铁西区一中2018-2019学年高二上学期数学期末模拟试卷含解析(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁西区一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 记集合{}
2
2
(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x
y =+3?表示的平面区域分别为Ω1,Ω2,
若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .
12p B .1p C .2
p
D .13p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 2. 命题“∃x ∈R ,使得x 2<1”的否定是( )
A .∀x ∈R ,都有x 2<1
B .∃x ∈R ,使得x 2>1
C .∃x ∈R ,使得x 2≥1
D .∀x ∈R ,都有x ≤﹣1或x ≥1
3. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3
4. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在
方向上的投影为( )
A .
B .﹣
C .
D .﹣
5. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}
可.
6. 某几何体的三视图如图所示,则该几何体为( )
A .四棱柱
B .四棱锥
C .三棱台
D .三棱柱
7. 过点(2,﹣2)且与双曲线﹣y 2
=1有公共渐近线的双曲线方程是( )
A .

=1
B .

=1 C .﹣=1 D .
﹣=1
8. 函数的零点所在区间为( )
A .(3,4)
B .(2,3)
C .(1,2)
D .(0,1)
9. 设函数y=x 3与y=
()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)
10.已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )
A .¬p
B .p ∧q
C .p ∧¬q
D .¬p ∨q
11.设函数f (x )
=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
12.二项式(1)(N )n
x n *
+?的展开式中3
x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 13.已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D

14.设n S 是等差数列{}n a 的前项和,若5359a a =,则95
S
S =( ) A .1 B .2 C .3 D .4
15.已知一三棱锥的三视图如图所示,那么它的体积为( ) A .
13 B .2
3
C .1
D .2 二、填空题
16.已知函数21,0()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力. 17.已知实数x ,y
满足
,则目标函数z=x ﹣3y 的最大值为
18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
19.已知函数5()sin (0)2
f x x a x π
=-≤≤
的三个零点成等比数列,则2log a = . 三、解答题
20.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;
(2)比较f (2)与f (b 2
+2)的大小;
(3)求函数f (x )=a (x ≥0)的值域.
21.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y =的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
22.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获
胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于
体力原因,第7场获胜的概率为.
(Ⅰ)求甲队分别以4:2,4:3获胜的概率;
(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.
23.求同时满足下列两个条件的所有复数z:
①z+是实数,且1<z+≤6;
②z的实部和虚部都是整数.
24.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
25.在△ABC中,D为BC边上的动点,且AD=3,B=.
(1)若cos∠ADC=,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?
铁西区一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D
及其内部,由几何概型得点M 落在区域Ω2内的概率为1
1
2P ==p 2p
,故选A.
2. 【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x ∈R ,都有x ≤﹣1或x ≥1,
故选:D .
【点评】本题主要考查含有量词的命题的否定,比较基础.
3. 【答案】B 【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,
多面体是若干个平面多边形所围成的图形是正确的,故选B .
考点:几何体的结构特征.
4

【答案】D
【解析】解:∵;


方向上的投影为
==

故选D .
【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.
5. 【答案】D
【解析】解:由已知M={x|﹣1<x<1},
N={x|x>0},则M∩N={x|0<x<1},
故选D.
【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,
6.【答案】A
【解析】
试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.
考点:三视图
【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.
7.【答案】A
【解析】解:设所求双曲线方程为﹣y2=λ,
把(2,﹣2)代入方程﹣y2=λ,
解得λ=﹣2.由此可求得所求双曲线的方程为.
故选A.
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.
8.【答案】B
【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,
∵f(2)=log32﹣1<0,f(3)=log33﹣>0,
∴函数f(x)的零点一定在区间(2,3),
故选:B.
【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.
9.【答案】A
【解析】解:令f(x)=x3﹣,
∵f′(x)=3x2﹣ln=3x2+ln2>0,
∴f(x)=x3﹣在R上单调递增;
又f(1)=1﹣=>0,
f(0)=0﹣1=﹣1<0,
∴f(x)=x3﹣的零点在(0,1),
∵函数y=x3与y=()x的图象的交点为(x0,y0),
∴x0所在的区间是(0,1).
故答案为:A.
10.【答案】C
【解析】解:∵命题p:∀x∈R,32x+1>0,∴命题p为真,
由log2x<1,解得:0<x<2,∴0<x<2是log2x<1的充分必要条件,
∴命题q为假,
故选:C.
【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.
11.【答案】A
【解析】解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3
如果x<0 则x+6>3可得x>﹣3,可得﹣3<x<0.
如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1
综上不等式的解集:(﹣3,1)∪(3,+∞)
故选A.
12.【答案】B
【解析】因为(1)(N)
n
x n*
+?的展开式中3x项系数是3C
n
,所以3C10
n
=,解得5
n=,故选A.13.【答案】C
【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,
故选C.
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
14.【答案】A
【解析】1111]
试题分析:19951553
9()9215()52
a a S a a a S a +===+.故选A .111] 考点:等差数列的前项和. 15.【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为1
12
(12)2323
⨯⨯⨯⨯=
,选B . 二、填空题
16.【答案】2,[1,)-+∞. 【



17.【答案】 5
【解析】解:由z=x ﹣3y 得
y=

作出不等式组对应的平面区域如图(阴影部分): 平移直线
y=

由图象可知当直线y=经过点C 时,直线
y=
的截距最小,
此时z 最大,

,解得
,即C (2,﹣1).
代入目标函数z=x ﹣3y , 得z=2﹣3×(﹣1)=2+3=5, 故答案为:5.
18.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
19.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
三、解答题
20.【答案】
【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),
∴a2=,
∴a=
(2)∵f(x)=()x在R上单调递减,
又2<b2+2,
∴f(2)≥f(b2+2),
(3)∵x≥0,x2﹣2x≥﹣1,
∴≤()﹣1=3
∴0<f(x)≤(0,3]
21.【答案】
22.【答案】
【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,
∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,
∴,,
∴甲队以4:2,4:3获胜的概率分别为和.
(Ⅱ)随机变量X的可能取值为5,6,7,
∴,P(X=6)=,P(X=7)=,
∴随机变量X的分布列为
5 6 7
【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.
23.【答案】
【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,
解方程得z=±i.
又∵z的实部和虚部都是整数,∴t=2或t=6,
故满足条件的复数共4个:z=1±3i 或z=3±i.
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.
25.【答案】
【解析】(本小题满分12分)
解:(1)∵,
∴,
∴…2分(注:先算∴sin∠ADC给1分)
∵,…3分
∴,…5分
(2)∵∠BAD=θ,
∴, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.。

相关文档
最新文档