重庆市七年级下册数学期末压轴难题试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市七年级下册数学期末压轴难题试卷及答案-百度文库
一、选择题
1.在下列图形中,1∠与2∠是内错角的是( )
A .
B .
C .
D . 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A .
B .
C .
D . 3.平面直角坐标系中,点()2,3P -所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.在同一平面内,下列命题是假命题的是( )
A .过直线外一点有且只有一条直线与已知直线相交
B .已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a b
C .过直线外一点有且只有一条直线与已知直线垂直
D .若三条直线两两相交,则它们有一个或三个交点
5.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )
A .102︒
B .156︒
C .142︒
D .141︒ 6.下列说法正确的是( ) A .0的立方根是0 B .0.25的算术平方根是-0.5
C .-1000的立方根是10
D .49的算术平方根是23
7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )
A .12∠=∠
B .34∠=∠
C .2490∠+∠=
D .14∠=∠ 8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在
点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )
A .(﹣1,0)
B .(0,2)
C .(﹣1,﹣2)
D .(0,1)
二、填空题
9.9的算术平方根是 .
10.若点P(a,b)关于y 轴的对称点是P 1 ,而点P 1关于x 轴的对称点是P 2 ,若点P 2的坐标为(-3,4),则a=_____,b=______ 11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.
12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.
13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.
14.阅读下列解题过程:
计算:232425122222++++++
解:设232425122222S =++++
++①
则232526222222S =+++++②
由②-①得,2621S =-
运用所学到的方法计算:233015555++++⋯⋯+=______________.
15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____.
16.在平面直角坐标系中,111,4P ⎛⎫ ⎪⎝⎭,()22,1P ,393,4P ⎛⎫ ⎪⎝⎭,()44,4P ,5255,4P ⎛⎫ ⎪⎝⎭
,…,按照此规律排列下去,点10P 的坐标为________.
三、解答题
17.(1)计算:238127(2)|32|+-+-+-
(2)解方程:()3
1125x -=-
18.求下列各式中的 x .
(1)228x = (2)3338x -= 19.推理填空:如图,已知∠B =∠CGF ,∠DGF =∠F ;求证:∠B +∠F =180°. 请在括号内填写出证明依据.
证明:∵∠B =∠CGF (已知),
∴AB ∥CD ( ).
∵∠DGF =∠F (已知),
∴ //EF ( ).
∴AB //EF ( ).
∴∠B +∠F =180°( ).
20.如图,在平面直角坐标系中,()1,2--A ,()2,4B --,()4,1C --.ABC 中任意一点()00,P x y 经平移后对应点为()1001
,2P x y ++,将ABC 作同样的平移得到111A B C △.
(1)请画出111A B C △并写出点1A ,1B ,1C 的坐标;
(2)求111A B C △的面积;
(3)若点P 在y 轴上,且11A B P △的面积是1,请直接写出点P 的坐标.
21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不能全部地写出来,于是小聪用21-来表示2的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分.
请解答下列问题:
(1)10的整数部分是____,小数部分是_____.
(2)如果55-的小数部分是a ,412-的整数部分是b ,求5a b ++的值. (3)已知611x y -=+,其中x 是正整数,01y <<,求x y -的相反数.
二十二、解答题
22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?
二十三、解答题
23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且
45BAN ∠=︒.
(1)求a 、b 的值;
(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;
(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ
之前,A 灯转动几秒,两灯的光束互相平行?
24.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.
她是这样做的:
过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以//.EF CD ①
所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠
即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ;
2.上述思路中的①的理由是__ ;
3.请你参考她的思考问题的方法,解决问题:
已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .
(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).
(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ; ②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .
(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.
26.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13
∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角定义进行解答即可.
【详解】
解:A 、∠1与∠2是同位角,故此选项不合题意;
B 、∠1与∠2是同旁内角,故此选项不合题意;
C 、∠1与∠2是内错角,故此选项符合题意;
D 、∠1与∠2不是内错角,此选项不合题意;
故选:C .
【点睛】
此题主要考查了内错角,关键是掌握内错角的边构成“Z “形.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B 通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B 通过平移后可以得到.
故选C .
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.D
【分析】
根据点在各象限的坐标特点即可得答案.
【详解】
∵点的横坐标2>0,纵坐标-3<0,
∴点()2,3P -所在的象限是第四象限,
故选:D .
【点睛】
本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A
【分析】
根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.
【详解】
解:A 、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题; B 、在同一平面内,已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a b ,是真命题; C 、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题;
D、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题;
故选:A.
【点睛】
本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.
5.D
【分析】
过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH.
【详解】
解:过点P作PQ∥AB,过点H作HG∥AB,
//
AB CD,
则PQ∥CD,HG∥CD,
∴∠BEP=∠QPE,∠DFP=∠QPF,
∵∠EPF=∠QPE+∠QPF=78°,
∴∠BEP+∠DFP=78°,
∴∠AEP+∠CFP=360°-78°=282°,
∵EH平分∠AEP,HF平分∠CFP,
∴∠AEH+∠CFH=282°÷2=141°,
同理可得:∠EHF=∠AEH+∠CFH=141°,
故选D.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.
6.A
【分析】
根据算术平方根以及立方根的概念逐一进行凑数即可得.
【详解】
A.0的立方根是0,正确,符合题意;
B.0.25的算术平方根是0.5,故B选项错误,不符合题意;
C.-1000的立方根是-10,故C选项错误,不符合题意;
D.4
9
的算术平方根是
2
3
,故D选项错误,不符合题意,
故选A.
【点睛】
本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.
7.D
【分析】
直接利用平行线性质解题即可
【详解】
解:∵直尺的两边互相平行,
∴∠1=∠2,∠3=∠4,
∵三角板的直角顶点在直尺上,
∴∠2+∠4=90°,
∴A,B,C正确.
故选D.
【点睛】
本题考查平行线的基本性质,基础知识扎实是解题关键
8.D
【分析】
根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.
【详解
解析:D
【分析】
根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.
【详解】
解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),
∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,
∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.
2021÷10=202…1,
∴细线另一端在绕四边形第202圈的第1个单位长度的位置,
即细线另一端所在位置的点的坐标是(0,1).
故选:D.
【点睛】
本题考查了坐标规律探索,找到规律是解题的关键.
二、填空题
9.【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
解析:【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵239 ,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P2,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
11.140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是
∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详
解析:140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解】
△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,
∵BO、CO是∠ABC,∠ACB的两条角平分线.
∴∠OBC=1
2∠ABC,∠OCB=1
2
∠ACB,
∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)=40°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.
故填:140°.
【点睛】
本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.
12.70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答
解析:70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得
∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答案为70.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
13.15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的
度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°
解析:15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°,
∵2∠BFE+∠BFC=180°,
∴∠BFC=180°-2∠BFE=50°,
∴∠CFE=∠BFE-∠BFC=15°,
故答案为:15°.
【点睛】
本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:
31
51 4
-
.
【分析】
设S=2330
15555
++++⋯⋯+,等号两边都乘以5可解决.【详解】
解:设S=2330
15555
++++⋯⋯+①
则5S=233031
55555
+++⋯⋯+
+②
②-①得4S=311
-
5,
所以S=31514
-. 故答案是:31514
-. 【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 15.或;
【分析】
根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.
【详解】
解:∵点A 到两坐标轴的距离相等,且点A 为,
∴,
∴或,
解得:或,
∴点A 的坐标为:或;
故答案为:或
解析:()4,4--或()8,8-;
【分析】
根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.
【详解】
解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,
∴623m m -=-或6(23)m m -=--,
解得:2m =或2m =-,
∴点A 的坐标为:()4,4--或()8,8-;
故答案为:()4,4--或()8,8-;
【点睛】
本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.
16.【分析】
观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解.
【详解】
解:观察前面几个点的坐标得到的横坐标为,纵坐标为,
将代入得
∴
故答案为:
此题考查了平面直角坐标系中点坐
解析:()10,25
【分析】
观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24
n ,即可求解. 【详解】
解:观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24
n , 将10n =代入得2
254
n = ∴10(10,25)P
故答案为:()10,25
【点睛】
此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键.
三、解答题
17.(1);(2)
【分析】
(1)根据实数的运算法则直接计算即可,
(2)利用立方根的含义求解再求解即可.
【详解】
(1)原式=
(2)解:
【点睛】
本题考查的是实数的运算,求一个数的立方根
解析:(1)102)4x =-
【分析】
(1)根据实数的运算法则直接计算即可,
(2)利用立方根的含义求解1,x -再求解x 即可.
【详解】
(1)原式= 9(3)22+-++
10=(2)解:15x -=-
4x =-
【点睛】
本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键. 18.(1)或;(2).
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
解析:(1)2x =或2x =-;(2)32
x =
. 【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1)228x =,
∴24x =,
∴2x =±;
(2)3338x -=, ∴3278x , ∴32
x =. 【点睛】
本题考查了平方根与立方根,理解相关定义是解决本题的关键.
19.同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与
第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF
解析:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF ,根据平行线的性质得出即可.
【详解】
证明:∵∠B =∠CGF (已知),
∴AB ∥CD (同位角相等,两直线平行),
∵∠DGF =∠F (已知 ),
∴CD ∥EF (内错角相等,两直线平行),
∴AB ∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B +∠F =180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或
【分析】
(1)依据点P (x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A1B
解析:(1)图见解析,()10,0A ,()11,2B --,()131C ,-;(2)3.5;(3)点P 的坐标为()02,或()0,2-
【分析】
(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;
(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;
(3)设P (0,y ),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.
【详解】
解:(1)如图所示,111A B C △即为所求;()10,0A ,()11,2B --,()131C ,-;
(2)111A B C △的面积为:()11113313126 1.51 3.5222
+⨯-⨯⨯-⨯⨯=--=; (3)设()0,P y ,则1A P y =,
∵11A B P △的面积是1, ∴1112
y ⨯⨯=, 解得2y =±,
∴点P 的坐标为()02,或()0,2-.
【点睛】
本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a 的值,同理估计的大小,再求出其整数部分b 的值,即可求解;
(
解析:(1)33;(2)7;(3)2【分析】
(1
(2)先估算5的大小,再求出其小数部分a 2的大小,再求出其整数部分b 的值,即可求解;
(3)根据题意先求出x ,y 所表示的数,再求出x-y ,即可求出其相反数.
【详解】
解:(1)∵3<4, ∴33
故答案为:33;
(2)∵23< ∴32-<<-
∴253<<
∴5的小数部分a =5-2=3
∵
67 ∴425<<
∴
2的整数部分b =4 ∴a b ++
=34=7;
(3)∵34<< ∴
-4<-3 ∴
263< ∴
62,小数部分为62=4∵6x y =+
,其中x 是正整数,01y <<,
∴2x =,y=
4
∴x y -=(242--=
∴x y -
的相反数为2
【点睛】
此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小
解析:(1)20;(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm 2,
∴cm ;
()2根据题意设长方形长为4x cm ,宽为3x cm ,
由题:
43360x x ⋅= 则230x =
0x
x ∴=
∴长为43020>
∴无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;
(3)根据灯B 的
解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子()2340a b a b -++-=即可;
(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;
(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.
【详解】
解:(1)2|3|(4)0a b a b -++-=.
又|3|0a b -≥,2(4)0a b +-≥.
3a ∴=,1b =;
(2)设A 灯转动时间为t 秒,
如图,作//CE PQ ,而//,PQ MN
////,PQ CE MN ∴
1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,
()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,
90ACD ∠=︒,
[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,
55∴=t
()1803∠=︒-︒CAN t ,
()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t
(3)设A 灯转动t 秒,两灯的光束互相平行.
依题意得0150t <<
①当060t <<时,
两河岸平行,所以()233
t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒
所以,13∠=∠
即:330=+t t ,
解得15t =;
②当60120t <<时,
两光束平行,所以()2330t ∠=∠=+︒
两河岸平行,所以12180∠+∠=︒
13180t ∠=-︒
所以,318030180-++=t t ,
解得82.5t =;
③当120150t <<时,图大概如①所示
336030t t -=+,
解得195150t =>(不合题意)
综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.
【点睛】
这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.
24.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122
αβ+;(2)1118022
αβ-+. 【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22
ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802
DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.
【详解】
1、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以//.EF CD ①
所以,FED D ∠=∠
所以,BEF FED B D ∠+∠=∠+∠
即BED ∠=72;
故答案为:72;
2、过点E 作//,EF AB
则有,BEF B ∠=∠
因为//,AB CD
所以EF ∥CD (平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,
∴∠BED =1122
αβ+, 故答案为:1122
αβ+;
(2)∵BE 平分,ABC DE ∠平分,ADC ∠
∴1111,2222
ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12
α, ∵//,AB CD ∴EF ∥CD ,
∴180CDE DEF ∠+∠=︒,
∴11801802
DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022
αβ-+.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902
D A ∠=︒+∠;②360°;(4)124
E ∠=︒; =14
F ∠︒.
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1)D A B C ∠=∠+∠+∠.理由如下:
如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,
BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:
在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,
AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;
(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC
∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,
1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.
②连结BE .
∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;
(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,
26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,
3336064(2)644012422
E GAE AGD GDE CAE CD
F ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
26.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个; (2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M 为交点的“8字形”有1个,以O 为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C ﹣∠P=∠P ﹣∠B ,即∠P=(∠C+∠B ),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B ).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC 为边的“8字形”,
故答案为3;
(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,
∴∠CAP=∠BAP ,∠BDP=∠CDP ,
∵∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,
∴∠C ﹣∠P=∠P ﹣∠B ,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为360°.。