泰来县三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰来县三中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.不等式x(x﹣1)<2的解集是()
A.{x|﹣2<x<1} B.{x|﹣1<x<2} C.{x|x>1或x<﹣2} D.{x|x>2或x<﹣1}
2.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()
A.1 B.2 C.3 D.4
3.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()
A. B. C.D.
4.若双曲线C:x2﹣=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=()
A.2 B.C.3 D.
5.已知集合P={x|x≥0},Q={x|≥0},则P∩Q=()
A.(﹣∞,2)B.(﹣∞,﹣1)C.[0,+∞)D.(2,+∞)
6.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()
A.a>b B.a<b
C.a=b D.a,b的大小与m,n的值有关
7. 数列中,若,,则这个数列的第10项( ) A .19
B .21
C .
D .
8. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
9. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0
B .1
C .2
D .3
10.已知函数f (x )=1+x
﹣
+
﹣
+…
+
,则下列结论正确的是( )
A .f (x )在(0,1)上恰有一个零点
B .f (x )在(﹣1,0)上恰有一个零点
C .f (x )在(0,1)上恰有两个零点
D .f (x )在(﹣1,0)上恰有两个零点
11.如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )
A .②④
B .③④
C .①②
D .①③
12.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )
A .5
B .4
C .3
D .2
二、填空题
13.已知含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则 =+20042003b a .
14.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.
15.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 16.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
17.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .
18.已知函数21,0
()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.
三、解答题
19.(本小题满分12分)椭圆C :x 2a 2+y 2
b
2=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B
是C 的长轴上的两个顶点,已知|PF |=1,k P A ·k PB =-1
2.
(1)求椭圆C 的方程;
(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.
20.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;
(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,
若不存在,说明理由.
21.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.
22.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.
23.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从
某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试
成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
24.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.
泰来县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
2.【答案】B
【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)
|}
将x2﹣y=0代入x2+y2=1,
得y2+y﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M∩N中元素的个数为2个,
故选B.
【点评】本题既是交集运算,又是函数图形求交点个数问题
3.【答案】B
【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
4.【答案】B
【解析】解:双曲线C:x2﹣=1(b>0)的顶点为(±1,0),
渐近线方程为y=±bx,
由题意可得=,
解得b=1,c==,
即有离心率e==.
故选:B.
【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.5.【答案】D
【解析】解:由Q中的不等式变形得:(x+1)(x﹣2)≥0,且x﹣2≠0,
解得:x≤﹣1或x>2,即Q=(﹣∞,﹣1]∪(2,+∞),
∵P=[0,+∞),
∴P∩Q=(2,+∞),
故选:D.
6.【答案】C
【解析】解:根据茎叶图中的数据,得;
甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .
7. 【答案】C
【解析】 因为
,所以
,所以数列构成以为首项,2为公差的等差数
列,通项公式为,所以
,所以
,故选C
答案:C
8. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
9. 【答案】B
【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,
∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .
10.【答案】B
【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014
=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;
又∵f (0)=1,
f (﹣1)=1﹣1﹣﹣﹣…﹣<0;
故f(x)在(﹣1,0)上恰有一个零点;
故选B.
【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.
11.【答案】A
【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.
在①中:由异面直线的定义可知:EP与BD是异面直线,
不可能EP∥BD,因此不正确;
在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,
∴EM∥BD,MN∥SD,而EM∩MN=M,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
在③中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,
因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
在④中:由②可知平面EMN∥平面SBD,
∴EP∥平面SBD,因此正确.
故选:A.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
12.【答案】A
【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f (x )=x 2
+1,x ∈[﹣2,2],
函数的最大值为:5. 故选:A .
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
二、填空题
13.【答案】-1 【解析】
试题分析:由于{}2,,1,,0b a a a b a ⎧⎫
=+⎨⎬⎩⎭
,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。
考点:集合相等。
14.【答案】
1
e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
10
1|
a a e da e e ==-⎰,∴随机事件“ln a
b ≥”的概率为
1
e e
-. 15.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222
n S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 16.【答案】 6 .
【解析】解:双曲线的方程为4x 2﹣9y 2
=36,即为:
﹣
=1,
可得a=3, 则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
17.【答案】 . 【解析】解:已知数列1,a 1,a 2,9是等差数列,∴a 1+a 2 =1+9=10.
数列1,b 1,b 2,b 3,9是等比数列,∴ =1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),
∴b 2=3,则=
,
故答案为
.
【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.
18.【答案】2,[1,)-+∞. 【
解
析
】
三、解答题
19.【答案】 【解析】解:
(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2
b
2=1, ∴m =±b 2
a ,
∵|PF |=1 ,
即|m |=1,∴b 2=a ,①
又A ,B 的坐标分别为(-a ,0),(a ,0),
由k P A ·k PB =-1
2
得
b 2a
c +a ·b 2a
c -a
=-12,即b 2=1
2a 2,②
由①②解得a =2,b =2,
∴椭圆C 的方程为x 24+y 2
=1.
(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =1
2
×22×2=
2.
当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±2
1+2k
2
,
∴y =±2k
1+2k 2
,
即M (21+2k
2
,
2k 1+2k
2
),N (
-21+2k
2
,
-2k 1+2k
2
),
∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭
⎪⎫4k 1+2k 22 =4
1+k 21+2k 2
,
点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =1
2
·
4
1+k 21+2k 2·|2k -1|
k 2+1
=2·|2k -1|
1+2k 2
=2
2k 2+1-22k
1+2k 2
=2
1-22k 1+2k 2
, 当k >0时,22k 1+2k 2≤22k
22k =1,
此时S ≥0显然成立, 当k =0时,S =2.
当k <0时,-22k 1+2k 2≤1+2k 2
1+2k 2=1,
当且仅当2k 2=1,即k =-
2
2
时,取等号.
此时S ≤22,综上所述0≤S ≤2 2. 即当k =-
22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22
x . 20.【答案】
【解析】(1)证明:∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB , 又∵AA 1⊥AB ,AA 1⊥∩AE=A ,∴AB ⊥面A 1ACC 1, 又∵AC ⊂面A 1ACC 1,∴AB ⊥AC ,
以A 为原点建立如图所示的空间直角坐标系A ﹣xyz ,
则有A (0,0,0),E (0,1,),F (,,0),A 1(0,0,1),B 1(1,0,1), 设D (x ,y ,z ),且λ∈,即(x ,y ,z ﹣1)=λ(1,0,0),
则 D (λ,0,1),所以=(,,﹣1),
∵
=(0,1,),∴
•=
=0,所以DF ⊥AE ;
(2)结论:存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为.
理由如下:
设面DEF 的法向量为=(x ,y ,z ),则,
∵
=(
,,),
=(
,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)). 由题可知面ABC 的法向量=(0,0,1), ∵平面DEF 与平面ABC 所成锐二面角的余弦值为,
∴|cos <,>|==
,即
=
,
解得
或
(舍),所以当D 为A 1B 1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
21.【答案】
【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,
则(|x﹣10|+|x﹣20|)min<10a+10,
根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,
即(|x﹣10|+|x﹣20|)min=10,
所以,10<10a+10,解得a>0,
所以,实数a的取值集合为A=(0,+∞);
(2)∵a,b∈(0,+∞)且a≠b,
∴不妨设a>b>0,则a﹣b>0且>1,
则>1恒成立,即>1,
所以,a a﹣b>b a﹣b,
将该不等式两边同时乘以a b b b得,
a a
b b>a b b a,即证.
【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.
22.【答案】
【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,
故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.
直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.
(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),
故直线l 与圆O 公共点的一个极坐标为.
【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.
23.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
24.【答案】
【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,
所以,圆心坐标是(0,﹣7),半径长r=5.…
因为直线l被圆所截得的弦长是,
所以,弦心距为,
即圆心到所求直线l的距离为.…
因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.
所以圆心到直线l的距离为,…
因此,
解得b=﹣2,或b=﹣12.…
所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.
即2x﹣y﹣2=0,或2x﹣y﹣12=0.…
【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.。