八年级数学上册全等三角形检测题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全等三角形检测题(Word 版 含答案) 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.
【答案】5(0,5),(0,4),0,
4⎛⎫ ⎪⎝⎭
【解析】
【分析】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.
【详解】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;
∴D (0,5);
②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,
∴P (0,4);
③作OA 的垂直平分线交y 轴于C ,则AC =OC ,
由勾股定理得:OC =AC =()2212OC +-,
∴OC =54
, ∴C (0,54
); 故答案为:5(0,5),(0,4),0,
4⎛
⎫ ⎪⎝⎭.
【点睛】
本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.
2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.
【答案】10
【解析】
【分析】
由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.
【详解】
解:∵BC CD =,∴∠CBD =∠CDB ,
∵BD 平分ADC ∠,∴∠ADB =∠CDB ,
∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,
∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,
∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,
∴CA=CD ,∴CB=CA=CD ,
过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152
DE BD ==,12
BCF ACB ∠=∠, ∵12BDC ADC ∠=
∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,
∴△BCF ≌△CDE (AAS ),∴CF=DE =5,
∴11451022
ABC S AB CF =⋅=⨯⨯=. 故答案为:10.
【点睛】
本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.
3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
【答案】10
【解析】
利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.
故答案为10.
4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;
②点O 到ABC ∆各边的距离相等;③1902
BOC A ∠=+∠;④设OD m =,
AE AF n +=,则AEF S mn ∆=;⑤1()2
AD AB AC BC =+-.其中正确的结论是.__________.
【答案】①②③⑤
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得
④设OD =m ,AE +AF =n ,则S △AEF =
12
mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.
【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =
12
∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12
∠A ;故③正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,
∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12
mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;
∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;
同理可证:BM =BN ,CD =CN .
∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =
12
(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.
【点睛】
本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
5.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.
【答案】7
【解析】
【分析】
由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.
【详解】
解:如图,连接AC 交BD 于点O
∵AB AD =,BC DC =,60A ∠=︒,
∴AC 垂直平分BD ,ABD △是等边三角形
∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==
∵CE AB ∥
∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒
∴30DAO ACE ∠=∠=︒
∴6AE CE ==
∴2DE AD AE =-=
∵60CED ADB ∠=∠=︒
∴EDF 是等边三角形
∴2DE EF DF ===
∴4CF CE EF =-=,2OF OD DF =-=
∴2223OC CF OF =-=
∴2227BC BO OC =
+=
【点睛】
本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.
6.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
【答案】8
【解析】
【分析】
分别以A、B点为圆心,AB为半径作圆,找到格点即可(A、B、C共线除外);此外加上在AB的垂直平分线上有两个格点,即可得到答案.
【详解】
解:以A点为圆心,AB为半径作圆,找到格点即可,(A、B、C共线除外);以B点为圆心,AB为半径作圆,在⊙B上的格点为C点;在AB的垂直平分线上有两个格点.故使△ABC是等腰三角形的格点C有8个.
【点睛】
本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.
7.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分
线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=4
3
,则DH=______.
【答案】2 3
【解析】
连接AF.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=∠BAC=60°.
∵DE=DC,∠EDC=30°
,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,
∴∠ABF=∠CBF.
在△ABF和△CBF中,
AB BC
ABF CBF BF BF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABF≌△CBF,
∴AF=CF,
∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,
∴AH=1
2
AF=
1
2
CF=
2
3
.
∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,
∴DH=AH=2 3 .
故答案为2 3 .
点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.
8.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.
34
【解析】
【分析】
如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=
C ′P ,DM =
D ′M ,∠C ′OD =′COD =∠COD ′=45°,于是得到CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,于是得到结论.
【详解】
解:如图,作点C 关于OB 的对称点C ′,作点D 关于OA 的对称点D ′,连接OC ′,PC ′,D ′M ,OD ′,C ′D ′,
则OC ′=OC =2,OD ′=OD =32,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°,
∴CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,
当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,
作C ′T ⊥D ′O 于点T ,
则C ′T =OT =2,
∴D ′T =42,
∴C ′D ′=34,
∴CP +PM +DM 的最小值是34.
故答案为:34.
【点睛】
本题考查了最短路径问题,掌握作轴对称点是解题的关键.
9.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.
【答案】10
【解析】
【分析】
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值
【详解】
解:
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,
则OP=OP′,OP=OP″,RP=RP′,QP=QP″,
∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,
∴此时△PQR周长最小,最小值为P′P″的长,
∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,
∴∠1=∠2,∠3=∠4,
∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,
∴△P′OP″为等边三角形,
∴P′P″=OP′=OP=10,
故答案是:10.
【点睛】
本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.
10.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.
【答案】①②③④
【解析】
【分析】
依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.
【详解】
有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一
个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.
故此题正确的是①②③④.
【点睛】
此题考查等边三角形的判定方法,熟记方法才能熟练运用.
二、八年级数学轴对称三角形选择题(难)
11.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:
①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()
A.1 B.2 C.3 D.4
【答案】D
【解析】
【分析】
由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS可证明△ABD≌△ACD,从而可判断①正确;利用ASA可证明△ADE≌△ADF,从而可判断③正确;在Rt△ADE与
Rt△ADF中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得
2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.
【详解】
∵等边△ABC中,AD是BC边上的高,
∴BD=DC,AB=AC,∠B=∠C=60°,
在△ABD与△ACD中
90
AD AD
ADB ADC
DB DC
=
⎧
⎪
∠=∠=︒
⎨
⎪=
⎩
,
∴△ABD≌△ACD,故①正确;
在△ADE与△ADF中
60
EAD FAD
AD AD
EDA FDA
∠=∠
⎧
⎪
=
⎨
⎪∠=∠=︒
⎩
,
∴△ADE≌△ADF,故③正确;
∵在Rt△ADE与Rt△ADF中,
∠EAD=∠FAD=30°,
∴2DE=2DF=AD,故②正确;
同理2BE=2CF=BD,
∵AB=2BD,
∴4BE=4CF=AB,故④正确,
故选D.
【点睛】
本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.
12.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()
A.7.5°B.10°C.15°D.18°
【答案】C
【解析】
根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出
α=15°,
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;
②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()
A.①②③④B.①④③②C.①④②③D.②①④③
【答案】B
【解析】
【分析】
根据尺规作等边三角形的过程逐项判断即可解答.
【详解】
解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:
①画射线AM;
②在射线AM上截取AB=a;
③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;
④连结AC、BC.
△ABC即为所求作的三角形.
故选答案为B.
【点睛】
本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.
14.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().
A.B.
C.D.
【答案】C
【解析】
【分析】
根据轴对称分析即可得到答案.
【详解】
根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,
故选:C.
【点睛】
此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.
15.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-
α;③△CMN 是等边三角形;④连OC ,则OC 平分∠AOE .正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据全等三角形的判定定理得到△ACD ≌△BCE (SAS ),由全等三角形的性质得到AD=BE ;故①正确;
②设CD 与BE 交于F ,根据全等三角形的性质得到∠ADC=∠BEC ,得到
∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确; ③根据全等三角形的性质得到∠CAD=∠CBE ,AD=BE ,AC=BC 根据线段的中点的定义得到AM=BN ,根据全等三角形的性质得到CM=CN ,∠ACM=∠BCN ,得到∠MCN=α,推出△MNC 不一定是等边三角形,故③不符合题意;
④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.
【详解】
解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,
∴∠ACB+∠BCD=∠DCE+∠BCD ,
∴∠ACD=∠BCE ,
在△ACD 和△BCE 中
AC BC ACD BCE CD CE ⎪∠⎪⎩
∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),
∴AD=BE ;故①正确;
②设CD 与BE 交于F ,
∵△ACD ≌△BCE ,
∴∠ADC=∠BEC ,
∵∠CFE=∠DFO ,
∴∠DOE=∠DCE=α,
∴∠BOD=180°-∠DOE=180°-α,故②正确;
③∵△ACD ≌△BCE ,
∴∠CAD=∠CBE ,AD=BE ,AC=BC
又∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
1
2
AD,BN=
1
2
BE,
∴AM=BN,
在△ACM和△BCN中
AC BC
CAM CBN
AM BN
⎪
∠
⎪
⎩
∠
⎧
⎨
=
=
=
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
又∠ACB=α,
∴∠ACM+∠MCB=α,
∴∠BCN+∠MCB=α,
∴∠MCN=α,
∴△MNC不一定是等边三角形,故③不符合题意;
④过C作CG⊥BE于G,CH⊥AD于H,
∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,
∴△CGE≌△CHD(AAS),
∴CH=CG,
∴OC平分∠AOE,故④正确,
故选:B.
【点睛】
本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.
16.如图,Rt ABC
∆中,90
ACB
∠=,3
AC=,4
BC=,5
AB=,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段EF的长为()
A .52
B .125
C .4
D .53
【答案】B
【解析】
【分析】
先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =
12AC∙BC=12
AB∙CE ,求出CE 进而得出答案即可. 【详解】
根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
又∵CE ⊥AB ,
∴△ECF 是等腰直角三角形,
∴EF=CE , 又∵S △ABC =
12AC∙BC=12
AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,
∴125CE =
, ∴EF 125
=. 所以答案为B 选项.
【点睛】
本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.
17.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )
A .132︒
B .130︒
C .112︒
D .110︒
【答案】C
【解析】
【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.
【详解】
如图,连接OB 、OC ,
∵56BAC ︒∠=,AO 为BAC ∠的平分线 ∴11562822
BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =, ∴()()
11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线,
∴OA OB =.
∴28ABO BAO ︒∠=∠=,
∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=
∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线
∴点О是ABC △的外心,
∴OB OC =,
∴34OCB OBC ︒∠=∠=,
∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合
∴OE CE =,
∴34COE OCB ︒∠=∠=,
在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=
【点睛】
本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.
18.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.
【详解】
①正确:∵ABC △是等边三角形,
∴60BAC ︒∠=,∴CA AB =.
∵ABD △是等腰直角三角形,∴DA AB =.
又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,
∴DA CA =,∴()
1180150152ADC ACD ︒︒︒∠=∠=
-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴
AF≠AG
③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,
∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.
又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,
在DAF △和ABH 中
()AFD BHA DAF ABH
AAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌ABH .∴DF AH =.
⑤正确:∵150CAD ︒∠=,AH CD ⊥,
∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=
又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
19.如图,O 是正三角形ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④S 四边形
AOBO′=6+33;⑤S △AOC +S △AOB =6+934
.其中正确的结论是( )
A .①②③⑤
B .①③④
C .②③④⑤
D .①②⑤
【答案】A
【解析】 试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC ,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到,
故结论①正确;
如图①,连接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等边三角形,
∴OO′=OB=4.
故结论②正确;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三边长为3,4,5,这是一组勾股数,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故结论③正确; S 四边形AOBO ′=S △AOO′+S △OBO′=
12×3×4+3×42=6+43, 故结论④错误; 如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO″=S △COO″+S △AOO″=
123293, 故结论⑤正确.
综上所述,正确的结论为:①②③⑤.
故选A .
20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =, ∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。