2018-2019学年上学期高二数学12月月考试题含解析(290)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨浦区第二中学校2019-2020学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在曲线y=x 2上切线倾斜角为的点是( )
A .(0,0)
B .(2,4)
C .(,

D .(,)
2. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,
),则f (x )
的图象的一个对称中心是( )
A .(﹣,0)
B .(﹣,0)
C .(,0)
D .(,0)
3. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( )
A .3
B .4
C .
D .13
4. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a
的公差,则n S 的最小值仅为6S 的概率为( )
A .
15 B .16 C .314 D .13
5. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )
A .560m 3
B .540m 3
C .520m 3
D .500m 3
6. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( )
A.16 B.6 C.4 D.8
7.在复平面内,复数Z=+i2015对应的点位于()
A.第四象限B.第三象限C.第二象限D.第一象限8.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()
A.﹣13 B.6 C.79 D.37
9.已知命题“p:∃x>0,lnx<x”,则¬p为()
A.∃x≤0,lnx≥x B.∀x>0,lnx≥x C.∃x≤0,lnx<x D.∀x>0,lnx<x
10.下列命题中正确的是()
A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题
B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
C.“”是“”的充分不必要条件
D.命题“∀x∈R,2x>0”的否定是“”
11.函数y=的图象大致为()
A.B.C.
D.
12.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()
A.B.C.
D.
二、填空题
13.已知||=1,||=2,与的夹角为,那么|+||﹣|=.
14.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n=.
15.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
16.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率是.
17.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•=.18.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是.
三、解答题
19.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一
,x2,x3的值,并写出函数f(x)的解析式;
1
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,
m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
20.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥a+b.
21.已知函数f(x)=x3﹣x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.
22.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
23.求同时满足下列两个条件的所有复数z:
①z+是实数,且1<z+≤6;
②z的实部和虚部都是整数.
24.已知函数
上为增函
数,且θ∈(0,π),,
m∈R.
(1)求θ的值;
(2)当m=0时,求函数f(x)的单调区间和极值;
(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.
杨浦区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1.【答案】D
【解析】解:y'=2x,设切点为(a,a2)
∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,
∴a=,
在曲线y=x2上切线倾斜角为的点是(,).
故选D.
【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
2.【答案】B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sinφ=,即sinφ=,由于|φ|<,
解得:φ=,
即有:f(x)=2sin(2x+).
由2x+=kπ,k∈Z可解得:x=,k∈Z,
故f(x)的图象的对称中心是:(,0),k∈Z
当k=0时,f(x)的图象的对称中心是:(,0),
故选:B.
【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
3.【答案】D
【解析】解:∵S n为等比数列{a n}的前n项和,=4,
∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,
∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),
解得=13.
故选:D.
【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.
4.【答案】D
【解析】
考点:等差数列.
5.【答案】A
【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易
得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形
围成的部分面积S1==2=4,
下部分矩形面积S2=24,
故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.
故选:A.
【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.
6.【答案】D
【解析】解:∵a=5,b=4,cosC=,可得:sinC==,
∴S△ABC=absinC==8.
故选:D.
7.【答案】A
【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.
复数对应点的坐标(),在第四象限.
故选:A.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.8.【答案】D
【解析】
二项式系数的性质.
【专题】二项式定理.
【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.
【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,
可得2m+5n=16 ①.
再根据m、n为正整数,可得m=3、n=2,
故含x2项的系数是(﹣2)2+(﹣5)2=37,
故选:D.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
9.【答案】B
【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p 为∀x>0,lnx≥x.
故选:B.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
10.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
11.【答案】D
【解析】解:令y=f(x)=,
∵f(﹣x)==﹣=﹣f(x),
∴函数y=为奇函数,
∴其图象关于原点对称,可排除A;
又当x→0+,y→+∞,故可排除B;
当x→+∞,y→0,故可排除C;
而D均满足以上分析.
故选D.
12.【答案】A
【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=
当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x
当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1
∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.
二、填空题
13.【答案】.
【解析】解:∵||=1,||=2,与的夹角为,
∴==1×=1.
∴|+||﹣
|====.
故答案为:.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
14.【答案】.
【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.
故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,
故a n=.
【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题.
15.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
16.【答案】.
【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,
由几何概型的计算方法,
可以得出所求事件的概率为P=,
故答案为:.
【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.17.【答案】10.
【解析】解:由z=3﹣i,得
z•=.
故答案为:10.
【点评】本题考查公式,考查了复数模的求法,是基础题.
18.【答案】30°.
【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,
故∠GEF即为EF与CD所成的角.
又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,

∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
20.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(a+b)2=a+b+2ab≤2(a+b)=4,
∴a+b≤2,
∴f(x)≥a+b=2≥a+b,
即f(x)≥a+b.
21.【答案】
【解析】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,
∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,
从而△=1﹣4c>0,
∴c<.
(Ⅱ)∵f(x)在x=2处取得极值,
∴f′(2)=4﹣2+c=0,
∴c=﹣2.
∴f(x)=x3﹣x2﹣2x+d,
∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),
∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=﹣1处取得最大值,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d﹣1)>0,
∴d<﹣7或d>1,
即d的取值范围是(﹣∞,﹣7)∪(1,+∞).
【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.
22.【答案】
【解析】
【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.
(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.
【解答】解:(1)由于直线x=4与圆C1不相交;
∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2
∴d==1(2分)
d=从而k(24k+7)=0即k=0或k=﹣
∴直线l的方程为:y=0或7x+24y﹣28=0(5分)
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0
则直线l2方程为:y﹣b=﹣(x﹣a)(6分)
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即=(8分)
整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|
∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5
因k的取值有无穷多个,所以或(10分)
解得或
这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)
23.【答案】
【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,
解方程得z=±i.
又∵z的实部和虚部都是整数,∴t=2或t=6,
故满足条件的复数共4个:z=1±3i 或z=3±i.
24.【答案】
【解析】解:(1)∵函数
上为增函数,
∴g′(x)=﹣+≥0在,mx﹣≤0,﹣2lnx﹣<0,
∴在上不存在一个x0,使得f(x0)>g(x0)成立.
②当m>0时,F′(x)=m+﹣=,
∵x∈,∴2e﹣2x≥0,mx2+m>0,
∴F′(x)>0在恒成立.
故F(x)在上单调递增,
F(x)max=F(e)=me﹣﹣4,
只要me﹣﹣4>0,解得m>.
故m的取值范围是(,+∞)
【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.。

相关文档
最新文档