新初中数学相交线与平行线知识点总复习附解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学相交线与平行线知识点总复习附解析
一、选择题
1.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )
A .75°
B .90°
C .105°
D .120°
【答案】C
【解析】
【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:如图,延长CE 交AB 于点F ,
∵AB ∥CD ,
∴∠AFE =∠C =60°,
在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.
故选:C .
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.
2.如图,不能判断12//l l 的条件是( )
A .13∠=∠
B .24180∠+∠=︒
C .45∠=∠
D .23∠∠=
【答案】D
【解析】
【分析】
根据题意,结合图形对选项一一分析,排除错误答案.
【详解】
A、∠1=∠3正确,内错角相等两直线平行;
B、∠2+∠4=180°正确,同旁内角互补两直线平行;
C、∠4=∠5正确,同位角相等两直线平行;
D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.
故选:D.
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
3.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为
A.80°B.50°C.30°D.20°
【答案】D
【解析】
【分析】
【详解】
试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.
考点:平行线的性质;三角形的外角的性质.
4.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA的度数是()
A .28°
B .30°
C .38°
D .36°
【答案】D
【解析】
【分析】
根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.
【详解】 解:∠C=(52)1801085
︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°
∴∠CDB+∠CBD=180°-∠C =180°-108°=72°
∴∠CDB==∠CBD=72362
︒
︒= 又∵AF ∥CD
∴∠DFA=∠CDB=36°(两直线平行,内错角相等)
故选D
【点睛】
本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n
-⨯.
5.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )
A .6个
B .5个
C .4个
D .3个
【答案】B
【解析】
【分析】 由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平
分线即可判断.
【详解】
解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,
故选择B.
【点睛】
本题综合考查了平行线的判定及性质.
6.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()
A.2 B.4 C.5 D.7
【答案】A
【解析】
试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.
考点:垂线段最短.
7.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
8.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()
A.∠ABE=2∠CDE B.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】
解:延长BF与CD相交于M,
∵BF∥DE,
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
9.下列说法中,正确的是()
A.过一点有且只有一条直线与已知直线垂直
B.过直线外一点有且只有一条直线与已知直线平行
C.垂于同一条直线的两条直线平行
D.如果两个角的两边分别平行,那么这两个角一定相等
【答案】B
【解析】
【分析】
根据平行线的性质和判定,平行线公理及推论逐个判断即可.
【详解】
A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;
B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;
C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;
D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
10.如图,下列推理错误的是( )
A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥d
C.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b
【答案】C
【解析】
分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.
详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;
根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;
因为∠1和∠3的位置不符合平行线的判定,故不正确;
根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.
故选:C.
点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.
11.下列图形中线段PQ的长度表示点P到直线a的距离的是()
A.B.
C.D.
【答案】C
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
由题意得PQ ⊥a ,
P 到a 的距离是PQ 垂线段的长,
故选C .
【点睛】
本题考查了点到直线的距离,点到直线的距离是解题关键.
12.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:
①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。
其中正确的结论有( )个
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 根据平行四边形的性质、三角形的面积公式、平行线的性质、等腰三角形的性质、直线之间的距离逐个判断即可得.
【详解】
Q 四边形ABCD 是平行四边形
//,//,,AB CD AD BC AB CD OB OD ∴==,则①正确
AOB ∆Q 边OB 上的高与AOD ∆边OD 上的高是同一条高,且OB OD =
AOB AOD S S ∆∆∴=,则②正确
//AD BC Q
ADB CBD ∴∠=∠
若ABD CBD ∠=∠,则ABD ADB ∠=∠
AD AB ∴=,这与已知条件AD AB >矛盾,则③错误
如图,过点A 作AE CD ⊥于点E
//AB CD Q
∴对边,AB CD 之间的距离相等,且等于AE 的长
BC Q 不一定垂直于CD
BC ∴不一定等于AE ,则④错误
综上,结论正确的个数为2个
故选:B .
【点睛】
本题考查了平行四边形的性质、平行线的性质、等腰三角形的性质等知识点,熟练掌握并灵活运用各性质是解题关键.
13.A、B、C是直线L上三点,P为直线外一点,若PA=2cm,PB=3cm,PC=5cm,则P 到直线L的距离是()
A.等于2cm B.大于2cm C.不小于2cm D.不大于2cm
【答案】D
【解析】
【分析】
从直线外一点到这条直线上各点所连的线段中,垂线段最短.
【详解】
∵PA=2cm,PB=3cm,PC=5cm,
∴PA<PB<PC.
∴①当PA⊥L时,点P到直线L的距离等于2cm;
②当PA与直线L不垂直时,点P到直线L的距离小于2cm;
综上所述,则P到直线L的距离是不大于2cm.
故选:D.
【点睛】
本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.
14.下列说法中,正确的是()
A.不相交的两条直线是平行线
B.过一点有且只有一条直线与已知直线平行
C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离
D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
【答案】D
【解析】
【分析】
运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.
【详解】
A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;
B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;
C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;
D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.
故选:D .
【点睛】
本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.
15.如图,11,,33
AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )
A .60︒
B .80︒
C .90︒
D .100︒
【答案】B
【解析】
【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得
60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.
【详解】
延长BC 、EF 交于点G
∵//AB EF
∴180ABG BGE +=︒∠∠
∵60FCD ∠=︒
∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33
ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠
2236012033
ABG EFC =︒---︒∠∠ ()223606012033
ABG BGE =︒--︒+-︒∠∠
223604012033
ABG BGE =︒--︒--︒∠∠ ()22003
ABG BGE =︒-+∠∠ 22001803
=︒-⨯︒ 80=︒
故答案为:B .
【点睛】
本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.
16.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )
A .∠α+∠β=95°
B .∠β﹣∠α=95°
C .∠α+∠β=85°
D .∠β﹣∠α=85°
【答案】D
【解析】
【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.
【详解】
解:过点C 作CF ∥AB
∵AB ∥DE ,CF ∥AB
∴AB ∥DE ∥CF
∴∠BCF=∠α
∠DCF+∠β=180°
∴∠BCD =∠BCF +∠DCF
∴∠α+180°-∠β=95°
∴∠β﹣∠α=85°
故选:D
【点睛】
本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.
17.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )
A .40︒
B .50︒
C .70︒
D .90︒
【答案】A
【解析】
【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.
【详解】
解:∵50AOC ∠=︒,
∴50BOD ∠=︒(对顶角相等),
又∵OE AB ⊥,
∴90EOB ∠=︒,
∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,
故A 为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.
18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )
A .60︒
B .70︒
C .110︒
D .120︒
【答案】A
【解析】
【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.
【详解】
解:5∠标记为如下图所示,
∵1,5∠∠是对顶角,
∴15∠=∠(对顶角相等),
又∵1110,270︒︒
∠=∠=,
∴1251107800︒︒+∠=∠=+︒,
∴a ∥b (同旁内角互补,两直线平行),
∴34∠=∠(两直线平行,内错角相等),
∴4360∠=∠=︒,
故A 为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..
19.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )
A .左转80°
B .右转80°
C .左转100°
D .右转100°
【答案】B
【解析】
【分析】
如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.
【详解】
如图,延长AB到D,过C作CE//AD,
∵此时需要将方向调整到与出发时一致,
∴此时沿CE方向行走,
∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,
∴∠A=60°,∠1=20°,
AM∥BN,CE∥AB,
∴∠A=∠2=60°,∠1+∠2=∠3
∴∠3=∠1+∠2=20°+60°=80°,
∴应右转80°.
故选B.
【点睛】
本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.
20.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()
A.24°B.34°C.56°D.124°
【答案】C
【解析】
【分析】
【详解】
试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.
考点:平行线的性质.。