北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

合集下载

北京理工大学信号和系统实验报告材料

北京理工大学信号和系统实验报告材料

本科实验报告实验名称:信号与系统实验实验一信号的时域描述与运算一、实验目的①掌握信号的MATLAB表示及其可视化方法。

②掌握信号基本时域运算的MATLAB实现方法。

③利用MATLAB分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形常用的信号产生函数2.连续时间信号的时域运算-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院12实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB表示及其可视化方法。

2. 掌握信号基本时域运算的MATLAB实现方法。

3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形10.80.60.40.2-0.2-0.4-0.6-0.8-1012345678910Time(seconds)图1 利用向量表示连续时间信号3sin(t)10.5-0.5-1-6-4-20246t图 2 利用符号对象表示连续时间信号常用的信号产生函数函数名功能函数名功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波 sinc sinc函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。

首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。

再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。

然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。

实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。

此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。

综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。

北京理工大学信号与系统信号的频域分析

北京理工大学信号与系统信号的频域分析

x(t ) a0 ak cos kw0t bk sin kw0t
k 1 k 1


(3)
其中:
a0
1 2 2 T0 x(t )dt , ak T x(t ) cos kw0tdt , bk T x(t ) sin kw0tdt 0 T0 T0 T0 0
(4)
4、离散非周期时间信号的频域分析
非周期序列 x( n) 可以表示成一组复指数序列的连续和
x ( n)
其中
1 2
X (e
2
j
)e jn d
(15)
X (e j )
n
x ( n )e
jn
(16)
式(16)称为 x( n) 的离散时间傅里叶变换,式(15)和式(16)确立了非周期离散时 间信号 x( n) 及其离散时间傅里叶变换 X (e 称为频谱函数,且 X (e
1 .2
1
0 .8
0 .6
0 .4
0 .2
0
-0 .2 -1 .5
-1
-0 .5
0
0 .5
1
1 .5
N=20;T=1;a=0.5;A=1;
1 .2
1
0 .8
0 .6
0 .4
0 .2

0
-0 .2 -1 .5
-1
-0 .5
0
0 .5
1
1 .5
③利用 MATLAB 绘出周期矩形脉冲信号的频谱,观察参数 T 和变 化时对频谱波形的影响。
Answer:频谱包络形状不变,过零点不变,普贤间隔随着 T 变大而缩小。
2、已知 x(t)是如图所示的矩形脉冲信号。 ①求该信号的傅里叶变换; ②利用 MATLAB 绘出矩形脉冲信号的频谱,观察矩形脉冲信号宽 度变化时对频谱波形的影响; ③让矩形脉冲信号的面积始终等于 1,改变矩形脉冲宽度,观察 矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析(综合型实验)一、实验目的1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。

2)学习和掌握连续时间系统函数的定义及复频域分析方法。

3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法1.拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞--∞=⎰ (1) 拉普拉斯反变换为1(t)(s)e 2j st j x X ds j σσπ+∞-∞=⎰ (2)MATLAB 中相应函数如下:(F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

(F,t)L laplace =用t 替换结果中的变量s 。

()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。

(,)F ilaplace L x =用x 替换结果中的变量t 。

拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比:110110...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3) 上式可以采用部分分式法展成以下形式1212(s)...N Nr r r X s p s p s p =+++--- (4) 再通过查找常用拉氏变换对易得反变换。

利用residue 函数可将X(s)展成(4)式形式,调用格式为:[r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。

2.连续时间系统的系统函数连续时间系统的系统函数是指系统单位冲激响应的拉氏变换(s)(t)e st H h dt +∞--∞=⎰(5)连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。

实验5 连续时间系统的频域和复频域分析

实验5  连续时间系统的频域和复频域分析

实验5 连续时间系统的频域和复频域分析一.实验目的1.掌握和理解连续时间函数系统频率相应、系统函数的概念和物理意义。

2.学习和掌握连续时间系统频域、复频域的分析方法。

3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二.实验原理1.连续时间系统的频率响应系统的频率响应定义为:ττωωτd eh j H j -∞∞-⎰=)()(H (ωj )反映了LTI 连续时间系统对不同频率信号的相应特性,是系统内在固有的特性,与外部激励无关。

H (ωj )又可以表示为)()()(ωθωωj ej H j H =其中)(ωj H 称为系统的幅度响应,)(ωθ成为系统的相应响应。

对于由下述微分方程描述的LTI 连续时间系统∑∑===Mm m n Nn n n t xb t ya 0)(0)()()(其频率响应H (ωj )可以表示为下列式子所示的ωj 的有理多项式1110111...)()(...)()()()()(a j a j a j a b j b j b j b X Y j H N N N N M M M M ++++++++==----ωωωωωωωωωMATLAB 的信号处理工具箱提供了专门的函数freqs ,用来分析连续时间系统的频率响应,该函数有下列几种调用格式:[h,w]=freqs(b,a) 计算默认频率范围内200个频率点上的频率响应的取样值,这200个频率点记录在w 中。

h=freqs (b ,a ,w ) b 、a 分别为表示H (ωj )的有理多项式中分子和分母多项式的系数向量,w 为频率取样点,返回值h 就是频率响应在频率取样点上的数值向量。

[h ,w]=freqs (b ,a ,n) 计算默认频率范围内n 个频率点上的频率响应的取样值,这n 个频率点记录在w 中。

Freqs (b ,a ,……) 这种调用格式不返回频率响应的取样值,而是以对数坐标的方式绘出来系统的频率响应和相频响应。

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告
一.实验原理 1、傅里叶变换 实验原理如下:
傅里叶变换的调用格式
F=fourier(f):返回关于w 的函数;
F=fourier(f ,v):返回关于符号对象v 的函数,而不是w 的函数。

傅里叶逆变换的调用格式
f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于x 的函数; f=ifourier(f,u):返回关于u 的函数。

2、连续时间信号的频谱图 实验原理如下:
符号算法求解如下:
ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1/4)-heaviside(t-1/4))'); Fw=simplify(fourier(ft)) subplot(121)
ezplot(ft,[-0.5 0.5]),grid on subplot(122)
ezplot(abs(Fw),[-24*pi 24*pi]),grid on 波形图如下所示:
当信号不能用解析式表达时,无法用MATLAB 符号算法求傅里叶变换,则用MATLAB 的数值计算连续信号的傅里叶变换。

∑⎰

-∞
=-→-∞∞
-==n n j t
j e
n f dt e
t f j F ττωτ
ωτω)(lim
)()(0
若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉害,可以近似地看成时限信号,设n 的取值为N ,有
1
1()
a jw
++
的分母和分子多项式的系数向量,
1、在调用函数fourier()及ifourier()之前,要用syms命令对所用到的变。

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院12实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB表示及其可视化方法。

2. 掌握信号基本时域运算的MATLAB实现方法。

3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形10.80.60.40.2-0.2-0.4-0.6-0.8-1012345678910Time(seconds)图1 利用向量表示连续时间信号3sin(t)10.5-0.5-1-6-4-20246t图 2 利用符号对象表示连续时间信号常用的信号产生函数函数名功能函数名功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波 sinc sinc函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

《信号与系统》课程实验报告一•实验原理 1傅里叶变换实验原理如下:傅里叶变换的调用格式F=fourier(f):返回关于 W 的函数;F=fourier(f , v):返回关于符号对象V 的函数,而不是W 的函数。

傅里叶逆变换的调用格式f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于X 的函数; f=ifourier(f,u):返回关于U 的函数。

2、连续时间信号的频谱图实验原理如下: 符号算法求解如下:ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1∕4)-heaviside(t-1∕4))'); FW=SimPlify(fourier(ft))subplot(121)ezplot(ft,[-0.5 0.5]),grid Onsubplot(122) ezplot(abs(Fw),[-24*pi 24*pi]),grid On波形图如下所示:当信号不能用解析式表达时,无法用换,则用MATLAB 的数值计算连续信号的傅里叶变换。

实验步骤或实验方案MATLAB 符号算法求傅里叶变F(j )f(t)ejt dt 叫nf (n )e若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉 害,可以近似地看成时限信号,设 n 的取值为N ,有4 CO$(12 I )■) (he 如引日环-IMh heaviside(t IeIXW Sin(WM ⅛)yabS(W i -144 >2)3、 用MATLAB 分析LTl 系统的频率特性当系统的频率响应H (jw )是jw 的有理多项式时,有H(S )B(W) b M (jW)Mb Mi (jW)MIL b ι(jw) b oH (jW)NN 1A(W)a N (jw)a ” ι(jw) L α(jw) a °freqs 函数可直接计算系统的频率响应的数值解,其调用格式为H=freqs(b,a,w)其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,W 定义 了系统频率响应的频率范围,P 为频率取样间隔。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

实验五 连续时间系统的复频域分析

实验五  连续时间系统的复频域分析

实验五 连续时间系统的复频域分析实验目的:1、掌握利用Matlab 计算拉普拉斯正反变换的方法;2、掌握如何利用Matlab 求部分分式展开的系数。

实验原理:1、拉普拉斯正反变换Matlab 的符号数学工具箱中提供了计算Laplace 正反变换的函数laplace和ilaplace ,其调用形式分别为:)(f laplace F =和)(F ilaplace f =上述两个式中,右端的f 和F 应分别为系统的时域表示式和s 域表示式 符号表示式。

需要注意的是符号数学工具箱给出的结果也是解析表达式(其中可以带上尚为未知的参数符号),而并非一般的以向量来表示的数值结果。

2、 部分分式展开法求拉普拉斯逆变换利用Matlab 中的residue 函数可以实现将s 域表示式)(s F 的部分分式展开式,其调用形式为:),(],,[den num residue k p r =其中,num 和den 分别为)(s F 分子多项式和分母多项式的系数向量(num=numerator ,den =denominator),r 为所得部分分式展开项的系数量,p 为极点,k 为直流分量。

如果ss s s s F 342)(23+++=,则num =[1 2];den =[1 4 3 0]; 运行的结果为:r =-1/6 -1/2 2/3p=-3 -1 0k=[]即得F(s)可以展开为:36/112/13/2)(+-++-+=s s s s F再由基本得Laplace 变换对可知,F(s)得反变换)(t f 为: )(61)(21)(32)(3t e t e t t f t t εεε----= 注意:如果分母不是多项式而是因子相乘的形式,我们可以利用conv 函数将其转换为多项式的形式,如分母为)2)(1(++s s ,则den =conv([1 1],[1 2])。

实验内容:一、利用Matlab 程序求)(t f 的Laplace 变换:1、)()(t t f ε=程序代码:>> syms tf=heaviside(t);F=laplace(f)输出结果:F =1/s2、)()(3t te t f t ε-=程序代码:>> syms tf=t*exp(-3*t)*heaviside(t);F=laplace(f)输出结果:F =1/(s + 3)^23、)()sin()(t at e t f t ε-=程序代码:>> syms t af=exp(-t)*sin(a*t)*heaviside(t);F=laplace(f)输出结果:F =a/((s + 1)^2 + a^2)二、利用Matlab 程序求)(s F 的Laplace 反变换:1、11)(+=s s F 程序代码:>> syms sF=1/(s+1);f=ilaplace(F)输出结果:f =exp(-t)2、1)(22+=s s s F 程序代码:>> syms sF=s^2/(s^2+1);f=ilaplace(F)输出结果:f =dirac(t) - sin(t)3、ss s s s F 342)(23+++=程序代码:>> syms sF=(s+2)/(s^3+4*s^2+3*s);f=ilaplace(F)输出结果:f =2/3 - exp(-3*t)/6 - exp(-t)/2三、用部分分式展开法将F(s)的展开,并求其反变换1、23795)(223+++++=s s s s s s F 展开程序代码:反变换代码: >> num=[1 5 9 7];den=[1 3 2];[r,p,k]=residue(num,den) >> syms s F=(s^3+5*s^2+9*s+7)/(s^2+3*s+2); f=ilaplace(F)展开结果:反变换结果: r = -1 2p = -2 -1k = 1 2 f =2*exp(-t) - exp(-2*t) + 2*dirac(t) + dirac(1, t)2、)2)(1(532)(223+++++=s s s s s s F 展开程序代码:反变换代码: >> num=[2 3 0 5];den=conv([1 1],[1 1 2]);[r,p,k]=residue(num,den)>> syms s F=(2*s^3+3*s^2+5)/ ((s+1)*(s^2+s+2)); f=ilaplace(F) 展开结果:反变换结果: r =-2.0000 + 1.1339i-2.0000 - 1.1339i3.0000 + 0.0000ip =-0.5000 + 1.3229i-0.5000 - 1.3229i-1.0000 + 0.0000i f=3*exp(-t)+2*dirac(t)-4*exp(-t/2)*(cos((7^(1/2)*t)/2) + (3*7^k =23、)13()1(2)(23+++-=s s s s s F 展开程序代码: 反变换代码:>> num=[1 -2]; den=conv(conv([1 1],[1 1]),conv([1 1],[1 3 1]));[r,p,k]=residue(num,den)>> syms sF=(s-2)/ ((s+1)^3*(s^2+3*s+1));f=ilaplace(F)展开结果: 反变换结果:r = -0.4875 5.0000 2.00003.0000-4.5125p =-2.6180-1.0000-1.0000-1.0000-0.3820k = []f=5*exp(-t)+2*t*exp(-t)+(3*t^2*exp(-t))/2-5*exp(-(3*t)/2)*(cosh((5^(1/2)*t)/2)+ (9*5^(1/2)*sinh((5^(1/2)*t)/2))/25) 四、已知某线性是不变系统的系统函数为:s s s s s s H 23444)(232++++=求该系统的单位阶跃响应表达式并画出其波形图。

实验5--连续时间系统的复频域分析

实验5--连续时间系统的复频域分析

实验5–连续时间系统的复频域分析实验背景在连续时间系统的频域分析中,复频域分析是非常重要的一个方法。

其可以帮助我们更直观地了解系统的频率响应,包括幅频响应和相频响应,对于系统的设计和优化都有非常实际的应用价值。

因此,在本次实验中,我们将通过对一个特定系统的复频域分析来学习这一方法的基本原理和操作流程。

实验目的1.了解连续时间系统的幅频响应和相频响应2.掌握利用MATLAB对系统进行复频域分析的方法3.学会根据复频域图像对系统进行分析和优化实验原理连续时间系统幅频响应和相频响应在连续时间系统的频域分析中,使用的是拉普拉斯变换。

通过对系统的输入信号和输出信号进行拉普拉斯变换,可以得到它们在复平面上的函数,进而求得系统的传递函数H(s):H(s)=Y(s)/X(s)其中,s为复变量。

系统的幅频响应和相频响应分别定义为:H(s)的模和相位:|H(jw)|=sqrt(H(s)H(s)*) (模) arg(H(jw))=tan^-1[Im{H(jw)}]/Re{H(jw)} (相位) 其中,w为实数,j为虚数单位。

利用MATLAB进行系统复频域分析MATLAB提供了众多用于连续时间系统复频域分析的工具。

其中,最基本的是bode命令。

它可以计算和绘制给定系统的幅频响应和相频响应曲线。

常用命令格式如下:[bode(H,w)]其中,H为系统的传递函数,w为频率范围除此之外,MATLAB还提供了很多其他的命令,如nyquist、margin、freqresp 等。

它们可以帮助我们更全面地分析系统的性能和特点。

实验步骤实验环境1.一台已安装MATLAB的计算机实验流程1.根据给定的系统传递函数H(s),利用MATLAB计算和绘制其幅频响应和相频响应曲线。

%定义系统传递函数H=tf([5+j*10 0.6+0.2*j],[1 2+j 3 4-j 5+j]);%绘制幅频响应和相频响应曲线figure(1)subplot(2,1,1)bode(H);subplot(2,1,2)nyquist(H);2.根据绘制的幅频响应和相频响应曲线,对系统进行分析和优化。

信号与系统实验五__连续时间信号的频域分析

信号与系统实验五__连续时间信号的频域分析

实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1)syms t w t1 w1Gt=sym('Heaviside(2*t+1)-Heaviside(2*t-1)');Gt1=sym('Heaviside(t1+1)-Heaviside(t1-1)');Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple('convert',Fw,'piecewise');FFw1=maple('convert',Fw1,'piecewise');FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|<=1;ft=sym('(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside(t-1)');Fw=fourier(ft);subplot(211)ezplot(abs(Fw));grid on;(3)单边指数信号f(t)=exp(-t)*u(t)ft=sym('exp(-t)*Heaviside(t)');Fw=fourier(ft);subplot(211)ezplot(abs(Fw));grid on;2、利用ifourier()函数求频谱函数的傅氏反变换;(1)F(w)=(-i*2*w)/(16+w^2)syms t wFw=sym('(-i*2*w)/(16+w^2)');ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)^2+5*i*w-8)/((i*w)^2+6*i*w+5)syms t wFw=sym('((i*w)^2+5*i*w-8)/((i*w)^2+6*i*w+5)');ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

(2023)304编号北京理工大学信号与系统实验报告5连续时间系统的复频域分析(一)

(2023)304编号北京理工大学信号与系统实验报告5连续时间系统的复频域分析(一)

(2023)304编号北京理工大学信号与系统实验报告5连续时间系统的复频域分析(一)关于北京理工大学信号与系统实验报告5实验编号(2023)304实验名称信号与系统实验报告5:连续时间系统的复频域分析实验目的通过本实验,掌握连续时间系统的复频域分析的基本原理和方法,熟练掌握求解复频域中系统的幅度谱和相位谱的方法,提高对系统频域特性的认识。

实验内容实验内容主要分为以下几部分:1.实验仪器和元件的使用2.连续时间系统的频域分析方法3.MATLAB工具箱的应用实验过程1.使用示波器、函数发生器等实验仪器,搭建连续时间系统。

2.将系统的输入信号和输出信号从时域表示转换为复频域表示。

3.根据复频域表示求解系统的幅度谱和相位谱。

4.使用MATLAB工具箱验证实验结果。

5.分析实验结果,总结连续时间系统的频域特性。

实验结论通过本实验,我们了解了连续时间系统的复频域分析方法,熟悉了求解幅度谱和相位谱的步骤,并通过实验验证了所学内容的正确性。

同时,我们也认识到了连续时间系统在频域中的特性和应用范围。

实验感受本实验对我们的信号与系统学习提供了重要的实践环节,让我们更加深入地理解了信号与系统的频域分析方法,并对自己的专业兴趣产生了更深刻的认识。

同时,实验过程中我们也体验到了探索和解决问题的乐趣,收获了宝贵的经验。

实验注意事项1.实验中的电路连接应符合要求,注意仪器的使用和安全操作。

2.合理调整示波器、函数发生器等参数,以确保实验效果。

3.对于MATLAB工具箱的使用应具备一定的基础。

4.实验报告应准确记录实验过程中的操作、数据和可视化结果。

实验改进方向1.加强理论基础知识的学习,深入了解系统的频域特性。

2.进一步利用MATLAB及其他工具箱进行系统的分析和模拟,提高实验的精度和可靠性。

3.可尝试采用不同的连续时间系统进行分析和比较,从而更好地认识连续时间系统的特性。

实验意义通过本实验,我们对信号与系统的频域分析方法和连续时间系统的特性有了更深入的了解和认识。

北理工信号与系统实验报告

北理工信号与系统实验报告

������������ ������ ������������ ������ 0 ������
������������ =
1 ������0
������(������)������ −������������ ������ 0 ������ ������������
������0
上述两式定义为周期信号复指数形式的傅里叶级数,系数 Ck 称为 x(t)的傅 里叶级数。周期信号的傅里叶级数还可以由三角函数的线性组合来表示,即
xlabel('n') title('y[n]') 程序运行结果如下:
x[n] 1 0.5 0 -0.5 -1 1 0.5 0 -0.5 -1 y[n] 4 h[n]
0
5
10 n
15
20
0
5
10 n
15
20
2
0
-2
0
5
10
15
20 n
25
30
35
40
7.已知两个连续时间信号,求两个信号的卷积。 程序如下: w1=2; w2=4; dt=0.01; t1=-2:dt:2; t2=-4:dt:4; x1=2*rectpuls(t1,w1) x2=rectpuls(t2,w2) x=conv(x1,x2); x=x*dt; t0=t1(1)+t2(1); t3=length(x1)+length(x2)-2; t=t0:dt:(t3*dt+t0); plot(t,x); axis([-4 4 -2 6]); xlabel('t'); title('x(t)'); 程序运行结果如下:
an y (n) (t ) an1 y (n1) (t ) a1 y ' (t ) a0 y(t ) bm x (m) (t ) bm1 x (m1) (t ) b1 x ' (t ) b0 x(t )

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告

信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB 表示及其可视化方法。

2. 掌握信号基本时域运算的MA TLAB 实现方法。

3. 利用MA TLAB 分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MA TLAB 表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB 中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB 并不能处理连续时间信号,在MATLAB 中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10; >> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t); >> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形012345678910-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-6-4-20246-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)常用的信号产生函数 函数名 功能 函数名 功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波sinc sinc 函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析实验5连续时间系统的复频域分析(综合型实验)一、实验目的1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。

2)学习和掌握连续时间系统函数的定义及复频域分析方法。

3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1.拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt+∞--∞=⎰(1)拉普拉斯反变换为1(t)(s)e 2j st j x X dsj σσπ+∞-∞=⎰(2)MATLAB 中相应函数如下:(F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

(F,t)L laplace =用t 替换结果中的变量s 。

()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。

(,)F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数110110...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7)3.连续时间系统的零极点分析系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。

通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用⨯表示,这样得到的图形为零极点分布图。

可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。

求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。

[p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。

还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。

调用格式如下:[z,p,k]=tf2zp(b,a)[b,a]=tf2zp(z,p,k)研究系统函数的零极点分布不仅可以了解系统冲激响应的形式,还可以了解系统的频率特性以及判断系统的稳定性。

1)零极点分布与冲激响应的关系系统的极点位置决定着系统冲激响应h(t)的波形,冲激响应的幅值是由系统函数的零点和极点共同确定的,系统的零点位置只影响冲激响应的幅度和相位,不影响波形。

2)零极点分布与系统频率响应的关系系统函数的零极点分布不仅决定了系统函数H(s),也决定了系统的频率响应()H ,根据系统的零极点分布情况,可以由几何矢量法分析系统的频率响应。

3)零极点分布与系统稳定性的关系稳定性是系统的固有性质,与激励信号无关,由于系统函数(s)H包含了系统的所固有的性质,因而可以根据系统函数的零极点分布判断系统的稳定性。

因果系统稳定的充要条件是(s)H的全部极点位于s的左半平面。

三.实验内容(1)已知系统的冲激响应(t)u(t)u(t 2)h =--,输入信号(t)u(t)x =,试采用复频域的方法求解系统的响应,编写MATLAB 程序实现。

代码:%DFTfifth_2_1.m syms th=heaviside(t)-heaviside(t-2); x=heaviside(t); H=laplace(h); X=laplace(x); Y=H*X; y=ilaplace(Y)>> DFTfifth_2_1 y =t - heaviside(t - 2)*(t - 2)所以系统的响应为y(t)=t-(t-2)*u(t-2)(2)已知因果连续时间系统的系统函数分别如下: 1)321(s)221H s s s =+++2)54321(s)23332H ss s s s =+-+++试采用MATLAB 绘出其零极点分布图,求解系统的冲激响应h(t)和频率响应()H ,并判断系统是否稳定。

1) >> b=[1]; >> a=[1 2 2 1]; >> sys=tf(b,a); >> [p,z]=pzmap(sys) p =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i z =Empty matrix:0-by-1>> pzmap(sys)所有极点都位于s 平面的左半平面,所以系统是稳定的。

>> syms sReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>> Hs=1/(s^3+2*s^2+2*s+1); >> h=ilaplace(Hs) h =exp(-t) - exp(-t/2)*(cos((3^(1/2)*t)/2) - (3^(1/2)*sin((3^(1/2)*t)/2))/3)所以系统的冲激响应为2(t)[e t t th e --=-绘制时域和频域的曲线:b=[1]; a=[1 2 2 1]; sys=tf(b,a); subplot(311); impulse(sys); xlabel('t'); title('h(t)'); subplot(312); [H,w]=freqs(b,a);plot(w,abs(H)); xlabel('w'); ylabel('Magnitude'); title('abs(H)'); subplot(313); plot(w,angle(H)); xlabel('w'); ylabel('phase'); title('phase(H)');t (seconds)A m p l i t u d ewM a g n i t u d eabs(H)wp h a s ephase(H)2)>> b=[1 0 1];>> a=[1 2 -3 3 3 2]; >> sys=tf(b,a)sys =s^2 + 1 ------------------------------------- s^5 + 2 s^4 - 3 s^3 + 3 s^2 + 3 s + 2Continuous-time transfer function.>> [p,z]=pzmap(sys)p =-3.1704 0.9669 + 0.9540i 0.9669 - 0.9540i -0.3817 + 0.4430i -0.3817 - 0.4430i z =0 + 1.0000i 0 - 1.0000i>> pzmap(sys)由于s 平面有半平面有极点,所以是不稳定系统。

绘制冲激响应和频域响应的图形 方法同上一题 图形如下:(3)已知连续时间系统函数的极点位置分别如下所示(设系统无零点):Real Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)w M a g n i t u d eabs(H)wp h a s ephase(H)28h(t)t (seconds)A m p l i t u d e分别绘制以下六种不同情况下,系统函数的零极点分布图,并绘制相应冲激响应的时域波形,观察并分析系统函数极点位置对冲激响应时域特性的影响。

1)p=0>> b=[1];>> a=[1 0]; >> sys=tf(b,a)sys =1-s Continuous-time transfer function. >> pzmap(sys)1(s)(t)u(t) H hs=↔=>> syms t>> h=heaviside(t); >> ezplot(h,[-5 5]) >> title('h(t)')Real Axis (seconds-1)ImaginaryAxis(seconds-1)2) p=-2 >> b=[1]; >> a=[1 2]; >> sys=tf(b,a) sys =1 ----- s +2 Continuous-time transfer function.>> pzmap(b,a)21(s)(t)e *(t)2t H h u s -=↔=+>> syms t >>h=exp(-2*t)*heavisith(t)P ole-Zero MapReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>> ezplot(h)3)p=2 >> b=[1]; >> a=[1 -2]; >> sys=tf(b,a) sys =1 ----- s - 2Continuous-time transfer function.>> pzmap(b,a)21(s)(t)*(t)2t H h e u s =↔=->> syms t >>h=exp(2*t)*heavisidtP ole-Zero MapReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>> ezplot(h)4) 122,2pj p j==->> b=[1]; >> a=[1 0 4]; >> sys=tf(b,a) sys =1 ------- s^2 + 4Continuous-time transfer function.>> pzmap(b,a)211(s)(t)sin(2t)*(t)42H h u s =↔=+>> syms t >>h=(1/2)*sin(2*t)*hetP ole-Zero MapReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>> ezplot(h)5) 1214,14pj p j=-+=-->> b=[1]; >> a=[1 2 17]; >> sys=tf(b,a)sys =1 -------------- s^2 + 2 s + 17Continuous-time transfer function. >> pzmap(b,a)211(s)(t)sin(2)(t)2172tH h e t u s s -=↔=++>> syms t >>h=(1/2)*exp(-t)*sintReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>> ezplot(h)6) 1214,14pj p j=+=->> b=[1]; >> a=[1 -2 17]; >> sys=tf(b,a) sys =1 -------------- s^2 - 2 s + 17Continuous-timetransfer function.>> pzmap(b,a)211(s)(t)sin(2)(t)2172tH h e t u s s =↔=-+>> syms ttReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)>>h=exp(t)*sin(2*t)*h eaviside(t)/2; >> ezplot(h)极点在左半平面时呈衰减趋势,在左半平面坐标轴上时呈指数衰减,在非坐标轴位置上时成衰减振荡;在右半平面时成增加趋势,在右半平面坐标轴上时呈增加趋势,在非坐标轴上时呈增幅振荡;在纵轴上时,在非原点时呈等幅振荡,在原点时为单位阶跃响应。

相关文档
最新文档