八年级数学上册全册全套试卷模拟训练(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全册全套试卷模拟训练(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.
2.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD=__________.
【答案】119°
【解析】
【分析】
连接BD,构△BCD根据对顶角相等和三角形内角和定理即可求出∠BCD的度数.
【详解】
如图所示,连接BD,
∵∠4=∠1=38°,∠3=∠2=23°,
∴∠BCD =180°-∠4-∠3=180°-38°-23°=119°.
故答案为:119°.
【点睛】
本题考查了对顶角的性质与三角形内角和定理. 连接BD ,构△BCD 是解题的关键.
3.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.
【答案】7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.
【答案】2∠A =∠1+∠2
【解析】
【分析】
根据∠1与∠AED 的2倍和∠2与∠ADE 的2倍都组成平角,结合△AED 的内角和为180°可求出答案.
【详解】
∵△ABC 纸片沿DE 折叠, ∴∠1+2∠AED =180°,∠2+2∠ADE =180°,
∴∠AED =12(180°−∠1),∠ADE =12
(180°−∠2), ∴∠AED +∠ADE =
12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2) ∴△ADE 中,∠A =180°−(∠AED +∠ADE )=180°−[180°−
12(∠1+∠2)]=12
(∠1+∠2),
即2∠A =∠1+∠2.
故答案为:2∠A =∠1+∠2.
【点睛】 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.
5. 如果一个n 边形的内角和等于它的外角和的3倍,则n=______.
【答案】8
【解析】
【分析】
根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.
【详解】
解:由题意得:180(n-2)=360×3,
解得:n=8,
故答案为:8.
【点睛】
此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.
【答案】20°.
【分析】
根据翻折的性质可知:∠BCD=∠B′CD ,又
∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.
【详解】
解:∵△B′CD 时由△BCD 翻折得到的,
∴∠BCD=∠B′CD ,
又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,
∴∠BCD=70°,
又∵∠ACD+∠BCD=∠ACB=90°,
∴∠ACD=20°.
故答案为:20°.
【点睛】
本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、八年级数学三角形选择题(难)
7.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )
A .15 cm 2
B .20 cm 2
C .30 cm 2
D .35 cm 2
【答案】D
【分析】
连接AD,BE,CF.根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC的面积,故△DEF的面积等于7倍的△ABC面积,即可得出结果.
【详解】
连接AD,BE,CF.
∵BC=CD,∴S△ACD=S△ABC=5,S△FCD=S△BCF.同理S△AEB=S△ABC=5,S△AED=S△ACD=5;
S△AEB=S△BEF=5,S△BFC=S△ABC=5;∴S△FCD=S△BCF=5,∴S△EFD=7S△ABC=35(cm2).
故选D.
【点睛】
本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.
8.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()
A.56 B.64 C.72 D.90
【答案】D
【解析】
【分析】
根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.
【详解】
第1个图形的花盆个数为:(1+1)(1+2);
第2个图形的花盆个数为:(2+1)(2+2)=12;
第3个图形的花盆个数为:(3+1)(3+2)=20;
,
第n个图形的花盆个数为:(n+1)(n+2);
则第7个图形中花盆的个数为:(7+1)(7+2)=72.
故选:C.
【点睛】
本题考查图形规律题,解此题的关键在于根据题中图形找到规律.
9.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()
A.65°B.70°C.75°D.80°
【答案】D
【解析】
【分析】
由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.
【详解】
解:∵AB∥CD,
∴∠C=∠1=45°,
∵∠3是△CDE的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,
b∥c⇒a∥c.
10.一个多边形内角和是900°,则这个多边形的边数是()
A.7 B.6 C.5 D.4
【答案】A
【解析】
【分析】
n边形的内角和为(n-2)180°,由此列方程求n的值即可.
【详解】
设这个多边形的边数为n,
则:(n-2)180°=900°,
解得n=7.
故答案为:A.
【点睛】
本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.
11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:
①∠CEG=2∠DCB;②∠DFB=∠CG E;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是
()
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
①∵EG∥BC,
∴∠CEG=∠ACB.
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
④无法证明CA平分∠BCG,故错误;
③∵∠A=90°,
∴∠ADC+∠ACD=90°.
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC+∠BCD=90°.
∵EG∥BC,且CG⊥EG,
∴∠GCB=90°,即∠GCD+∠BCD=90°,
∴∠ADC=∠GCD,故正确;
②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,
∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,
∴∠DFE=360°﹣135°﹣90°=135°,
∴∠DFB=45°=∠CGE,
∴∠CGE=2∠DFB,
∴∠DFB=∠CGE,故正确.
故选C.
点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.
12.一个多边形的每个内角都等于120°, 则此多边形是( )
A.五边形B.七边形C.六边形D.八边形
【答案】C
【解析】
【分析】
先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣
120°=60°,∴边数n=360°÷60°=6.
故选C.
【点睛】
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
三、八年级数学全等三角形填空题(难)
13.如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是______度.
【答案】24
【解析】
【分析】
在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明
△ABD≌△AED即可求解.
【详解】
如图,在DC上取DE=DB,连接AE.
在Rt△ABD和Rt△AED中,
BD ED
ADB ADE
AD AD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ABD≌△AED(SAS).
∴AB=AE,∠B=∠AED.
又∵CD=AB+BD,CD=DE+EC
∴EC=AB
∴EC=AE,
∴∠C=∠CAE
∴∠B=∠AED=2∠C
又∵∠B+∠C=180°-∠BAC=72°
∴∠C=24°,
故答案为:24.
【点睛】
本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.
14.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,
BF=2,则EF=__.
【答案】6
【解析】
【分析】
由于AB//CD、AE/CF,根据平行线的性质可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知条件就可以证明△AEF≌△CFD,最后利用全等三角形的性质和已知条件即可求解.【详解】
解:∵AB//CD、AE/CF,
∴∠B=∠D,∠AEF=∠CFD,而AE=CF,
∴△AEF≌△CFD,
∴DF=EB,
∴DE=BF,
∴EF=BD-2BF=6.
故答案为:6.
【点睛】
本题主要考查了全等三角形的性质与判定,解题时首先利用平行线的性质构造全等条件证明三角形全等,然后利用全等三角形的性质即可解决问题.
15.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥A C交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.
【答案】16
【解析】
时,四边形FBCD周长最小为5+6+5=16
四边形FBCD周长=BC+AC+DF;当DF BC
16.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B (6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN 的最小值是______.
【答案】3
【解析】
【分析】
在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.
【详解】
解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.
∵ON’=ON,∠N’OM=∠NOM,OM=OM,
∴△N’OM≌△NOM,
∴MN’=MN,
∴MA+MN=MA+MN’,
∵A点固定,
∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,
∴MA+MN’的最小值为AD,
∵∠OAB=∠AOB=15°,OB=6,
∴∠ABD=30°,AB=6,
∴AD=0.5×6=3,
∴MA+MN的最小值为3,
故答案为3.
【点睛】
理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.
17.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
【分析】
由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交BE与点G,连接AG,可得△AGF, △AGE,△CEG均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.
【详解】
解:如图
Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠ABF=∠ACE,
在△ABF与△ACE中,有
AB AC
BAF CAE
ABF ACE
=
⎧
⎪
∠=∠
⎨
⎪∠=∠
⎩
,∴△ABF≌△ACE,
∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,
C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,AF=22∴AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
∴四边形AGCE为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
18.如图,已知BD,CD分别是∠ABC和∠ACE的平分线,连接AD,∠DAC=46°, ∠BDC _________
【答案】44°
【解析】
如图,过点D作DF⊥BA,交BA的延长线于点F,过点D作DH⊥AC于点H,过点D作DG⊥BA,交BC的延长线于点G,
∵BD,CD分别是∠ABC和∠ACE的平分线,
∴DF=DG=DH,
∵DH⊥AC,DF⊥BA,
∴AD平分∠CAF,
∴∠DAC=∠FAD=46°,
∴∠BAC=180°-46°-46°=88°;
∵BD,CD分别是∠ABC和∠ACE的平分线,
∴∠DCE=1
2
ACE
∠,∠DBC=
1
2
ABC
∠,
∵∠DCE=∠BDC+∠DBC,∠ACE=
∴∠BDC+∠DBC=
12(∠BAC+∠ABC ), ∴∠BDC=12
∠BAC=00188442⨯= .
四、八年级数学全等三角形选择题(难)
19.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).
A .PA P
B =
B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
【答案】D
【解析】
【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.
【详解】
解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥
∴PA PB =,选项A 正确;
在△AOP 和△BOP 中,
PO PO PA PB =⎧⎨=⎩
, ∴AOP BOP ≅
∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;
由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .
【点睛】
本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.
20.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:
①△PFA ≌△PEB ,②EF=AP ,③△PEF 是等腰直角三角形,④当∠EPF 在△ABC 内绕顶点P 旋
转时(点E不与A,B重合),S四边形AEPF=1
2
S△ABC,上述结论中始终正确有()
A.1个B.2个C.3个D.4个【答案】C
【解析】
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP⊥BC,AP=PB,
∠B=∠CAP=45°,
∵∠APF+∠FPA=90°,
∠ APF+∠BPE=90°,
∴∠APF=∠BPE,
在△BPE和△APF中,
∠B=∠CAP, BP=AP,∠BPE =∠APF,
∴△PFA≌△PEB;故①正确;
∵△ABC是等腰直角三角形点P是BC的中点,
∴AP=1
2 BC,
又∵EF不一定是△ABC的中位线,
∴EF≠AP,故结论②错误;
∵△PFA≌△PEB,
∴PE=PF,
又∵∠EPF=90°,
∴△PEF是等腰直角三角形,故③正确;∵△PFA≌△PEB,
∴S△PFA =S△PEB,
∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=1
2
S△ABC,故结论④正确;
综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.
故选:C.
点睛:本题意旋转为背景考查了全等三角形的判定和性质,解题时需要运用等腰直角三角形的判定和性质,综合性较强,根据题意得出△PFA≌△PEB是解答此题的关键.
21.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D,过P作PF⊥AD交AC的延长线于点H,交BC的
延长线于点F,连接AF交DH于点G,则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH,其中正确的是()
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出
∠CAP,再根据角平分线的定义∠ABP=1
2
∠ABC,然后利用三角形的内角和定理整理即可
得解;
②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;
③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;
④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.
【详解】
解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴∠ABP=1
2
∠ABC,
∠CAP=1
2(90°+∠ABC)=45°+1
2
∠ABC,
在△ABP中,∠APB=180°-∠BAP-∠ABP,
=180°-(45°+1
2
∠ABC+90°-∠ABC)-1
2
∠ABC,
=180°-45°- 1
2
∠ABC-90°+∠ABC-1
2
∠ABC,
=45°,故本小题正确;
②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,
∵∵PB 为∠ABC 的角平分线,
∴∠ABP=∠FBP ,
在△ABP 和△FBP 中,
APB FPB PB PB
ABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABP ≌△FBP (ASA ),
∴AB=BF ,AP=PF ;故②正确;
③∵∠ACB=90°,PF ⊥AD ,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP ,
∵PF ⊥AD ,
∴∠APH=∠FPD=90°,
在△AHP 与△FDP 中,
90AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△AHP ≌△FDP (AAS ),
∴DF=AH ,
∵BD=DF+BF ,
∴BD=AH+AB ,
∴BD-AH=AB ,故③小题正确;
④∵PF ⊥AD ,∠ACB=90°,
∴AG ⊥DH ,
∵AP=PF ,PF ⊥AD ,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG ,
∵∠PAF=45°,AG ⊥DH ,
∴△ADG 与△FGH 都是等腰直角三角形,
∴DG=AG ,GH=GF ,
∴DG=GH+AF ,
∵AF >AP ,
∴DG=AP+GH 不成立,故本小题错误,
综上所述①②③正确.
故选:C.
【点睛】
本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.
22.如图,△ABC 的两条外角平分线AP 、CP 相交于点P ,PH ⊥AC 于H ;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH ;④∠APH=∠BPC ;其中正确的结论个数是( )
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明△PAN ≌△PAH ,△PCM ≌△PCH ,根据全等三角形的性质可得∠APN=∠APH ,∠CPM=∠CPH ,由此即可判定②;在Rt △PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.
【详解】
如图,作PM ⊥BC 于M ,PN ⊥BA 于N .
∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,
∴PN=PH ,同理PM=PH ,
∴PN=PM ,
∴PB 平分∠ABC ,
∴∠ABP=
12
∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩
, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,
∴∠APN=∠APH ,∠CPM=∠CPH ,
∵∠MPN=180°-∠ABC=120°,
∴∠APC=1
∠MPN=60°,故②正确,
2
在Rt△PBN中,∵∠PBN=30°,
∴PB=2PN=2PH,故③正确,
∵∠BPN=∠CPA=60°,
∴∠CPB=∠APN=∠APH,故④正确.
综上,正确的结论为①②③④.
故选D.
【点睛】
本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.
23.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:
①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;
③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•O C.正确的有()个.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
结论(1)正确.因为图中全等的三角形有3对;
结论(2)错误.由全等三角形的性质可以判断;
结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.
结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】
结论(1)正确,理由如下:
图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.
由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD与△COE中,
∴△AOD≌△COE(ASA),
同理可证:△COD≌△BOE.
结论(2)错误.理由如下:
∵△AOD≌△COE,
∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面积等于四边形CDOE的面积的2倍.
结论(3)正确,理由如下:
∵△AOD≌△COE,
∴CE=AD,
∴CD+CE=CD+AD=AC=OA,
∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;
结论(4)正确,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,
即OP•OC=OE2.
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
综上所述,正确的结论有3个,
故选C.
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
24.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是()
A.△ACF B.△ACE
C.△ABD D.△CEF
【答案】C
【解析】
【分析】
利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC中,AB=22
+=10,BC=22
31
+=2,AC=22,
11
A、在△ACF中,AF=22
+=5≠10,5≠2,5≠22,则△ACF与△ABC不全
21
等,故不符合题意;
B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;
C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;
D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
五、八年级数学轴对称三角形填空题(难)
25.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
【答案】10
【解析】
利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.
故答案为10.
26.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.
【答案】11()
802n -︒⋅.
【解析】
【分析】
先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.
【详解】
解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022
B ︒︒︒
-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,
∴∠CA 2A 1= 108022
BA A ︒
∠= =40°; 同理可得,
∠DA 3A 2=20°,∠EA 4A 3=10°,
∴第n 个等腰三角形的底角∠A n = 11()
802n -︒⋅.
【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.
27.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.
【答案】6; 3×22018.
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1=6,得出a 3=4a 1,a 4=8a 1,a 5=16a 1…进而得出答案.
【详解】
解: 如图,
∵△A 1B 1A 2是等边三角形,
∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA 1=A 1B 1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a4=8a1,
a5=16a1,
以此类推:a2019=22018a1=3×22018
故答案是:6;3×22018.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,
a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.
28.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交
AB,AC于点M和N,再分别以点M,N为圆心,大于1
2
MN的长为半径画弧,两弧交于
点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;
②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)
【答案】4
【解析】
【分析】
①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;
②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出
∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;
③根据∠1=∠B可知AD=BD,故可得出结论;
④先根据直角三角形的性质得出∠2=30°,CD=1
2
AD,再由三角形的面积公式即可得出结
论.【详解】
①连接NP ,MP .在△ANP 与△
AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩
,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;
②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.
∵AD
是∠BAC 的平分线,∴∠1=∠2=
12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;
③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;
④∵在Rt △ACD
中,∠2=30°,∴CD =
12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC
=12AC •BC =12AC •32AD =34
AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.
【点睛】
本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.
29.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.
【答案】12
【解析】
【分析】
延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.
延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:
∵M 为EF 中点,
∴ME =MF ,
在△BME 和△GMF 中,
BM MG BME GMF
ME MF =⎧⎪∠=∠⎨⎪=⎩
, ∴△BME ≌△GMF (SAS ),
∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,
∴FG ∥BE ,
∴∠C =∠GFC ,
∵∠A +∠C =180°,∠DFG +∠GFC =180°,
∴∠A =∠DFG ,
∵AB =BE ,
∴AB =FG ,
在△DAB 和△DFG 中,
AB FG A DFG
AD DF =⎧⎪∠=∠⎨⎪=⎩
, ∴△DAB ≌△DFG (SAS ),
∴DB =DG ,S △DAB =S △DFG ,
∵MG =BM ,
∴DM ⊥BM ,
∴五边形ABEFD 的面积=△DBG 的面积=
12×BG ×DM =12
×8×3=12, 故答案为:12.
本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.
30.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.
34
【解析】
【分析】
如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=
C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为
C′D′,作C′T⊥D′O于点T,于是得到结论.
【详解】
解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,
则OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=
∠COD′=45°,
∴CP+PM+MD=C′+PM+D′M≥C′D′,
当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,
作C′T⊥D′O于点T,
则C′T=OT2,
∴D′T=2,
∴C′D34
∴CP+PM+DM34
34
【点睛】
本题考查了最短路径问题,掌握作轴对称点是解题的关键.
六、八年级数学轴对称三角形选择题(难)
31.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
A.2 B.3 C.4 D.5
【答案】C
【解析】
以O点为圆心,OA为半径作圆与x轴有两交点,这两点显然符合题意.以A点为圆心,OA为半径作圆与x轴交与两点(O点除外).以OA中点为圆心OA长一半为半径作圆与x 轴有一交点.共4个点符合,
32.如图,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分线分别交 AC,AD 于E,F,点M 为 EF 的中点,AM 的延长线交 BC 于N,连接 DM,NF,EN.下列结论:
①△AFE为等腰三角形;②△BDF≌△ADN;③NF所在的直线垂直平分AB;④DM平分
∠BMN;⑤AE=EN=NC;⑥AE BN
EC BC
.其中正确结论的个数是( )
A.2个B.3个C.4个D.5个【答案】D
【解析】
【分析】
①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得
∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由
∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得
BD BC A BC B ==由⑤可得AE EN EC EC ==所以⑥正确. 【详解】
解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,
∴∠BAD=∠CAD=∠C=45°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=12
∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,
∴△AEF 为等腰三角形,所以①正确;
∵∠BAC=90°,AC=AB ,AD ⊥BC ,
∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD ,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE= 12
∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE ,AM ⊥BE ,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN ,
在△FBD 和△NAD 中,
∠FBD =∠DAN ,BD =AD ,∠BDF =∠ADN ,
∴△FBD ≌△NAD ,所以②正确;
因为BF>BD=AD,
所以BF ≠AF,
所以点F 不在线段AB 的垂直平分线上,所以③不正确
∵∠ADB=∠AMB=90°,
∴A、B、D、M四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,
∴DM平分∠BMN ,所以④正确;
在△AFB和△CNA中,
∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),
∴AF=CN,
∵AF=AE,
∴AE=CN,
∵AE=AF,FM=EM,
∴AM⊥EF,
∴∠BMA=∠BMN=90°,
∵BM=BM,∠MBA=∠MBN,
∴△MBA≌△MBN,
∴AM=MN,
∴BE垂直平分线段AN,
∴AB=BN,EA=EN,
∵BE=BE,
∴△ABE≌△NBE,
∴∠ENB=∠EAB=90°,
∴EN⊥NC.
∴△ENC是等腰直角三角形,
∴AE=CN=EN,所以⑤正确;
∵AF=FN,
所以∠FAN =∠FNA,
因为∠BAD =∠FND=45°,
所以∠FAN+ ∠BAD =∠FNA+∠FND,
所以∠BAN =∠BNA,
所以AB=BN,
所以
2
BD
BC
A
BC
B
==
由⑤可知,△ENC是等腰直角三角形,AE=CN=EN,
∴
2 AE EN
EC EC
==,
所以AE BN
EC BC
=,所以⑥正确,
故选D.
【点睛】
本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.
33.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①AP⊥BC;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,根据等腰三角形“三线合一”的性质判断出①正确;根据HL证明Rt△APR≌Rt△APS,即可判断②正确;根据等边对等角的性质可得∠APQ=∠PAQ,根据三角形外角的性质得到然后得到
∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,④由③易证△QPC是等边三角形,得到PQ=PC,等量代换得到BP=PQ,用HL证明Rt△BRP≌Rt△QSP,即可得到④正确.
【详解】
∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上.
∵AB=AC,∴AP⊥BC,故①正确;
∵PA=PA,PR=PS,∴Rt△APR≌Rt△APS,∴AS=AR,故②正确;
∵AQ=PQ,∴∠APQ=∠PAQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;
由③得:△PQC是等边三角形,∴△PQS≌△PCS,∴PQ=PC.
又∵AB=AC,AP⊥BC,∴BP=PC,∴BP=PQ.
∵PR=PS,∴Rt△BRP≌Rt△QSP,故④也正确.
∵①②③④都正确.
故选D.
【点睛】
本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.
34.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结
论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第
4
3
秒或第
8
3
秒时,△PBQ为直角三角形,正确的有几个 ( )
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.
②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;
③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;
④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.
【详解】
①在等边△ABC中,AB=BC.
∵点P、Q的速度都为1cm/s,
∴AP=BQ,
∴BP=CQ.
只有当CM=CQ时,BP=CM.
故①错误;
②∵△ABC是等边三角形
∴∠ABQ=∠CAP,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
∵
AB CA
ABQ CAP
AP BQ
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABQ≌△CAP(SAS).
故②正确;。