)微波电路实验训练系统的各个参数进行测量,实验者能完整、透彻的了解微波射频系统,掌握微波收发系统的基础知识。
SD3200R/T微波TV收发系统由发射机系统和接收机系统两个试验箱组成。
该微波TV收发系统是一套工作在900MHz微波频段的无线通信实训系统,可以进行图像和话音业务的无线传输实验,同时可以进行滤波器,放大器,滤波放大器等电路的相关实验。
微波TV收发系统主要由TV发射机系统和TV 接收机系统两部分组成。
微波发射机和接收机组成方框图如下图所示微波TV收发系统可以提供6个无线信道,信道间隔8MHz,频率设置如二、实验内容及步骤1、发射机的输出频谱测量(1)连接测试系统(频谱分析仪街道功率放大器的输出端)。
北邮电磁场与电磁波测量实验报告5-信号源-波导波长
北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号目录一、实验目的 (2)二、实验内容 (2)三、实验原理 (5)四、实验步骤 (5)1、实验对象选取 (5)2、数据采集 (5)五、实验数据 (2)1、原始数据录入 (7)2、数据处理流程 (7)六、实验结果与分析 (8)1、主楼周边电磁场信号强度分析82、主楼室内不同楼层楼道信号强度分析11七、问题分析与解决 (15)1、Matlab 仿真问题研究与解决 (23)2、场强分布的研究 (23)3、模型拟合........................................................ . (24)八、分工安排及心得体会 (25)附录I:原始数据 (26)附录II:源代码 (30)一.实验目的1.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;2.通过实地测量,分析建筑物穿透损耗随频率的变化关系;3.研究建筑物穿透损耗与建筑材料的关系。
4.掌握在移动环境下阴影衰落的概念以及正确测试方法。
二.实验内容利用DS1131场强仪和拉杆天线,实地测量信号场强。
1.研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何;2.研究在校园内电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何;3.研究建筑物穿透损耗的变化规律三.实验原理无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。
因此,基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。
【阴影衰落】阴影衰落是电磁波在空间传播时受到地形起伏、高达建筑物群的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起信号衰减。
阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落,其特点是衰落与无线电传播地形和地物的分布、高度有关。
在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。
在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,因此接收功率不同,这样就会观察到衰落现象。
在阴影衰落的情况下,移动台被建筑物遮挡,它所收到的信号是各种绕射、反射、散射波的合成。
阴影衰落一般表示为电波传播距离r 的m 次幂与阴影损耗的正态对数分量的乘积。
移动用户和基站之间的距离为r 时,传播路径损耗和阴影衰落可以表示为:00()[]()[]()[]10log(/)r r r P d dBm P d dBm X P d dBm n d d X σσ=+=-+ 其中,X σ为0均值的高斯分布随机变量,单位为dB ,标准偏差为σ,单位也dB 。
对数正态分布描述了在传播路径上,具有相同的T-R 距离时,不同的随机阴影效应。
这样利用高斯分布可以方便的分析阴影的随机效应。
它的概率密度函数是:22()()2x m f x σ-- 应用于阴影衰落时,上式中的x 表示某一次测量得到的接受功率,m 表示以dB 表示的接收功率的均值或中值,σ表示接收功率的标准差,单位为dB 。
阴影衰落的标准差同地形、建筑物类型、建筑物密度等有关,在市区的150MHz 频段其典型值是5dB 。
【大尺度路径衰落】大尺度衰落是由移动通信信道路径上的固定障碍物(建筑物、山丘、树林等)的阴影引起的,衰落特性一般服从d律,平均信号衰落和关于平均衰落的变化具有对数正态分布的特征。
利用不同测试环境下的移动通信信道的衰落中值计算公式,可以计算移动通信系统的业务覆盖区域。
实际上,大尺度衰落)(t ς不仅与时间有关,还与距离和载波频率有关。
为了表达方便,上式中省略了距离因子d 和载频c f 。
基于理论和测试的传播模型指出,无论室内还是室外信道,平均接收信号功距离的对数而衰减。
n d d d t )(),(0∝ς (2.2)或 )log(10])[,(])[,(00d d n dB d t dB d t +=ςς(2.3)式中,n 为路径损耗指数,表明路径损耗随距离增长的速率;0d 是近地参考距离,由测试决定;d 为发射机和接收机距离。
在自由空间传播时,n 为2,当有障碍物时,n 变大。
在移动通信系统中,路径损耗是影响通信质量的一个重要因素。
大尺度平均路径损耗:用于测量发射机和接收机之间信号的平均衰落,定义为有效发射功率和平均接受功率之间的(dB )差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。
对任意的传播距离,大尺度平均路径损耗表示为:()[]()()010log /0PL d dB PL d n d d =+即平均接收功率为:0000()[][]()10log(/)()[]10log(/)r t r P d dBm P dBm PL d n d d P d dBm n d d =--=- 其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;0d 为近地参考距离;d 为发射机与接收机()T R -之间的距离。
测试表明,对于任意d ,特定位置的路径损耗),(d t ς又服从随机正态分布,对数正态分布描述了在传播路径上,具有相同距离时,不同的随机阴影效应。
这种现象叫对数正态阴影。
决定路径损耗大小的首要因素是距离,此外,它还与接收点的电波传播条件密切相关。
为此,我们引进路径损耗中值的概念。
中值是使实测数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。
人们根据不同的地形地貌条件,归纳总结出各种电波传播模型。
1.自由空间模型 2.布灵顿模型 3.EgLi 模型 4. Hata-Okumura 模型【建筑物的穿透损耗】1. 定义建筑物的穿透损耗大小对于研究室内无线信道具有重要意义。
穿透损耗又称大楼效应,一般指建筑物一楼内的中值电场强度和室外附近街道上中值电场强度之差。
发射机位于室外,接收机位于室内,电波从室外进入到室内,产生建筑物的穿透损耗,由于建筑物存在屏蔽和吸收作用,室内场强一定小于室外的场强,造成传输损耗。
室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去在同一位置室内测量的信号平均场强,用公式表示为:()()1111N M outside inside i j i j P P P N M==∆=-∑∑ P ∆是穿透损耗,单位dB ,j P 是在室内所测的每一点的功率,单位dB v μ,共M 个点,i P 是在室外所测的每一点的功率,单位dB v μ,共N 个点。
电磁波透射墙体示意图2.影响因素无线信号对透射能力是频率及高度的函数,天线对信号透射也有非常重要的影响。
以室外发射机的天线高度远小于建筑物本身高度考虑,在测试中显示,随着频率的增加透射损耗(净穿透损耗)减小。
例如下表数据:(卢东如2014.楼宇信号强度及穿透损耗研究) 地点(状态) 频率(MHz ) 透射损耗(dB )建筑物底层(第一组44116.4透射损耗即净穿透损耗是指不考虑绕射等因素综合影响,墙体和玻璃等物体的穿透损耗,在绕射和反射等几乎没有或不明显的环境下测量得到的,近似穿透损耗。
3.不同建筑材料各类墙体净穿透损耗:(卢东如 2014.楼宇信号强度及穿透损耗研究)钢筋混凝土类建筑贯穿损耗中值:数据自(通信人家园论坛|中国第一通信社区)由于我国的城市环境与国外有很大的不同,贯穿中值一般比国外同类名称高8-10dB。
四.实验步骤1. 实验对象选取这次实验数据采集地点我们选择了主楼(图),主要测量三个部分的信号强度:1.靠近主楼测量其周边一圈信号强度,由西北角开始顺时针绕主楼测量(图)。
测量时分为东南西北四个方向,其中东西侧较长,南北侧较短,近似为一个矩形;2.测量1,2,4,6,10,13楼室内信号强度,由西北角开始顺时针绕室内走廊测量,记录特殊结构造成的信号强度波动。
由于主楼每层建筑结构大致相同,变量单一便于对比不同楼层高度对信号强度的影响;3.测量电梯内部信号强度,电梯从上而下运行过程中记录测量数据。
北邮主楼卫星图北邮主楼3D指示图同时,经过查证,电视信号发射塔位于测量地点的西南方向约6.5公里处(图)。
信号发射塔方位图在选频方面,频点选用的是低频190.758MHz(CH8,中央2套伴音频道频点),因为这个频点信号接收很好,且本班另一测量小组将在教二室内测量相同频点的信号强度,我们两组将进行钢筋混泥土建筑结构和砖石建筑结构的对比。
2. 数据采集本组频点选择:190.758MHz(CH8,中央2套伴音频道频点),利用场强仪DS1131测量无线信号的强度(单位dBmW),估测频点相应半波长伟0.78米,每走1步约为0.8米(恰好为楼道地砖2格)读一次数并进行信号电平记录。
共测量的近1000组数据进行分析比较,分别是主楼外北侧、东侧、南侧、西侧以及主楼一层、二层、四层、六层、十层、十三层,电梯内部。
在测量建筑物外的信号强度时,采用自西北角起顺时针方向围绕该建筑物一周的测量方法。
在测量室内信号时,采用自西北角起顺时针方向围绕该楼层楼道一周的测量方法。
(图)。
测量当天天气情况:多云转晴、微风。
场强仪倾斜45°使用,天线仅拔出第一节。
主楼内部结构示意图五.实验数据1.原始数据录入将测量得到的数据录入Excel表格,分别以东、南、西、北以及各个楼层方向为单独的sheet,便于数据处理时进行MATLAB的数导入和获取。
记录时间、地点、电平值的同时记录测量时周围的可能影响电平值因素,便于后期数据分析(表)。
数据记录表格原始实验数据见附件2. 数据处理流程采集到的数据有近1000组,需要对数据进行细致的处理以便得到明确的结论。
下图所示为数据处理的流程图:3.数据处理MATLAB关键语句本次实验数据的处理主要利用EXCEL和MATLAB两个软件完成,其中MATLAB中的关键处理语句主要分为以下几个部分:1.原始数据读入MATLABdata=xlsread('data.xlsx',10);Data=data'; %将数据转置为行向量Data=-1.*Data;L=length(Data); %数据长度功能:录入数据,行列转置后各数据取相反数并计算数据个数。
2.作信号强度散点图x=(1:1:L);plot(x,Data,'Linewidth',1.3, 'Color',[0.3,0.3,1]);meandata=mean(Data);hold on;plot(x,meandata,'r.', 'Color',[1,0.4,0.6]);功能:根据原始数据作出各信号强度的散点分布和平均值曲线。