白云区三中2018-2019学年上学期高二数学12月月考试题含解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白云区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. “x ≠0”是“x >0”是的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 2. 若点O 和点F (﹣2,0
)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任
意一点,则的取值范围为( )
A

B

C

D

3. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2
4. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2
+2x ﹣
4
y+7=0相交于A ,B
两点,且

=4,则实数a
的值为( ) A

或﹣
B


3
C


5
D .
3

5
5. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2
=bc ,
sinC=2sinB ,则A=( )
A .30°
B .60°
C .120°
D .150° 6. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120
7. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1 8. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)
C .(2,+∞)
D .(﹣1,0)
9. 若y x ,满足约束条件⎪⎪⎩

⎪⎨⎧≥≤-+≥+-0
0330
33y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
10.已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若
(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的
面积的最大值为4,则此时△ABC 的形状为( )
A .等腰三角形
B .正三角形
C .直角三角形
D .钝角三角形
12.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )
A .123
B .163
C .203
D .323
二、填空题
13.抛物线y=x 2的焦点坐标为( )
A .(0,

B .(
,0)
C .(0,4)
D .(0,2)
14.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .
15.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .
16.设函数f (x )=
的最大值为M ,最小值为m ,则M+m= .
17.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)
三、解答题
19X
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.
20.(1)求z=2x+y的最大值,使式中的x、y满足约束条件
(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.
21.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭
圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
22.(1)化简:
(2)已知tanα=3,计算的值.
23.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0 (1)若a=1,且q∧p为真,求实数x的取值范围;
(2)若p是q必要不充分条件,求实数a的取值范围.
24.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.
白云区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.
当x>0时,一定有x≠0成立,
∴“x≠0”是“x>0”是的必要不充分条件.
故选:B.
2.【答案】B
【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,
所以a2+1=4,即a2=3,所以双曲线方程为,
设点P(x0,y0),
则有,解得,
因为,,
所以=x0(x0+2)+=,
此二次函数对应的抛物线的对称轴为,
因为,
所以当时,取得最小值=,
故的取值范围是,
故选B.
【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.
3.【答案】B
【解析】解:根据题意球的半径R满足
(2R)2=6a2,
所以S球=4πR2=6πa2.
故选B
4. 【答案】C
【解析】解:圆x 2
+y 2
+2
x ﹣4y+7=0,可化为(x+
)2
+(y ﹣2)2
=8.
∵•=4,∴2•2cos ∠ACB=4
∴cos ∠ACB=, ∴∠ACB=60°
∴圆心到直线的距离为,
∴=

∴a=
或5

故选:C .
5. 【答案】A
【解析】解:∵sinC=2
sinB ,∴c=2
b ,
∵a 2﹣b 2
=
bc ,∴cosA=
==
∵A 是三角形的内角 ∴A=30° 故选A .
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
6. 【答案】C
【解析】解析:本题考查程序框图中的循环结构.12
1123
m
n n n n n m S C m
---+=
⋅⋅⋅⋅
=,当8,10m n ==时,82101045m n C C C ===,选C .
7. 【答案】A
【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,

,解得:﹣3<a <﹣1.
故选:A .
【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.
8. 【答案】C
【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣

令2x ﹣2﹣>0,整理得x 2
﹣x ﹣2>0,解得x >2或x <﹣1,
结合函数的定义域知,f ′(x )>0的解集为(2,+∞). 故选:C .
9. 【答案】D 【




点:简单线性规划. 10.【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

11.【答案】A 【解析】解:∵(acosB+bcosA )=2csinC ,
∴(sinAcosB+sinBcosA )=2sin 2
C ,

sinC=2sin 2
C ,且sinC >0,
∴sinC=

∵a+b=8,可得:8≥2
,解得:ab ≤16,(当且仅当a=b=4成立)
∵△ABC 的面积的最大值S
△ABC =absinC ≤
=4

∴a=b=4,
则此时△ABC的形状为等腰三角形.
故选:A.
12.【答案】C
【解析】
考点:三视图.
二、填空题
13.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
14.【答案】平行.
【解析】解:∵AB1∥C1D,AD1∥BC1,
AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=A
C1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1
由面面平行的判定理我们易得平面AB1D1∥平面BC1D
故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
15.【答案】5.
【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,
∵CD⊥BC,∴CD∥AE,
∵CD=5,BD=2AD ,∴,解得AE=,
在RT△ACE,CE===,
由得BC=2CE=5,
在RT△BCD中,BD=
==10,
则AD=5,
故答案为:5.
【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.16.【答案】2.
【解析】解:函数可化为f(x)
=
=,

,则为奇函数,
∴的最大值与最小值的和为0.
∴函数f(x)
=的最大值与最小值的和为1+1+0=2.
即M+m=2.
故答案为:2.
17.【答案】
1
,
e ⎛⎤-∞
⎥⎝⎦
【解析】结合函数的解析式:
1
2
2e
e1
x
x
y
+
=
+
可得:
()
()
12
2
2
21
'
1
x x
x
e e
y
e
+-
=
+

令y′=0,解得:x=0,
当x>0时,y′>0,当x<0,y′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22
ln 1'x x f x x -+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x -=,
当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝

.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 18.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
三、解答题
19.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P(A)=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P(ξ=7)=0.04,
P(ξ=8)=2×0.2×0.3+0.32=0.21,
P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ7 8 9 10
P 0.04 0.21 0.39 0.36
ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
20.【答案】
【解析】解:(1)由题意作出可行域如下,

结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,

根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d有最大值时,|z|有最大值,即z有最值;
结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,
联立方程化简可得,
116x2﹣100zx+25z2﹣400=0,
故△=10000z2﹣4×116×(25z2﹣400)=0,
故z2=116,
故z=2x+y的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.
21.【答案】
【解析】解:(Ⅰ)∵椭圆C1:的离心率为,
∴a2=2b2,
令x2﹣b=0可得x=±,
∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,
∴2=2b,
∴b=1,
∴C1、C2的方程分别为,y=x2﹣1;…
(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0 ∴x=0或x=k1,∴A(k1,k12﹣1)
同理可得B(k2,k22﹣1)…
∴S1=|MA||MB|=•|k1||k2|…
y=k1x﹣1与椭圆方程联立,可得D(),
同理可得E()…
∴S2=|MD||ME|=••…

若则解得或
∴直线AB的方程为或…
【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.
22.【答案】
【解析】解:(1)
=
=cosαtanα=sinα.
(2)已知tanα=3,∴===.
【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题.
23.【答案】
【解析】解:(1)p:实数x满足x2﹣4ax+3a2<0,其中a>0
⇔(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;
当a=1时,p:1<x<3;
命题q:实数x满足x2﹣5x+6≤0⇔2≤x≤3;若p∧q为真,则p真且q真,∴2≤x<3;
故x的取值范围是[2,3)
(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;
∴(a,3a)⊃[2,3]⇔,1<a<2
∴实数a的取值范围是(1,2).
【点评】考查解一元二次不等式,p∧q的真假和p,q真假的关系,以及充分条件、必要条件、必要不充分条件的概念.属于基础题.
24.【答案】
【解析】解:(1)∵函数f(x)=log2(x﹣3),
∴f(51)﹣f(6)=log248﹣log23=log216=4;
(2)若f(x)≤0,则0<x﹣3≤1,
解得:x∈(3,4]
【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.。

相关文档
最新文档