七年级上册数学 期末试卷中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末试卷中考真题汇编[解析版]
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.
(1)求线段MN的长度;
(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【答案】(1)解:∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,
∴CM= AC=5厘米,CN= BC=3厘米,
∴MN=CM+CN=8厘米;
(2)解:∵点M,N分别是AC,BC的中点,
∴CM= AC,CN= BC,
∴MN=CM+CN= AC+ BC= a;
(3)解:①当0<t≤5时,C是线段PQ的中点,得
10﹣2t=6﹣t,解得t=4;
②当5<t≤ 时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t= ;
③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t= ;
④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),
综上所述:t=4或或 .
【解析】【分析】(1)根据线段中点的定义得出CM,CN的长,进而根据MN=CM+CN即可算出答案;
(2)方法同(1);
(3)分类讨论:①当0<t≤5时,C是线段PQ的中点;②当5<t≤ 时,P为线段CQ
的中点;③当<t≤6时,Q为线段PC的中点;④当6<t≤8时,C为线段PQ的中
点;分别根据线段中点将线段分成的两条线段相等,列出方程,求解即可。

2.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.
(1)图中共有________条线段;
(2)求AC的长;
(3)若点E在直线AB上,且EA=2cm,求BE的长.
【答案】(1)解:图中有四个点,线段有.
故答案为:6;
(2)解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=18,
解得CD=3,
AC=4CD=4×3=12cm
(3)解:①当点E在线段AB上时,由线段的和差,得
BE=AB﹣AE=18﹣2=16cm,
②当点E在线段BA的延长线上,由线段的和差,得
BE=AB+AE=18+2=20cm.
综上所述:BE的长为16cm或20cm.
【解析】【分析】(1)线段的个数为,n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.
3.如图 1,射线 OC在∠AOB的内部,图中共有 3个角:∠AOB、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线 OC是∠AOB的奇妙线.
(1)一个角的角平分线________这个角的奇妙线.(填是或不是);
(2)如图 2,若∠MPN=60°,射线 PQ绕点 P从 PN位置开始,以每秒 10°的速度逆时针旋转,当∠QPN首次等于 180°时停止旋转,设旋转的时间为 t(s).
①当 t为何值时,射线 PM是∠QPN 的奇妙线?
②若射线 PM 同时绕点 P以每秒 5°的速度逆时针旋转,并与 PQ同时停止旋转.请求出当射
线 PQ是∠MPN的奇妙线时 t的值.
【答案】(1)是
(2)解:①∠MPN=60,∠QPM=10t-60,∠QPN=10t(最大角),
当∠MPN=2∠QPM时,60=2(10t-60),解得t=9;
当∠QPN=2∠MPN时,10t =2×60,解得t=12;
当∠QPM=2∠MPN时,10t-60=2×60,解得t=18;
综上,当t的值是9或12或18时,射线 PM是∠QPN 的奇妙线.
②∠QPN=10t,∠QPM=60-10t+5t=60-5t,∠MPN=60+5t(最大角),
当∠QPM=2∠QPN时, 60-5t =2×10t ,解得t= ;
当∠MPN=2∠QPN时,60+5t =2×10t,解得t=4;
当∠QPN=2∠QPM时,10t =2×(60-5t),解得t=6;
综上,当射线 PQ是∠MPN的奇妙线时 t的值为或4或6.
故答案为:(1)是;(2) ①当t的值是9或12或18时,射线PM是∠QPN 的奇妙线;②当
射线 PQ是∠MPN的奇妙线时 t的值为或4或6.
【解析】【分析】(1)根据奇妙线定义即可求解;(2)①分3种情况,根据奇妙线定义列方程求解即可;②分3种情况,根据奇妙线定义列方程求解即可.
4.如图①,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的上方.
(1)在图①中, ________度;
(2)将图①中的三角板绕点按逆时针方向旋转,使得在的内部,如图②,若
,求的度数;
(3)将图①中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,当直线恰好平分锐角时,旋转的时间是________秒.(直接写出结果)
【答案】(1)30
(2)解:设∠BON=α,
∵∠BOC=60°,
∴∠NOC=60°-α,
∵∠MON=90°,
∴∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,
∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,
∵∠NOC= ∠MOA,
∴60°-α= (90°-α),
解得:α=54°,
即∠BON=54°;
(3)3或21
【解析】【解答】(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB 上,另一边OM在直线AB的上方,
∴∠MON=90°,
∴∠COM=∠MON-∠BOC=90°-60°=30°,(3)∵直线ON平分∠BOC,∠BOC=60°,
∴∠BON=30°或∠BON=210°,
∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,
∴直线ON平分∠BOC时,旋转的时间是3或21秒,
故答案为:3或21.
【分析】(1)由题意得出∠MON=90°,得出∠COM=∠MON-∠BOC=90°-60°=30°;(2)设∠BON=α,则∠NOC=60°-α,∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-
∠MON-∠BON=180°-90°-α=90°-α,由题意得出60°-α= (90°-α),解得α=54°即可;(3)求出∠BON=30°或∠BON=210°,即可得出答案.
5.(探索新知)
如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC________DB;
(3)(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N均为线段OC的圆周率点,求线段MN的长度.
(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
【答案】(1)3π+3
(2)=
(3)解:由题意可知,C点表示的数是π+1,
M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,
x+πx=π+1,解得x=1,
∴MN=π+1-1-1=π-1
(4)解:设点D表示的数为x,
如图3,若CD=πOD,则π+1-x=πx,解得x=1;
如图4,若OD=πCD,则x=π(π+1-x),解得x=π;
如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+ +2;
如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;
综上,D点所表示的数是1、π、π+ +2、π2+2π+1
【解析】【解答】(1)解:∵AC=3,BC=πAC,
∴BC=3π,
∴AB=AC+BC=3π+3
( 2 )解:∵点D、C都是线段AB的圆周率点且不重合,
∴BC=πAC,AD=πBD,
∴设AC=x,BD=y,则BC=πx,AD=πy,
∵AB=AC+BC=AD+BD,
∴x+πx=y+πy,
∴x=y
∴AC=BD
【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.
6.如图,O为直线AB上一点,∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:
(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数________(直接写出结果).
【答案】(1)解:∵∠BOC=36°,OD平分∠AOC,
∴∠AOD=∠DOC=72°,
∵∠DOE=90°,则∠AOE=90°−72°=18°;
故答案为:18°
(2)解:设∠AOD=x,
则∠DOC=2x,
∠BOC=180°−3x=36°,
解得:x=48°,
∴∠AOE=60°-x=60°−48°=12°
(3) .
【解析】【解答】(3)设∠AOD=x,则∠DOC=(n−1)x,∠BOC=180°-nx=36°,
解得:x=,
∴∠AOE=-=.
【分析】(1)利用角平分线的性质得出∠AOD=∠DOC=72°,进而得出∠AOE的度数;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,得出x的值,进而得出∠AOE 的度数;(3)利用(2)中作法,得出x与α的关系,进而得出答案.
7.
(1)如图1,点在线段上,,,点,分别是线段,的中点.求线段的长;
(2)点在线段上,若,点,分别是线段,的中点.你能得出的长度吗?并说明理由.
(3)类似的,如图2,是直角,射线在外部,且是锐角,是的平分线,是的平分线.当的大小发生改变时,的大小也会发生改变吗?为什么?
【答案】(1)解:,分别为线段,中点,
,,
.
(2)解:由()知:,,

(3)解:是平分线,是平分线,
,,
∴,
∵,

当的大小发生改变,的大小不发生改变,恒为 .
【解析】【分析】(1)根据是的中点得,再根据为的中点可得
的长,继而MN=MC+CN可得答案;(2)由是中点,是中点可得
、,再根据即可得.(3)根据角平分线的定义可得
、 = ,然后根据进行计算即可得解;
8.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?
(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.
【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,
∴第t秒时,三角板转过的角度为10°t,
当三角板转到如图①所示时,∠AON=∠CON
∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t
∴90°+10°t=210°﹣10°t
即t=6;
当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°
∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t
∴210°﹣10°t=60°
即t=15;
当三角板转到如图③所示时,∠AON=∠CON= ,
∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°
∴10°t﹣210°=30°
即t=24;
当三角板转到如图④所示时,∠AON=∠AOC=60°
∵∠AON=10°t﹣180°﹣90°=10°t﹣270°
∴10°t﹣270°=60°
即t=33.
故t的值为6、15、24、33.
(2)解:∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°
【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;
(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.
9.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .
(1)求证:∠EFC=∠FEC;
(2)①若∠B=30°,∠CAD=50°,则=________,=________;
②试探究与的关系,并说明理由;
(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.
【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.
∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,
∴∠EFC=∠FEC.
(2)35°;70°;解:② , 理由如下: 由(1)可知:
, 又∵ , ∴ . ∴ .
(3)解:图形如下:
∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,
∴ .
又∵,
∴在△CEF中有:∠ECF+2∠CEF=180°,
即 .
.
∵2∠EAC=∠DAC, ,
∴ .∴即 .
∴ .
【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,
∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.
∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,
∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.
故答案为:35°,70°.
【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求
解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.
10.在直角坐标系中,已知点A(a,0),B(b,c),C(d,0),a是-8的立方根,方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,d为不等式组的最大整数解.
(1)求点A、B、C的坐标;
(2)如图1,若D为y轴负半轴上的一个动点,当AD∥BC时,∠ADO与∠BCA的平分线交于M点,求∠M的度数;
(3)如图2,若D为y轴负半轴上的一个动点,连BD交x轴于点E,问是否存在点D,使S△ADE≤S△BCE?若存在,请求出D的纵坐标y D的取值范围;若不存在,请说明理由.【答案】(1)解:-8的立方根是-2,
∴a=-2,
方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,
∴,
解得,,
不等式组的最大整数解是5,
则A(-2,0)、B(2,4)、C(5,0)
(2)解:作MH∥AD,
∵AD∥BC,
∴MH∥BC,
∵∠AOD=90°,
∴∠ADO+∠OAD=90°,
∵AD∥BC,
∴∠BCA=∠OAD,
∴∠ADO+∠BCA=90°,
∵∠ADO与∠BCA的平分线交于M点,
∴∠ADM= ∠ADO,∠BCM= ∠BCA,
∴∠ADM+∠BCM=45°,
∵MH∥AD,MH∥BC,
∴∠NMD=∠ADM,∠HMC=∠BCM,
∴∠M=∠NMD+∠HMC=∠ADM+∠BCM=45°;
(3)解:存在,
连AB交y轴于F,
设点D的纵坐标为y D,
∵S△ADE≤S△BCE,
∴S△ADE+S△ABE≤S△BCE+S△ABE,即S△ABD≤S△ABC,
∵A(-2,0),B(2,4),C(5,0),
∴S△ABC=14,点F的坐标为(0,2),
S△ABD= ×(2-y D)×2+ ×(2-y D)×2=4-2y,
由题意得,4-2y D≤14,
解得,y D≥-5,
∵D在y轴负半轴上,
∴y D<0,
∴D的纵坐标y D的取值范围是-5≤y D<0.
【解析】【分析】(1)根据立方根的概念、二元一次方程组的定义、一元一次不等式组的
解法分别求出a、b、c、d,得到点A、B、C的坐标;(2)作MH∥AD,根据平行线的性质得到∠BCA=∠OAD,得到∠ADO+∠BCA=90°,根据角平分线的定义得到∠ADM+∠BCM=45°,根据平行线的性质计算即可;(3)连AB交y轴于F,根据题意求出点F的坐标,根据三角形的面积公式列出方程,解方程即可.
11.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;
晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.
(1)下面是小东证明该猜想的部分思路,请补充完整;
①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;
②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;
(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.
【答案】(1)△BMF;SAS;60
(2)证明:由①知,∠BFE=60°,
∴∠CFD=∠BFE=60°
∵△BEF≌△BMF,
∴∠BFE=∠BFM=60°,
∴∠CFM=∠BFC-∠BFM=120°-60°=60°,
∴∠CFM=∠CFD=60°,
∵CE是∠ACB的平分线,
∴∠FCM=∠FCD,
在△FCM和△FCD中,,
∴△FCM≌△FCD(ASA),
∴CM=CD,
∴BC=CM+BM=CD+BE,
∴BE+CD=BC.
【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:
∵BD、CE是△ABC的两条角平分线,
∴∠FBE=∠FBM= ∠ABC,
在△BEF和△BMF中,,
∴△BEF≌△BMF(SAS),
故答案为:△BMF,SAS;
②∵BD、CE是△ABC的两条角平分线,
∴∠FBC+FCB= (∠ABC+∠ACB),
在△ABC中,∠A+∠ABC+∠ACB=180°,
∵∠A=60°,
∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,
∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,
∴∠EFB=60°,
故答案为:60;
【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.
12.
(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.
①若BC=20cm,则MN=________cm;
②若BC=acm,则MN=________cm.
(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC 内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.
【答案】(1)30;30
(2)解:平分
理由:∵OM分别平分∠AOB,
∴∠BOM= ∠AOB
= (∠AOC+∠BOC)
=30°+ ∠BOC.
又∵∠BOM=∠MON+∠BON=30°+∠BON,
∴∠BON= ∠BOC.
∴ON平分∠BOC.
【解析】【解答】解:(1)①∵BC=20,N为BC中点,
∴BN= BC=10.
又∵M为AB中点,
∴MB= AB=40.
∴MN=MB-BN=40-10=30.
故答案为30;
②当BC=a时,AB=60+a,
BN= a,MB= AB=30+ a,
∴MN=MB-BN=30.
故答案为30;
【分析】(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.
13.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点
放在点O处.(注:∠DOE=90°)
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?
【答案】(1)30
(2)解:∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射线是∠BOC的平分线
(3)解:设∠COD=x,则∠AOE=5x.
∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,
∴5x+90°+x+60°=180°,
解得x=5°,
即∠COD=5°.
∴∠BOD=∠COD+∠BOC=5°+60°=65°
∴∠BOD的度数为65°
【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=30°,
故答案为:30;
【分析】(1)根据角的和差,由∠COE=∠BOE-∠COB即可算出答案;
(2)根据角平分线的定义得出∠COE=∠AOE=∠COA,根据角的和差及平角的定义得出∠AOE+∠DOB=90°,∠COE+∠COD=90°,根据等角的余角相等得出∠COD=∠DOB,故 OD所在射线是∠BOC的平分线;
(3)设∠COD=x,则∠AOE=5x ,根据平角的定义得出5x+90°+x+60°=180°,求解算出
x的值,从而求出∠COD的度数,进而根据∠BOD=∠COD+∠BOC 即可算出答案。

14.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.
①求t值;
②试说明此时ON平分∠AOC;
(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;
(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.
【答案】(1)解:①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.
∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;
②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC
(2)解:∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°
(3)解:设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.
即t=5时,射线OC第一次平分∠MON.
【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON列方程求解即可.
15.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.
(1)求证:∠ABE+∠C﹣∠E=180°.
(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.
(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.
【答案】(1)证明:如图1,过点E作




∴;
(2)解:∵BF、EG分别平分、





由(1)知,

∴;
(3)解:∵CN、BF分别平分、


由(1)知:

如图3,过M作



∴ .
【解析】【分析】(1)过点E作,由平行线的性质得出
,进而得出答案;(2)设
,由平行线的性质得出
,由(1)知
,即可得出答案;(3)设
,由(1)知,过M 作,由平行线的性质得出,求出
,即可得出答案.。

相关文档
最新文档