黄平县高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄平县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2
2. 函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 3. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)
4. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )
A .a >b
B .a <b
C .a=b
D .a ,b 的大小与m ,n 的值有关
5. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)
6. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2
C .3
D .4
7. 若函数()()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
12172123x x π
π⎛⎫∈-- ⎪⎝⎭
,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B D 8. 某程序框图如图所示,则该程序运行后输出的S 的值为( )
A .1
B .
C .
D .
9. 10y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
10.双曲线的渐近线方程是( )
A .
B .
C .
D .
11.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 12.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A ∈
二、填空题
13.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .
15.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.
16.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,
则
3s i n c o s (
)4
A B π
-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.
17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 18.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .
三、解答题
19.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;
(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.
20.(14分)已知函数1
()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.
(1)求()g x 的极值; 3分
(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111
()()()()
f x f x
g x g x -<-
恒成立,求a 的最小值; 5分
(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分
21.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;
(2)求数列{}的前n 项和.
22.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知
1cos )sin 3(cos 2
cos 22
=-+C B B A
. (I )求角C 的值;
(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
23.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3. (Ⅰ)求实数m 的值;
(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2
的最小值.
24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
黄平县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】B
【解析】解:根据题意球的半径R 满足
(2R )2=6a 2
, 所以S 球=4πR 2=6πa 2
.
故选B
2. 【答案】D 【解析】因为1
()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 3. 【答案】A
【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0
∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .
4. 【答案】C
【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .
5. 【答案】A
【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1
得,f (1)=5,
则函数f (x )过定点(1,5). 故选A .
6. 【答案】C
【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
7. 【答案】C 【
解
析
】
考
点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()
2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而()23f x x π⎛
⎫=+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线11
12x π=-对称,可得12116
x x π
+=-,从而
()
121133f x x ππ⎛⎫
+=-+= ⎪⎝⎭
.
8. 【答案】 C
【解析】解:第一次循环 第二次循环得到的结果
第三次循环得到的结果
第四次循环得到的结果
…
所以S 是以4为周期的,而由框图知当k=2011时输出S
∵2011=502×4+3
所以输出的S 是 故选C
9. 【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 10.【答案】B
【解析】解:∵双曲线标准方程为,
其渐近线方程是=0,
整理得y=±x . 故选:B .
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
11.【答案】C
12.【答案】A
【解析】
试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且
05<,所以0A ∈,即D 正确,故选A. 1
考点:集合与元素的关系.
二、填空题
13.【答案】 2 .
【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2 故答案为:2.
14.【答案】 2 .
【解析】解:由a 6=a 5+2a 4得,a 4q 2
=a 4q+2a 4, 即q 2
﹣q ﹣2=0,解得q=2或q=﹣1,
又各项为正数,则q=2, 故答案为:2.
【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.
15.【答案】()2245f x x x =-+ 【解析】
试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+. 考点:函数的解析式.
16.【答案】 【
解
析
】
17.【答案】
【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:2
18.【答案】 4 .
【解析】解:由题意知,
满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有:
{2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.
三、解答题
19.【答案】(1)2()243f x x x =-+;(2)1
02
a <<
;(3)1m <-.
试
题解析:
(1)由已知,设2
()(1)1f x a x =-+,
由(0)3f =,得2a =,故2()243f x x x =-+.
(2)要使函数不单调,则211a a <<+,则102
a <<. (3)由已知,即2243221x x x m -+>++,化简得2
310x x m -+->,
设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.
【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:
()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为
()()()2
0f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为
()()()()120f x a x x x x a =--≠.
20.【答案】解:(1)e(1)
()e
x
x g x -'=,令()0g x '=,得x = 1. 列表如下:
∵
g
(1) = 1,∴y =()g x 的极大值为1,无极小值. 3
分
(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.
∵()0x a
f x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h x
g x x =
=,∵12
e (1)()x x h x x --'=> 0在[3,4]恒成立,
∴()h x 在[3,4]上为增函数. 设21x x >,则212111
()()()()
f x f x
g x g x -<-
等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.
设1e ()()()ln 1e x
u x f x h x x a x x
=-=---⋅,则u (x )在[3,4]为减函数.
∴2
1e (1)()10e x
a x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11
e e x x a x x
---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112
e (1)()1e x x x v x x
---'=-+=1
21131e [()]24x x ---+,x ∈[3,4], ∴1221133
e [()]e 1244
x x --+>>,∴()v x '< 0,()v x 为减函数.
∴()v x 在[3,4]上的最大值为v (3) = 3 -22
e 3
.
∴a ≥3 -22e 3,∴a 的最小值为3 -22
e 3
. 8分
(3)由(1)知()g x 在(0,e]上的值域为(0,1].
∵()2ln f x mx x m =--,(0,)x ∈+∞,
当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.
当0m ≠时,2()
()m x m f x x
-'=
,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2
e
m >.①
此时()f x 在2(0,)m 上递减,在2
(,e)m
上递增,
∴(e)1f ≥,即(e)e 21f m m =--≥,解得3
e 1
m -≥.②
由①②,得3
e 1
m -≥
. ∵1(0,e]∈,∴2
()(1)0f f m =≤成立.
下证存在2
(0,]t m
∈,使得()f t ≥1.
取e m t -=,先证e 2
m m
-<,即证2e 0m m ->.③
设()2e x w x x =-,则()2e 10x w x '=->在3
[,)e 1
+∞-时恒成立.
∴()w x 在3[,)e 1+∞-时为增函数.∴3
e ))01
((w x w ->≥,∴③成立.
再证()e m f -≥1.
∵e e 3()1e 1m m f m m m --+=>>-≥,∴3
e 1
m -≥
时,命题成立. 综上所述,m 的取值范围为3
[,)e 1
+∞-. 14分
21.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.
∴
,解得
,
∴a n ﹣1+(n ﹣1)=n ﹣2.
(2)=
.
∴数列{
}的前n 项和S n =﹣1+0++
+…+
,
=
+0+
+…+
+
,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n =.
22.【答案】
【解析】(I )∵1cos )sin 3(cos 2
cos 22
=-+C B B A
, ∴0cos sin 3cos cos cos =-+C B C B A ,
∴0cos sin 3cos cos )cos(=-++-C B C B C B ,
∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C 又∵C 是三角形的内角,∴3
π
=
C .
23.【答案】
【解析】解:(Ⅰ)f (x )=2|x ﹣1|﹣|2x+m|=|2x ﹣2|﹣|2x+m|≤|(2x ﹣2)﹣(2x+m )|=|m+2| ∵m ≥0,∴f (x )≤|m+2|=m+2,当x=1时取等号,
∴f (x )max =m+2,又f (x )的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a 2+b 2+c 2)[12+(﹣2)2+12]≥(a ﹣2b+c )2
,
∵a ﹣2b+c=m=1,∴,
当
,即
时取等号,∴a 2+b 2+c 2
的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.
24.【答案】
【解析】解:(Ⅰ)由题意得,2c=2
,
=1;
解得,a 2=4,b 2
=1;
故椭圆E 的方程为
+y 2=1;
(Ⅱ)由题意知,当k 1=0时,M 点的纵坐标为0,
直线MN 与y 轴垂直, 则点N 的纵坐标为0, 故k 2=k 1=0,这与k 2≠k 1矛盾. 当k 1≠0时,直线PM :y=k 1(x+2);
由
得,
(+4)y2﹣=0;
解得,y M=;
∴M(,),
同理N(,),
由直线MN与y轴垂直,则=;
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.。