相似三角形2013、4、6

合集下载

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳

数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。

它是一门古老而崭新的科学,是整个科学技术的基础。

随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。

以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。

数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。

简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。

这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质基本性质:内项积等于外项积。

(比例=====等积)。

主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。

三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

说课稿 北师大版 初中 数学 八年级 下册《相似三角形》

说课稿 北师大版 初中 数学 八年级 下册《相似三角形》

相似三角形尊敬的各位评委老师,上午好!我是来应聘小学数学的5号考生。

今天,我说课的题目是:《相似三角形》。

下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行我的说课。

下面开始我的说课。

一、说教材《相似三角形》是北师大版初中数学八年级下册第四章第五节课的教学内容。

本节课主要介绍了相似三角形的定义及应用这一概念解决一些实际问题。

本节课是在学生学习了相似多边形,知道了相似多边形的本质特征的基础上进行教学的,并为下一步学习相似三角形的判断定理做感性的准备,因此本节课具有承上启下的作用。

根据对教材地位和作用的分析,在新课改理念的指导下,我对这个课时确定了如下三维目标:知识与技能目标:了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,并在实际应用中加深对相似三角形的认识和理解。

过程与方法目标:在相似三角形概念的学习过程中,引导学生对问题观察、分析等,养成良好的思维习惯,并在应用的过程中进行对比学习,渗透类比的思想方法。

情感、态度与价值观目标:通过本节课的课的学习,学生体验数学学习活动中探索与创造的乐趣。

根据本节教材的地位和作用以及课改中明确要求学生了解两个三角形相似的概念和利用这个概念解决一些实际问题,因此本节课的教学重点是相似三角形的概念和初步应用,相似三角形概念中的对应边对应角理解起来还是有一些难度的,因此这是这节课的教学难点。

二、说学情分析学生的学习数学的基本情况,对于把握教材和教学具有重要指导意义。

因此在教学之前我来分析一下学情。

八年级学生还处于形象思维阶段,他们乐于尝试、探索、思考,好奇心和求知欲较强。

对于相似图形的概念有了一定的积累,初步具有比较、理解的能力,但是对于三角形相似概念中的对应关系的抽象能力还不够强,因此,在授课中我会注意这方面的问题,帮助学生建立相关知识体系。

三、说教法在新课改理念的指导下,教学中应关注学生交流能力的培养及探究问题的意识。

根据初中学生的心理特征及本节的内容特点,这节课我主要采用小组探究法和启发教学法,这两种教法的应用能够很好的引导学生探索知识,加快形成完整的认知结构,提高学生这方面知识的应用能力。

相似三角形PPT免费

相似三角形PPT免费

这一性质可以用来解决一些与面 积有关的问题,如计算相似三角 形的面积、判断两个三角形面积
的关系等。
在实际应用中,相似三角形的面 积比与相似比关系也经常被用来 进行面积或体积的测量和计算。
2024/1/27
10
03 相似三角形在几何中的应 用
2024/1/27
11
平行线间距离问题
利用相似三角形性质求解平行线间距离
2024/1/27
这一性质可以用来解决一些与 长度比例有关的问题,如线段 的比例、面积的比例等。
在实际应用中,相似三角形的 对应边成比例这一性质也经常 被用来进行长度或距离的测量 和计算。
9
面积比与相似比关系
相似三角形的面积比等于相似比 的平方,即如果两个三角形相似 且相似比为k,那么它们的面积
之比为k^2。
感谢您的观看
2024/1/27
27
相似三角形PPT免费
2024/1/27
1
contents
目录
2024/1/27
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何中的应用 • 相似三角形在三角函数中的应用 • 相似三角形在生活中的应用举例 • 总结回顾与拓展延伸
2
01 相似三角形基本概念
2024/1/27
3
定义与性质
18
05 相似三角形在生活中的应 用举例
2024/1/27
19
建筑设计中视觉效果优化
利用相似三角形原理,在建筑设计中 实现视觉效果的优化,如调整建筑立 面的比例和角度,营造出更加和谐、 美观的外观。
利用相似三角形在建筑设计中的应用 ,还可以解决一些实际问题,如采光 、通风等。
通过相似三角形的变换,实现建筑立 面的层次感和立体感,增强建筑的视 觉冲击力。

《相似三角形》课件

《相似三角形》课件

设计者使用相似三角形来创建比例恰到
好处的建筑物。
3
地理
使用相似三角形的原理来测量无法直接 测量的高度和距离。
工程
工程师可以借助相似三角形来进行缩放 和尺寸调整。
通过相似三角形求高度和距离
通过测量底边和顶角,可以利用相似三角形的原理来计算无法直接测量的高 度和距离。
相似三角形的重心、垂心和外心
相似三角形的重心、垂心和外心是三角形内特殊的点,它们的位置和性质可以用相似三角形的原理推导出来。
相似三角形PPT课件
相似三角形课件将深入探讨相似三角形的定义、性质、判断、比例、面积、 应用、解法以及与等腰三角形和全等三角形的关系。
什么是相似三角形?
相似三角形是具有相同形状但大小不同的三角形。它们的对应角度相等,而 各对应边的比例始终保持一致。
相似三角形的定义和性质
定义
三角形之间对应的角相等, 对应的边成比例。
性质
相似三角形的对应边长之比 始终相等,全等三角形也是 一种相似三角形。
例子
两个等腰三角形的顶角相等, 底边的比例相等。
如何判断两个三角形是否相似?
1 AA判定法
两个三角形的两个对应角 度相等,则它们相似。
2 SAS判定法
两个三角形的两个对应边 成比例,并且夹角相等, 则它们相似。
3 SAA判定法
两个三角形的一个角相等, 并且两个对应边成比例, 则它们相似。
相似三角形的比例和比较
பைடு நூலகம்
比例
相似三角形的对应边长之比是固定的,可以用比例 表示。
测量
可以使用测量工具来确定三角形各边的长度,从而 比较它们的大小。
相似三角形的面积比例
相似三角形的面积比等于对应边的长度比的平方。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

相似三角形的判定及习题

相似三角形的判定及习题

知识点:相似三角形1、相似三角形1)概念:若是两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

几种特殊三角形的相似关系:两个全等三角形必然相似。

两个等腰直角三角形必然相似。

两个等边三角形必然相似。

两个直角三角形和两个等腰三角形不必然相似。

补充:关于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);2)性质:两个相似三角形中,对应角相等、对应边成比例。

3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC与△DEF相似,记作△ABC ∽△DEF。

相似比为k。

4)判定:①概念法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所组成的三角形与原三角形相似。

三角形相似的判定定理:判定定理1:若是一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:若是一个三角形的两条边和另一个三角形的两条边对应成比例,而且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:若是一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,而且分成的两个直角三角形也相似。

补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有普遍的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。

相似三角形与三角函数

相似三角形与三角函数

初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。

沪教版 九年级(上)数学 秋季课程 第2讲 相似三角形

沪教版 九年级(上)数学 秋季课程 第2讲 相似三角形

D ABCE相似三角形是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形的判定和相似三角形的性质;重点是根据已知条件灵活运用不同的判定定理对三角形相似进行判定,并结合相似三角形的性质进行相关的证明,难点是相似三角形的性质与判定的互相结合,以及相似三角形与分类讨论及函数思想的互相结合.1、 相似三角形的定义如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.如图,DE 是ABC ∆的中位线,那么在ADE ∆与ABC ∆中,A A ∠=∠, ADEB ∠=∠,AEDC ∠=∠;12AD DE AE AB BC AC ===. 由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作ADE ∆∽ABC ∆,其中点A 与点A 、点D 与点B 、点E 与点C 分别是对应顶点;符号“∽”读作“相似于”.用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“∆”后相应的位置上.相似三角形内容分析知识结构模块一:相似三角形的判定知识精讲2 / 16ABC A 1B 1C 1根据相似三角形的定义,可以得出:(1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数).(2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 2、 相似三角形的预备定理平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似. 如图,已知直线l 与ABC ∆的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE ∆∽ABC ∆.3、 相似三角形判定定理1如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似.可简述为:两角对应相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ∆∽111A B C ∆.常见模型如下:A BCDEABCDEABCDEABCA 1B 1C 1ABCA 1B 1C 14、 相似三角形判定定理2如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.可简述为:两边对应成比例且夹角相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,1A A ∠=∠,1111AB ACA B AC =,那么ABC ∆∽111A B C ∆.5、 相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.可简述为:三边对应成比例,两个三角形相似. 如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.6、 直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似.如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =,那么ABC ∆∽111A B C ∆.ABCA 1B 1C 14 / 16AB CABCDEABCP【例1】 如图,已知点P 是ABC ∆中边AC 上一点,联结BP ,要使ABP ∆∽ACB ∆,那么应添加的一个条件为____________,或____________,或____________.【例2】 下列命题正确的是( ) A .有一个角是40°的两个等腰三角形相似 B .有一个角是106°的两个等腰三角形相似 C .面积相等的两个直角三角形相似 D .两边之比为3 : 5的两个直角三角形相似【例3】 下列4⨯4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC ∆相似的三角形所在的网格图形是( )A .B .C .D .【例4】 如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,:3:5AD DE =,AE = 8, BD = 4,则DC 的长等于( )A .415B .125C .174D .154例题解析ABCDPA BCDE FP【例5】 在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似;乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.对于两人的观点,下列说法正确的是( ) A .两人多对B .两人都不对C .甲对乙不对D .甲不对,乙对【例6】 如图,ABC ∆中,AB = AC = 5,BC = 6,点M 为BC 中点,MN ⊥AC 于点N ,则MN =______.【例7】 如图,在平行四边形ABCD 中,F 是BC 上的一点,直线DF 与AB的延长线相交于点E ,BP // DF ,且与AD 相交于点P ,则图中有______对相似的三角形.【例8】 如图,在直角梯形ABCD 中,AD // BC ,90ABC ∠=︒,AB = 8,AD = 3,BC = 4,点P 为AB 边上一动点,若PAD ∆与PBC ∆是相似三角形,则满足条件的点P 的个数是( )A .1个B .2个C .3个D .4个图1图211 1 1111 AB CNM6 / 16A BCDEFAB CDE FGABCDEF 【例9】 如图,在Rt ABC ∆中,90ACB ∠=︒,BC = 3,AC = 4,AB 的垂直平分线DE 交BC的延长线于点E ,则CE 的长为( )A .32B .76C .256D .2【例10】如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F为线段DE 上一点,且AEF B ∠=∠.(1)求证:ADF ∆∽DEC ∆;(2)若AB = 8,AD =63,AF =43,求AE 的长.【例11】如图,梯形ABCD 中,AD // BC ,AB = DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且CDE ABD ∠=∠.(1)求证:四边形ACED 是平行四边形;(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.【例12】如图,在ABC ∆中,AB = AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:2AD DG BD =;(2)联结CG ,求证:ECB DCG ∠=∠.【例13】 在ABC ∆中,AB = 40,AC = 24,BC = 32,点D 是射线BC 上的一点(不与端点重合),联结AD ,如果ACD ∆与ABC ∆相似,求BD 的值.ABCDEAB C DE FG H QAB CDNM【例14】正方形ABCD 的边长为1,M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN ,求当BM 为多少时,四边形ABCN 的面积最大,最大面积为多少?【例15】 如图,将边长为6 cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则EBG ∆的周长为______cm .【例16】如图,Rt ABC ∆中,90ACB ∠=︒,AC = 4 cm ,BC = 2 cm ,D 为BC的中点,若动点E 以1 cm /s 的速度从A 点出发,沿着A B A →→的方向运动,设点E 的运动时间为t 秒,联结DE ,当t 为何值时,BDE ∆是直角三角形?【例17】如图,ABC ∆中,4AB = 5AC ,AD 为ABC ∆的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG = FD ,联结EG 交AC 于点H ,若点H 是AC 的中点,求AGFD的值.A BCDE A BCDEF G H8 / 161、 相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 2、 相似三角形性质定理2 相似三角形周长的比等于相似比. 3、 相似三角形性质定理3相似三角形的面积的比等于相似比的平方.【例18】如果两个相似三角形的面积之比是9 : 25,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是______cm .【例19】在ABC ∆中,DE // BC ,且D 在AB 边上,E 在AC 边上,若:1:4ADE BCED S S ∆=,则:ADE ABC C C ∆∆=______,:AD DB =______.【例20】如图,梯形ABCD 中,AD // BC ,90B ACD ∠=∠=︒,AB = 2,DC = 3,则ABC∆与DCA ∆的面积比为( )A .2 : 3B .2 : 5C .4 : 9D .2:3【例21】【例22】如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( )A .只有1个B .可以有2个C .可以有3个D .有无数个模块二:相似三角形的性质知识精讲例题解析ABCDABCD E ABCDE【例23】如图,D 、E 分别在ABC ∆的边AB 、AC 上,23AD AE DE AB AC BC ===,且ABC ∆与ADE ∆的周长之差为15 cm ,求ABC ∆与ADE ∆的周长.【例24】如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE // AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【例25】如图,在ABC ∆中,90C ∠=︒,将ABC ∆沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN // AB ,MC = 6,23NC =,那么四边形MABN 的面积是______.【例26】如图,在平行四边形ABCD 中,AB = 6,AD = 9,BAD ∠的平分线交BC 于E ,交DC 的延长线与F ,BG AE ⊥于G ,则EFC ∆的周长为______.【例27】如图,在ABC ∆中,BE 平分ABC ∠交AC 于点E ,过点E 作ED // BC 交AB于点D .(1)求证:AE BC BD AC =;(2)如果3ADE S ∆=,2BDE S ∆=,DE = 6,求BC 的长.AB CDEABCDNMABC DEFG10 / 16ABCD PQ【例28】如图,直角三角形ABC 中,90ACB ∠=︒,AB = 10,BC = 6,在线段AB 上取一点D ,作DF AB ⊥交AC 于点F ,现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ,AD 的中点E 的对应点记为1E ,若11E FA ∆∽1E BF ∆, 则AD =______.【例29】如图,在Rt ABC ∆中,90C ∠=︒,AB = 5,BC = 3,点D 、E 分别在BC 、AC上,且BD = CE ,设点C 关于DE 的对称点为F ,若DF // AB ,则BD 的长为______.【例30】如图,在Rt ABC ∆中,90ACB ∠=︒,AC = 8,BC = 6,CD AB ⊥于点D .点P从点D 出发,沿线段CD 向点C 运动,点O 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到点C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设CPQ ∆的面积为S ,求S 与t 之间的关系式,并确定运动过程中是否存在某一时刻t ,使得:9:100CPQ ABC S S ∆∆=?若存在,求出t 的值;若不存在,请说明理由;(3)当t 为何值时,CPQ ∆为等腰三角形?ABCD E F A 1E 1 AB CDEA BCABCDE FGABCDE【习题1】 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( )A .B .C .D .【难度】★ 【答案】 【解析】【习题2】 如图,D 是ABC ∆的边AC 上一点,CBD ∠的平分线交AC 于点E ,AE = AB ,则长度为线段AD 、AC 长度比例中项的线段是______.【习题3】 如图,在ABC ∆中,D 、F 是AB 的三等分点,DE // FG // BC ,分别交AC 于E 、G .记ADE ∆、四边形DFGE 、四边形FBCG 的面积分别为1S 、2S 、3S ,则123::S S S =______.【习题4】 如图,D 是ABC ∆的边BC 上一点,已知AB = 4,AD = 2,DAC B ∠=∠,若ABD ∆的面积为a ,则ACD ∆的面积为______.随堂检测ABCD12 / 16AB CPN MQA BCDEG Hx y xy xy xy O O O O 3 45 3 45 3 45 3 45 AB C D E FMG H【习题5】 如图,矩形ABCD 中,AB = 3,BC = 4,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记P A = x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图像大致是( )A .B .C .D .【习题6】 如图,已知点D 是等腰直角三角形ABC 斜边BC 上的一点,BC = 3BD ,CE ⊥AD ,则AE CE =______.【习题7】 在同一时刻,两根木竿在太阳光下的影子如图所示,其中木竿AB = 2 m ,它的影子BC = 1.6 m ,木竿PQ 的影子有一部分落在了墙上,PM = 1.2 m ,MN = 0.8 m ,则木竿PQ 的长度为______m .【习题8】 如图,点E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为点G ,BG 交AE 于点H .(1)求证:ABE ∆∽ECF ∆;(2)找出与ABH ∆相似的三角形,并证明;(3)若E 是BC 的中点,BC = 2AB ,AB = 2,求EM 的长.【习题9】 如图,在矩形ABCD 中,AB = 2,BC = 3,点E 、F 、G 、H分别在矩形ABCD 的各边上,EF // AC // HG ,EH // BD // FG ,求四边形EFGH 的周长.A B CDPx yA BC DEABCDEFmH【习题10】 如图,在ABC ∆中,AB = AC ,AD ⊥AB 于点D ,BC = 10 cm ,AD = 8 cm .点P 从点B 出发,在线段BC 上以每秒3 cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2 cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t > 0).(1)当t = 2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF ∆的面积存在最大值,当PEF ∆的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF ∆为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.14 / 16AB C DE A BCDEABCDE AB C D O【作业1】 如图,在ABC ∆中,DE // BC ,12AD DB =,则下列结论正确的是( ) A .12AE AC =B .12DE BC = C .13ADE ABC ∆=∆的周长的周长D .13ADE ABC ∆=∆的面积的面积【作业2】 如图,在ABC ∆中,点D 和点E 分别在边AB 、AC 上,下列条件不能判定ABC∆∽AED ∆的是( )A .AEDB ∠=∠B .ADEC ∠=∠ C .AD AC AE AB=D .AD AE AB AC=【作业3】 一副三角尺按如图所示的方式叠放,则AOB ∆与DOC ∆的面积之比为____________.【作业4】 如图,点D 、E 分别在ABC ∆两边AB 、AC 上,且AD = 31,DB = 29,AE = 30,EC = 32.若50A ∠=︒,则关系式“○1ADE B ∠>∠;○2AED C ∠=∠;○3ADE C ∠>∠;○4AED B ∠=∠”中正确的有( ) A .1个 B .2个 C .3个 D .4个【作业5】 在ABC ∆中,P 是AB 上的动点(P 异于A 、B ),过点P 的一条直线截ABC ∆,使截得的三角形与ABC ∆相似,我们不妨称这种直线为过点P 的相似线.如图,36A ∠=︒,AB = AC ,当点P 在AC 的垂直平分线上时,过点P 的ABC ∆的相 似线最多有______条.课后作业AB CPAB O xyAB CDE FGOAB CDEFA B CDE F NM【作业6】 如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB = a ,CG = b (a > b ),下列结论:○1BCG ∆≌DCE ∆;○2BG DE ⊥;○3DG GO GC CE=;○4()22EFO DGO a b S b S ∆∆-=,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个【作业7】 已知,在菱形ABCD 中,CF ⊥AB ,垂直为E ;CE 与BD 相交于点F .(1)求证:AB CFBE EF=;(2)求证:22DF DB BC =.【作业8】 如图,四边形ABCD 中,AC ⊥BD 交BD 与点E ,点F 、M 分别是AB ,BC 的中点,BN 平分ABE ∠交AM 于点N ,AB = AC = BD ,连接MF ,NF . (1)判断BMN ∆的形状,并证明你的结论;(2)判断MFN ∆与BDC ∆之间的关系,并说明理由.【作业9】 如图,AOB ∆为等腰三角形,顶点A 的坐标为(2,5)底边OB 在x 轴上,将AOB ∆绕点B 按顺时针方向旋转一定角度后得''A O B ∆,点A 的对应点'A 在x 轴上,求点'O 的坐标.16 / 16ABCD EF GP Q【作业10】 已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点,沿PE 翻折得到BPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G . (1)如图,当BP = 1.5时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP = x ,DG = y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE ∆与FHG ∆相似,求BP 的长.。

(完整版)相似三角形知识点归纳(全)

(完整版)相似三角形知识点归纳(全)
《相似三角形》知识点归纳
知识点 1 有关相似形的概念
(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形
.
(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多
边形.相似多边形对应边长度的比叫做相似比 ( 相似系数 ) .
知识点 2 比例线段的相关概念、比例的性质
.相似三角形对应边的比叫做相似比 ( 或相
(2)三角形相似的判定方法
1、平行法: (图上)平行于三角形一边的直线和其它两边
( 或两边的延长线 ) 相交,所构成的三角形与原三角形相似 .
2、判定定理 1:简述为: 两角对应相等,两三角形相似. AA
3、判定定理 2:简述为: 两边对应成比例且夹角相等,两三角形相似
( 1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点
.
( 2) 位似图形一定是相似图形,但相似图形不一定是位似图形
.
( 3) 位似图形的对应边互相平行或共线 .
( 4)位似图形具有相似图形的所有性质 .
位似图形的性质:
Байду номын сангаас
位似图形上任意一对对应点到位似中心的距离之比等于相似比
.SAS
4 、判定定理 3:简述为: 三边对应成比例,两三角形相似 .SSS
5、判定定理 4:直角三角形中, “ HL”
全等与相似的比较:
三角形全等
三角形相似
两角夹一边对应相等 (ASA) 两角一对边对应相等 (AAS) 两边及夹角对应相等 (SAS) 三边对应相等 (SSS) 、 (HL )
两角对应相等 两边对应成比例,且夹角相等
B
C
( 1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” 似系数 ) .相似三角形对应角相等,对应边成比例.

相似三角形ppt初中数学PPT课件

相似三角形ppt初中数学PPT课件
在建筑设计中,利用相似三角形原理,根据已知 条件设计出符合要求的建筑物形状和大小。
利用相似三角形进行建筑测量
在建筑测量中,利用相似三角形原理,通过测量 建筑物的角度和距离,计算出建筑物的高度、宽 度等参数。
利用相似三角形进行建筑施工
在建筑施工中,利用相似三角形原理,根据设计 图纸和比例关系,进行施工和安装。
分析法证明思路及步骤
明确目标
明确需要证明的结论,即两个三角形相似 。
逆向思维
从结论出发,逆向思考如何证明两个三角 形相似,即需要找到两个三角形对应的角
相等或对应边成比例。
寻找突破口
分析题目中的已知条件,寻找与相似三角 形相关的突破口。
验证结论
根据逆向思维找到的证明方法,验证结论 是否正确。
不同方法比较与选择
相似三角形ppt初中数学PPT 课件

CONTENCT

• 相似三角形基本概念与性质 • 相似三角形在几何图形中应用 • 相似三角形在解决实际问题中应用 • 相似三角形证明方法探讨 • 典型例题解析与练习 • 课堂小结与拓展延伸
01
相似三角形基本概念与性质
定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似 。
相似三角形的判定方法
详细讲解相似三角形的四种判定方法,包括两角对应相等 、两边对应成比例且夹角相等、三边对应成比例以及通过 中间比转化等,并通过实例加以验证。
相似三角形的应用
通过举例和解析,展示相似三角形在解决实际问题中的应 用,如测量高度、计算面积等。
拓展延伸引导学生思考更深层次问题
相似多边形的研究
解析
根据相似三角形的判定定理,结合直角三角形的 性质,当两个直角三角形的一直角边和斜边对应 成比例时,可以判定这两个直角三角形相似。

相似三角形的判定和性质

相似三角形的判定和性质

相似三角形的判定和性质知识讲解1. 比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d =(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项. 如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 比例的性质(1)基本性质①a :b=c :d ad=bc②a :b=b :c(2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项) (3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB 0.618AB cb b a =⇔ac b =⇔2db c a =⇒=d c b a ac bd =ab c d =cd a b d c b a =⇒=dd c b b a d c b a ±=±⇒=215-≈如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.2. 平行线分线段成比例定理: ① 定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.AB BC =DE EF ;AB AC =DE DF ;BC AC =EF DF. ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.3. 相似多边形的性质:相似多边形的对应角相等,对应边的比相等.4. 相似三角形的概念:对应角相等,对应边之比相等的三角形叫做相似三角形.5. 相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.6. 相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.7. 相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.8.相似三角形的判定方法(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1(AA):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2(SAS):如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3(SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法①以上各种判定方法均适用②定理(HL):如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似①垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.9. 相似三角形中的基本图形:(1) 平行型:(2)交错型:(3)旋转型:(4)子母型:(5)其他:10. 双垂直条件下的计算与证明问题:“双垂直”指:“Rt △ABC 中,∠BCA=90°,CD ⊥AB 于D”(如图),结论有:(1)△ADC ∽△CDB ∽△ACB(2)由△ADC ∽△CDB 得CD2=AD·BD(3)由△ADC ∽△ACB 得AC2=AD·AB(4)由△CDB ∽△ACB 得BC2=BD·AB(5)由面积得AC·BC=AB·CD(6)勾股定理AB C D EA B C D A B C D E DAB C ED A BC第一部分:比例线段例题精讲【例1】 下列各组线段(单位:㎝)中,成比例线段的是( )A .1、2、3、4B .1、2、2、4C .3、5、9、13D .1、2、2、3【例2】 若b m m a 2,3==,则_____:=b a .【例3】 已知c b a ,,是△ABC 的三条边,对应高分别为,,a b c h h h ,且6:5:4::=c b a ,那么,,a b c h h h 等于( )A .4:5:6B .6:5:4C .15:12:10D .10:12:15【例4】 已知754z y x ==,则下列等式成立的是( ) A .91=+-y x y x B .167=++z z y x C .38=-+++z y x z y x D .x z y 3=+【例5】 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A .AD AE AB AC = B .CE EA CF FB =C .DE AD BC BD = D .EF CF AB CB =【例6】 已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG =1.课堂练习1. 若a , x , b , y 是比例线段,则比例式为_________;若a=1,x= -2, b=-2.5, 则y=_______.2. 若ab=cd ,则有a ∶d=_______;若m ∶x=n ∶y , 则x ∶y=_______.3. 已知△ABC 中三边长分别为a ,b ,c ,对应边上的高分别为4,5,3ab c h h h ===.则a :b :c=____________. 4. 若0234x y z ==≠,则23______x y z+=. 5. 如图,△ABC 中,,且DE=12,BC=15,GH=4,求AH .6. 已知a 、b 、c 是△ABC 的三边,():():()(2):7:1,24a c a b c b a b c -+-=-++= .① 求a 、b 、c 的值.②判断△ABC 的形状.第二部分:相似三角形判定类型一(平行法、‘AA’)例题精讲【例7】 如图,已知△ADE ∽△ABC ,且∠ADE=∠B ,则对应角为______________________________________________,AG DE AH BC=对应边为________________________________________________.【例8】已知:如图,D、E是△ABC的边AC、AB上的点,且∠ADE=∠B.(1)求证:△ADE∽△ABC(2)求证:AD·AC=AE·AB【例9】已知:如图,在△ABC中,AD是△ABC的中线,E是AD上一点,且CE=CD,∠DAC=∠B.求证:△AEC∽△BDA【例10】已知:如图,ΔABC中,AD=DB,∠1=∠2.求证:ΔABC∽ΔEAD.【例11】如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,12DE CD.(1)求证:△ABF∽△EDF (2)求证:△EFD∽△EBC;(3)若DF=4,求BC的长课堂练习7. 图,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________8. 如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,试说明:2.AB AD AC9. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=33,AE=3,求AF的长.10. 已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,求证:△DBE∽△ABC.11. 如图,平行四边形ABCD中,E是DC的中点,连接BE交对角线AC于F.(1)求证:△ABF∽△CEF;(2)若AC=9,求AF的长.第三部分:相似三角形判定类型二(‘SAS’、‘SSS’)例题精讲【例12】如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【例13】已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.【例14】已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.课堂练习12. 如图,在大小为4×4的正方形网格中,△ABC的顶点在格点上,请在图中画出一个与△ACB相似且相的三角形.13. 如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC.14. 如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:DFDEAC AB.第四部分:相似三角形判定类型三(直角三角形) 例题精讲【例15】 如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D 点,则图中相似三角形有( )A .1对B .2对C .3对D .4对 【例16】 已知:如图,在Rt △ABC 中,CD 是斜边上的高.求证:△ABC ∽△CBD ∽△ACD .课堂练习15. 如图,锐角△ABC的高BD,CE交于O点,则图中与△BOE相似的三角形的个数是( )A.1 B.2 C.3 D.416. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,根据下列各条件分别求出未知所有线段的长:(1)AC=3,BC=4;(2)AC=52,AD=2;(3)AD=5,DB=1445;(4)BD=4,AB=29.第五部分:相似三角形判定类型四(特殊三角形)例题精讲【例17】下列说法正确的个数是( )①有一个角相等的两个等腰三角形相似②有一个底角相等的两个等腰三角形相似③所有的等腰三角形相似④顶角相等的两个等腰三角形相似A.1 B.2 C.3 D.4【例18】已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.ADB C【例19】如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.课堂练习17. 下列说法正确的个数是( )①所有的等腰三角形都相似②所有等边三角形都相似③所有直角三角形都相似④所有等腰直角三角形都相似A.1 B.2 C.3 D.418. 如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,DE=DF,∠EDF=∠A.(1)找出图中相似的三角形,并证明;(2)求证:BD AB CE BC.19. 如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.第六部分:解决实际问题例题精讲【例20】2012黔南州)如图,夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为()A.8m B.6.4m C.4.8m D.10m【例21】 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )A .24mB .25mC .28mD .30m【例22】 如图,A ﹑B 两点分别位于一个池塘的两端,小明想用绳子测量A ﹑B 间的距离,但绳子不够,于是他想了一个办法:在地上取一点C ,使它可以直接到达A ﹑B 两点,在AC 的延长线上取一点D ,使CD=21CA ,在BC 的延长线上取一点E ,使CE=21CB ,测得DE 的长为5米,则AB 两点间的距离为( )A .6米B .8米C .10米D .12米【例23】 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A .3.25mB .4.25mC .4.45mD .4.75m【例24】 如图,有一所正方形的学校,北门(点A )和西门(点B )各开在北、西面围墙的正中间.在北门的正北方30米处(点C )有一颗大榕树.如果一个学生从西门出来,朝正西方走750米(点D ),恰好见到学校北面的大榕树,那么这所学校占地平方米.课堂练习20. 如图所示,一架投影机插入胶片后图象可投到屏幕上.已知胶片与屏幕平行,A点为光源,与胶片BC 的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图象DE高1.9米,则投影机光源离屏幕大约为()A.6米B.5米C.4米D.3米21. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米22. 如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A .61cmB .31cmC .21cmD .1cm23. 一个油桶高0.8m ,桶内有油,一根长1m 的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m ,则油桶内的油的高度是( )A .0.8mB .0.64mC .1mD .0.7m24. 汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F 碰头,设计墙角F 到楼梯的竖直距离FG 为1.75m .他量得客厅高AB=2.8m ,楼梯洞口宽AF=2m .阁楼阳台宽EF=3m .请你帮助汪老师解决下列问题:(1)要使墙角F 到楼梯的竖直距离FG 为1.75m ,楼梯底端C 到墙角D 的距离CD 是多少米? (2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高小于20cm ,每个台阶宽要大于20cm ,问汪老师应该将楼梯建几个台阶?为什么?课堂练习诊断结果课后作业1.下列各组中的四条线段成比列的是( ) A .1cm 、2cm 、20cm 、30cm B .1cm 、2cm 、3cm 、4cm C .4cm 、2cm 、1cm 、3cmD .5cm 、10cm 、10cm 、20cm2.已知:32+a =4b =65+c ,且2a-b+3c=21,a 、b 、c 的值分别为________,________,_________.3. 如图,△ADE ∽△ACB ,其中∠1=∠B ,则AB BC AD)()()(==.4. 如图,画一个三角形,使它与已知△ABC 相似,且原三角形与所画三角形的相似比为2∶1.5. △ABC ∽△A 1B 1C 1,相似比为32,△A 1B 1C 1∽△A 2B 2C 2,相似比为45,则△ABC ∽△A 2B 2C 2,其相似比为____________.6. 分别根据下列已知条件,写出各组相似三角形的对应比例式.图1 图2 图3(1)如图1,△ABC ∽△ADE ,其中DE ∥BC ,则_________=_________=_________.(2)如图2,△AOB ∽△DOE ,其中DE ∥AB ,则_________=_________=_________.(3)如图3,△ABC ∽△ADE ,其中∠ADE=∠B ,则_________=_________=_________.7. 如图.从下面这些三角形中,选出相似的三角形____________________.8.画符合要求的相似三角形在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)9.如图,已知⊿ABC中,AB=AC,AD⊥AB于点A,交BC边于点E,DC⊥BC于点C,与AD交于点D,(1)求证:⊿ACE ∽⊿ADC;(2)如果CE=1,CD=2,求AC的长.10.如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,延长线交AB的延长于F,求证:AB·AF=AC·DF.11.如图;已知梯形ABCD中,AD//BC,∠BAD=90°,对角线BD⊥DC.(1)△ABD 和△DCB 相似吗?说明理由.(2)BD2和AD·BC相等吗?说明理由.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A.0.6m B.1.2m C.1.3m D.1.4m13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是_________.14.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是_______mm.15.如图,△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm.问题1:将斜边上的高CD五等分,然后裁出4张宽度相等的长方形纸条.则这4张纸条的面积和是________cm2.问题2:若将斜边上的高CD n等分,然后裁出(n-1)张宽度相等的长方形纸条.则这(n-1)张纸条的面积和是____________cm2.16.如图,点D、E分别是等边三角形ABC的BC、AC边上的点,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)BD2=AD•DF吗?为什么?17.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.课后作业诊断结果学习札记。

相似三角形的判定一

相似三角形的判定一

ABC DEF相似三角形的判定(一)掌握相似三角形的判定方法:1、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

2、如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

3、如果三角形的三组对应边的比相等,那么这两个三角形相似。

4、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似. 重点难点:相似三角形判定条件 【知识点回顾】 相似三角形的判定 1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

即:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

即:两边对应成比例且夹角相等,两三角形相似.例1、△ABC 中,点D 在AB 上,如果AC 2=AD •AB ,那么△ACD 与△ABC 相似吗?说说你的理由.例2、如图,点C 、D 在线段AB 上,△PCD 是等边三角形。

(1)当AC 、CD 、DB 满足怎样的关系时,△ACP ∽△PDB ? (2)当△ACP ∽△PDB 时,求∠APB 的度数。

判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。

简单说成:三边对应成比例,两三角形相似.不相似,请说明理由。

,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111A C B A C B ∆∆例1、如图,方格纸上的每个小正方形的边长都为1,下列图中的三角形与右图中的△ABC 相似的是()。

例2、如图,在四边形ABCD中,AB=2,BC=3,CD=6,AC=4,DA=8.AC平分∠BAD 吗?为什么?例3、方格纸中,每个小格的顶点叫做格点,以格点之间的连线为边的三角形叫做格点三角形。

相似三角形

相似三角形

考点聚焦
归类探究
考点训练
先由 AD∶DB=3∶5,求得 BD∶AB,再由 DE∥BC , 根 据 平 行 线 分 线 段 成 比 例 基 本 事 实 , 可 得 CE∶AC=BD∶AB,然后由 EF∥AB,根据平行线分线段 成比例基本事实,可得 CF∶CB=CE∶AC,则可求得答 案.具体解题过程如下: ∵AD∶DB=3∶5, ∴BD∶AB=5∶8. ∵DE∥BC, ∴CE∶AC=BD∶AB=5∶8. ∵EF∥AB, ∴CF∶CB=CE∶AC=5∶8. 故选 A.
考点聚焦
归类探究
考点训练
解:(1)∵四边形PNMQ是矩形, ∴PN∥QM. PN AE ∴△APN∽△ABC,∴BC=AD. 设PQ=ED=x,则PN=2x,AE=80-x. 2x 80-x ∴ = . 120 80 240 480 解得x= ,2x= . 7 7 240 480 答:这个矩形零件的两条边长分别是 mm和 mm. 7 7
②∵△OCP与△PDA的面积比为1∶4, PC 1 ∴DA= .∵AD=8,∴PC=4. 2 设AB=x,则AP=AB=CD=x. ∴DP=x-4. 在Rt△PDA中,根据勾股定理, 得AD2+DP2=AP2, 即(x-4)2+82=x2,解得x=10. ∴边AB的长为10.
考点聚焦
归类探究
考点训练
1 (2)∵点P是CD边的中点,∴DP= CD. 2 1 ∵AB=CD=AP,∴DP= AP,∴∠DAP=30°. 2 ∵∠DAB=90°,∴∠PAB=60°, 1 由折叠的性质知∠OAB= ∠PAB=30°. 2
考点聚焦
归类探究
考点训练
例 4. 如图, △ABC 内接于⊙O, AD 是△ABC 的边 BC 上的高, AE 是⊙O 的直径, 连结 BE,△ABE 与△ADC 相似吗?请证明你的 结论.

2013相似三角形九点证明技巧20130412解析版

2013相似三角形九点证明技巧20130412解析版

2013相似三角形九点证明技巧20130412解析版(一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3 可得EFBC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB =====或或或或等.2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C 由DE ∥BC 可得:ACAE ABAD EAEC ADBD ECAE DBAD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原.三角形三边.....对应成比例. AD E B C说明:①此定理和平行线分线段成比例定理的异同相同点:都是平行线 不同点:平行线分线段成比例定理的推论是两条平行线截其它两边所成的对应线段成比例,即AD 与AE,DB 与EC,AB 与AC 这六条线段,而此定理是三角形的三边对应成比例.即ACAE ABAD BCDE ACAE BCDE ABAD ===或或,只要有图形中的BCDE ,它一定是△ADE 的三边与△ABC 的三边对应成比例.②注意:条件(平行线的应用)在作图中,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.如:如图(1),已知BD:CD=2:3,AE:ED=3:4 求:AF:FC图(1) 图(2) 图(3)辅助线当然是添加平行线。

但如图(2),如果过D 作DG ∥BF,则在FC 中插入了G 点,不利求结论AF:FC ;如图(3)如果过F 做FG ∥AD 交CD 于G 时,在CD 上插入G,条件BD:DC=2:3就不好用了。

相似三角形的性质及判定(2013-2014)-教师版

相似三角形的性质及判定(2013-2014)-教师版

2014年中考解决方案相似三角形的性质及判定学生姓名:上课时间:会利用相似三角形的性质与判定进行简单的推理和计算;会利用三角形的相似解决一些实际问题.知识点一 相似的有关概念 一、相似形1.形状相同的图形叫做相似形。

两个相似图形的对应角相等,对应边的比相等。

总结:相似形仅是形状相同,大小不一定相同; 相似图形之间的互相变换称为相似变换。

2.相似比:两个相似图形对应边的比,叫做相似比。

知识点二 相似三角形的性质及判定 二、相似三角形的定义1.定义:1)相似三角形:形状相同的两个三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CBA2)相似三角形的相似比:相似三角形对应边的比叫做相似比;全等三角形的相似比是1,“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。

三、相似三角形的判定:1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

可简单地说成:三边对应成比例,两个三角形相似。

3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两个三角形相似。

补充说明:1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.2)直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)自检自查必考点2014年中考怎么考相似三角形的性质及判定3)如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.四、相似三角形的性质:1)相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CBA2)相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).A 'B 'C 'CBA3)相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'CBA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).H 'HABCC 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'DA 'B 'C 'CBA图34)相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CBA图45)相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'HABCC 'B 'A '图56)相似多边形的周长比等于相似比。

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

2024版相似三角形PPT课件PPT课件学习教案

2024版相似三角形PPT课件PPT课件学习教案

定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,那么这两个三角形相似。
AAA相似
如果两个三角形的三组对应角 分别相等,则这两个三角形相
似。
SAS相似
如果两个三角形两组对应边成 比例且夹角相等,则这两个三
角形相似。
SSS相似
如果两个三角形的三组对应边 成比例,则这两个三角形相似。
THANKS
感谢观看
REPORTING
02
例题2:在△ABC中,D、E分别是AB、 AC上的点,且DE∥BC,如果AD=2cm, DB=4cm,那么DE的长是多少?
ห้องสมุดไป่ตู้03
分析:在这个问题中,我们可以通过利 用相似三角形的性质来求解DE的长度。 由于DE∥BC,根据平行线性质我们可 以得出△ADE∽△ABC。根据相似三角形 的性质对应边成比例,我们可以得出 DE/BC=AD/AB。已知AD=2cm和 DB=4cm,因此AB=AD+DB=6cm。 将已知数值代入比例式中求解即可得出 DE的长度。
典型例题分析
例题一
已知等腰直角三角形的直角边长为a,求其斜 边长。
01
解题步骤
首先,根据勾股定理列出方程;其次, 将a的值代入方程中求解;最后,对 求解结果进行开方运算得到斜边长。
03
解题思路
等边三角形的面积可以通过海伦公式或者底 乘高的一半来求解。在这里,我们可以选择
底乘高的一半的方法来求解。
05
已知三角形ABC中,D、 E分别是AB、AC上的点, 且DE平行于BC,AD=2, DB=4,求DE/BC的值。
根据相似三角形的判定定 理,我们知道三角形ADE 与三角形ABC相似,然后 利用相似三角形的性质求 解即可。

2024版1相似三角形课件

2024版1相似三角形课件

全等与相似的区别
全等要求大小和形状都完全相同,而 相似只要求形状相同,大小可以不同。
全等三角形的对应边和对应角都相等, 而相似三角形的对应边成比例,对应 角相等。
典型例题解析
例1
解析
例2
解析
解析
已知△ABC与△DEF全等, 且AB=DE,BC=EF, ∠A=50°,求∠D的度数。
由于△ABC与△DEF全等, 根据全等三角形的性质, 对应角相等,所以 ∠D=∠A=50°。
利用相似三角形的性质定理,证 明两个角互补。
结合其他几何知识,如平行线的 性质、等腰三角形的性质等,证
明角相等或互补问题。
解决复杂图形中部分问题
在复杂图形中识别出相似三角形,并利用相似三角形的性质解决问题。
通过构建辅助线,将复杂图形转化为包含相似三角形的简单图形,从而 解决问题。
利用相似三角形在复杂图形中的特殊位置关系,简化问题并求解。
已知△ABC与△A'B'C'相似, 且AB:A'B'=2:3, BC:B'C'=2:3,求△ABC与 △A'B'C'的周长比。
由于△ABC与△A'B'C'相似, 根据相似三角形的性质, 对应边成比例。因此,周 长比等于任意一边的比, 即△ABC与△A'B'C'的周长 比为2:3。
该说法不正确。虽然两个 直角三角形都有一个90° 的角,但这并不意味着它 们一定相似。只有当它们 的另外两个角分别相等或 对应边成比例时,它们才 是相似的。
05
拓展:全等与相似关系 探讨
全等三角形定义及性质回顾
01
02
全等三角形的定义:能够完全 重合的两个三角形叫做全等三
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新梦想教育------专业中小学辅导机构
新梦想教育 有梦想
有未来
新梦想教育辅导讲义
学员编号(卡号) : 学员姓名: 课 题 月 日 备课时间: 月 日 年 级: 辅导科目: 第 课时 教师:
授课时间: 教学目标
重点、难点
考点及考试要求
教学内容
相似三角形 2013、4、6 1、 直线 AB 与平行四边形 MNPQ 的四边所在直线分别交于 A、 B、 C、 D, 则图中的相似三角形有 ( A.4 对 B.5 对 C.6 对 D.7 对 )
16、如图,在直角梯形 OABC 中,已知 B、C 两点的坐标分别为 B(8,6)、 C(10,0),动点 M 由原点 O 出发沿 OB 方向匀速运动,速度为 1 单位/秒;同时,线段 DE 由 BC 出发沿 BA 方向匀速运动,速度为 1 单位/秒,交 OB 于点 N,连接 DM,设运动时间为 t 秒(0<t <8). (1) 当 t 为何值时,DM∥OA? (2)连接 ME,在点 M、N 重合之前的运动过程中,五边形 DMECB 的面积是否发生变化?若不变, 请求出它的值;若发生变化,请说明理由. (3)当 t 为何值时,△DMB 为等腰三角形.
13、如图,在△ ABC 中,AB=AC,AD 是中线,P 是 AD 上的点过 C 作 CF//AB,延长 BP 交 AC 于 E,交 CF 于 F,求证:BP 2 =PE· PF.
14、如图,在平面直角坐标系中,点 C(-3,0),点 A、B 分别在 x 轴,y 轴的正半轴上,且满足
OB 2 3 OA 1 0 .
学生对于本次课的评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定: 1、 学生上次作业评价: ○ 好 ○ 较好 ○ 较好 ○ 一般 ○ 一般 教师签字: ○ 差 ○ 差
2、 学生本次上课情况评价: ○ 好
新梦想教育
用心开始
新梦想教育教导处
新梦想教育------专业中小学辅导机构
BD 5 = ,求这时点 P 的坐标. AB 8
13.如图,在平面直角坐标系内,已知点 A(0,6) 、点 B(8,0) ,动点 P 从点 A 开始在线段 AO 上以每秒 1 个单 位长度的速度向点 O 移动,同时动点 Q 从点 B 开始在线段 BA 上以每秒 2 个单位长度的速度向点 A 移动,设点 P、 Q 移动的时间为 t 秒.(1) 求直线 AB 的解析式;⑵当 t 为何值时,△ APQ 与△ AOB 相似;⑶当 t 为何值时,△ APQ 的面积为 4.8 个平方单位?
______________.
9、△ABC 中,AB=3cm,BC=4cm,点 P 沿 AB 边以 1cm/s 的速度从点 A 向点 B 移动,同时点 Q 沿 BC 边以 2cm/s 的速度从点 B 向点 C 移动.若以点 P、B、Q 构成的三角形与△ABC 相似,则运动 时间为 秒.

10、如图为直角梯形纸片 ABCD,E 点在 BC 上,AD∥BC,∠C=90°,AD=2,BC=8,CD=8.以 AE 为折 线,将 C 折至 BE 上,使 CD 与 AB 交于 F 点,则 BF=
(1)求点 A、B 坐标。 (2)若点 P 从点 C 出发,以每秒 1 个单位的速度沿射线 CB 运动,连接 AP。设△ABP 面积为 S, 点 P 的运动时间为 t 秒,求 S 与 t 的函数关系式,并写出自变量的取值范围。 (3)在(2)的条件下,是否存在点 P,使以点 A、B、P 为顶点的三角形与△AOB 相似?若存在, 请直接写出点 P 的坐标;若不存在,请说明理由。
用心开始
新梦想教育教导处
新梦想教育------专业中小学辅导机构
新梦想教育 有梦想
有未来
4、.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为 S1 , S 2 ,则 S1 S 2 的 值为 ( ) A.16 B. 17 C. 18 D.19 5、一个铝质三角形框架三条边长分别为 24cm、30cm、36cm,要估做一个与它相似的铝质三角形框 架,现有长为 27cm、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有 余料)作为另外两边.截法有( ) A、0 种 B、1 种 C、2 种 D、3 种 6、 如图, 在直角三角形 ABC 中 (∠C=90°) , 放置边长分别 3, 4, x 的三个正方形, 则 x 的值为 ( ) A、5 B、6 C、7 D、12
28 、 (本题满分 10 分)如图( 1 ) ,△ ABC 与△ EFD 为等腰直角三角形, AC 与 DE 重合, AB=AC=EF=3 ,
新梦想教育 用心开始 新梦想教育教导处
新梦想教育------专业中小学辅导机构
新梦想教育 有F 绕点 A 顺时针旋转,当 DF 边与 AB 边重合时,旋转中止.现不考虑旋 转开始和结束时重合的情况,设 DE,DF(或它们的延长线)分别交 BC(或它的延长线) 于 G,H 点,如图(2)
15、.如图所示,在平面直角坐标中,四边形 OABC 是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60° ,点 P 为 x
新梦想教育 用心开始 新梦想教育教导处
新梦想教育------专业中小学辅导机构
新梦想教育 有梦想
有未来
轴上的—个动点,点 P 不与点 O、点 A 重合.连结 CP,过点 P 作 PD 交 AB 于点 D. (1)求点 B 的坐标; (2)当点 P 运动什么位置时,△ OCP 为等腰三角形,求这时点 P 的坐标; (3)当点 P 运动什么位置时,使得∠CPD=∠OAB,且
新梦想教育
用心开始
新梦想教育教导处
新梦想教育------专业中小学辅导机构
新梦想教育 有梦想
有未来
15、等腰△ABC,AB=AC,∠BAC=120°,P 为 BC 的中点,小慧拿着含 30°角的透明三角板,使 30° 角的顶点落在点 P,三角板绕 P 点旋转. (1)如图 a,当三角板的两边分别交 AB、AC 于点 E、F 时.求证:△BPE∽△CFP; (2)操作:将三角板绕点 P 旋转到图 b 情形时,三角板的两边分别交 BA 的延长线、边 AC 于点 E、F. ① 探究1:△BPE 与△CFP 还相似吗?(只需写出结论) ② 探究2:连结 EF,△BPE 与△PFE 是否相似?请说明理由;
新梦想教育 有梦想
有未来
教学主管意见: 家长签字: ___________
新梦想教育
用心开始
新梦想教育教导处
7. 如图, 在等边△ABC 中, D 为 BC 边上一点, E 为 AC 边上一点, 且∠ADE=60°, BD=3, CE=2, 则△ABC 的边长为
8、将三角形纸片△ABC 按如图所示的方式折叠,使点 B 落在边 AC 上,记为点 B′,折痕为 EF。已知
AB = AC = 8 , BC = 10 ,若以点 B′, F, C 为顶点的三角形与△ABC 相似,那么 BF 的长度是
新梦想教育 用心开始
.
新梦想教育教导处
新梦想教育------专业中小学辅导机构
新梦想教育 有梦想
有未来
1 11、如图,Rt△AOB 中,O 为坐标原点,∠AOB=90° ,∠B=30° ,如果点 A 在反比例函数 y= x (x >0)的图象上运动,那么点 B 在函数 的图象上运动(填函数解析式) 12、已知格点△ ABC. (1)画出与△ ABC 相似的格点△ A1B1C1,使△ A1B1C1 与△ ABC 的相似比为 2; (2)画出与△ ABC 相似的格点△ A2B2C2,使△ A2B2C2 与△ ABC 的相似比为 5; (3)格点△ A1B1C1 和格点△ A2B2C2 的相似比为 .
2.下列四个三角形,与左图中的三角形相似的是


3. 如图, 四边形 ABCD 的对角线 AC、 BD 相交于 O, 且将这个四边形分成①、 ②、 ③、 ④四个三角形. 若 OA:OC=0B:OD,则下列结论中一定正确的是 ( ) A.①与②相似 B.②与④相似 C.①与④相似 D.①与③相似
新梦想教育
(1)如图甲,反比例函数的解析式为:______________;点 D 坐标为___________; (2)如图乙,若点 E 在线段 AD 上运动,连结 CE,作∠CEF=45° ,EF 交 AC 于 F 点. ①试说明△ CDE∽△EAF; ②当△ ECF 为等腰三角形时,请求出 F 点的坐标.
(1)问:始终与△AGC 相似的三角形有


(2)设 CG=x,BH=y,求 y 关于 x 的函数关系式(只要求根据图(2)的情形说明理由) ; (3)问:当 x 为何值时,△AGH 是等腰三角形。
14、如图, 一条直线与反比例函数 y=
k 2 的图象交于 A( ,2), B(2,n)两点,与 x 轴交于 D 点, AC⊥ x 轴,垂足为 C. x 5
相关文档
最新文档