德化县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德化县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.
与椭圆
有公共焦点,且离心率
的双曲线方程为( )
A

B
. C

D

2. 某几何体的三视图如图所示,则该几何体的表面积为(

A .
8+2 B .
8+8 C .
12+4 D .
16+4
3. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )
A

B

C

D .6
4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )
A .A
B ⊂α
B .AB ⊄α
C .由线段AB 的长短而定
D .以上都不对
5. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1、e 2,则e 1•e 2+1的取值范围为( ) A .(1,+∞)
B
.(,+∞) C
.(,+∞) D
.(
,+∞)
6. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2
C .3
D .4
7. 对于复数,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
8. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.
9. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f (
)=( )
A .2或0
B .0
C .﹣2或0
D .﹣2或2
10.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα+
C. 3sin 1αα+ D .2sin cos 1αα-+
11.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
12.函数f (x )=xsinx 的图象大致是( )
A .
B .
C .
D .
二、填空题
13.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 14.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
15.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
16.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .
17.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .
18.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .
三、解答题
19.已知A 、B 、C 为△ABC 的三个内角,他们的对边分别为a 、b 、c ,且

(1)求A ;
(2)若,求bc 的值,并求△ABC 的面积.
20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.
(Ⅰ)求函数f (x )的解析式;
(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.
21.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ
=⎧⎨
=⎩,(α为参数),经过伸缩变
换32x x
y y
'=⎧⎨
'=⎩后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.
22.已知函数,

(Ⅰ)求函数的最大值; (Ⅱ)若,求函数
的单调递增区间.
23.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.
24.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10
直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
德化县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:由于椭圆的标准方程为:
则c2=132﹣122=25
则c=5
又∵双曲线的离心率
∴a=4,b=3
又因为且椭圆的焦点在x轴上,
∴双曲线的方程为:
故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.
2.【答案】D
【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA
=2,AB=2,高为,
1
根据三视图得出侧棱长度为=2,
∴该几何体的表面积为2×(2×+2×2+2×2)=16,
故选:D
【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.
3.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
4.【答案】A
【解析】解:∵线段AB在平面α内,
∴直线AB上所有的点都在平面α内,
∴直线AB与平面α的位置关系:
直线在平面α内,用符号表示为:AB⊂α
故选A.
【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.
5.【答案】B
【解析】解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由椭圆的定义可得m+n=2a1,
由双曲线的定义可得m﹣n=2a2,
即有a1=5+c,a2=5﹣c,(c<5),
再由三角形的两边之和大于第三边,可得2c+2c=4c>10,
则c>,即有<c<5.
由离心率公式可得e1•e2===,
由于1<<4,则有>.
则e1•e2+1.
∴e 1•e 2+1的取值范围为(,+∞). 故选:B .
【点评】本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.
6. 【答案】C
【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
7. 【答案】B 【解析】由题意,可取,所以
8. 【答案】B
9. 【答案】D
【解析】解:由题意:函数f (x )=2sin (ωx+φ),
∵f (
+x )=f (﹣x ),
可知函数的对称轴为x=
=

根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f (
)=2或﹣2
故选D .
10.【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-112
2
1-=+=S ;利用三角形知识得出四个等
腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=
S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()
αcos 2-1122+,进而得到正方形的面积()
ααcos 22cos 2-11221-=+=S ,最后得到
答案.
11.【答案】D
【解析】解:双曲线
(a >0,b >0)的渐近线方程为y=±x
联立方程组,解得A (,),B (,﹣),
设直线x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)
∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA
∴c ﹣

,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2
<2,e <
又∵e >1
∴离心率的取值范围是1<e <
故选D
【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.
12.【答案】A
【解析】解:函数f (x )=xsinx 满足f (﹣x )=﹣xsin (﹣x )=xsinx=f (x ),函数的偶函数,排除B 、C , 因为x ∈(π,2π)时,sinx <0,此时f (x )<0,所以排除D , 故选:A .
【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.
二、填空题
13.【答案】1a = 【解析】
试题分析:因为不等式()2
110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题. 14.【答案】 6 .
【解析】解:双曲线的方程为4x2﹣9y2=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
15.【答案】.
【解析】解:由题意可得,2a,2b,2c成等差数列
∴2b=a+c
∴4b2=a2+2ac+c2①
∵b2=a2﹣c2②
①②联立可得,5c2+2ac﹣3a2=0

∴5e2+2e﹣3=0
∵0<e<1

故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
16.【答案】3+.
【解析】解:由三视图可知几何体为边长为1正方体ABCD﹣A'B'C'D'截去三棱锥D﹣ACD'和三棱锥B﹣ACB'得到的,作出直观图如图所示:
该几何体由前,后,左,右,下和两个斜面组成.
其中前后左右四个面均为直角边为1的等腰直角三角形,底面为边长为1的正方形,两个斜面为边长为的
等边三角形,
∴S=+1+×()2×2=3+.
故答案为.
【点评】本题考查了不规则几何体的三视图及面积计算,将不规则几何体转化到正方体中是解题关键.17.【答案】﹣21.
【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,
∴a1(﹣)5=1,解得a1=﹣32,
∴S6==﹣21
故答案为:﹣21
18.【答案】.
【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)
∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x
﹣x3)+(x3﹣x)=.
故答案为:.
三、解答题
19.【答案】
【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,
∴B+C=,
则A=;
(2)∵a=2,b+c=4,cosA=﹣,
∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,
解得:bc=4,
则S
=bcsinA=×4×=.
△ABC
【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.
20.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),
∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
21.【答案】(1)
3cos
2sin
x
y
θ
θ
=


=

(为参数);(2
【解析】
试题解析:
(1)将曲线
1
cos :
sin x
C
y
α
α=


=

(α为参数),化为
221
x y
+=,由伸缩变换
3
2
x x
y y
'=

⎨'
=

化为
1
3
1
2
x x
y y
⎧'
=
⎪⎪

⎪'
=
⎪⎩

代入圆的方程
2
11
1
32
x y
⎛⎫⎛⎫
''
+=
⎪ ⎪
⎝⎭⎝⎭
,得到
()()
22
2
:1
94
x y
C
''
+=,
可得参数方程为
3cos
2sin
x
y
α
α
=


=


考点:坐标系与参数方程.
22.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)由已知
当,即,时,
(Ⅱ)当时,递增即,令,且注意到
函数的递增区间为
23.【答案】
【解析】解:如图,设所截等腰三角形的底边边长为xcm,
在Rt△EOF中,,
∴,

依题意函数的定义域为{x|0<x<10}
【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.
24.【答案】
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.
设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;
(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.
从这6个一等品零件中随机抽取2个,
所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},
{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},
{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.
(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件B
B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},
{A2,A3},{A2,A5},{A3,A5},共有6种.
∴P(B)=.
【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.。

相关文档
最新文档