奥数四年级行程问题之欧阳体创编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分行程问题
第一讲行程基础
【专题知识点概述】
行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量
我们把研究路程、速度、时间以及这三者之间关系的
一类问题,总称为行程问题.我们已经接触过一些简单的行
程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:
(1)速度×时间=路程可简记为:s = vt
(2)路程÷速度=时间可简记为:t = s÷v
(3)路程÷时间=速度可简记为:v = s÷t
显然,知道其中的两个量就可以求出第三个量.
二、平均速度
平均速度的基本关系式为:
平均速度=总路程÷总时间;
总时间=总路程÷平均速度;
总路程=平均速度⨯总时间。
【重点难点解析】
1.行程三要素之间的关系
2.平均速度的概念
3.注意观察运动过程中的不变量
【竞赛考点挖掘】
1.注意观察运动过程中的不变量
【习题精讲】
【例1】(难度等级※)
邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要
走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,
又从原路返回,邮递员什么时候可以回到邮局?
【分析与解】
法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮
递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。
.
【例2】(难度等级※)
甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.
【分析与解】
马车从甲地到乙地需要100÷10=10小时,在汽车出发时,马车已经走了9-3=6(小时)。
依题意,汽车必须在10-6=4小时内到达乙地,其每小时最少要行驶100÷4=25(千米).
【例3】(难度等级※※)
小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)
【分析与解】
原来花时间是30分钟,后来提前6分钟,就是路上要花时
间为24分钟。
这时每分钟必须多走25米,所以总共多走了
24×25=600米,而这和30分钟时间里,后6分钟走的路程
是一样的,所以原来每分钟走600÷6=100米。
总路程就是
=100×30=3000米。
【例4】(难度等级※)
韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?
【分析与解】
原来韩雪到校所用的时间为20分钟,速度为:480÷20=24(米/分),现在每分钟比原来多走16米,即现在的速度为24+16=40(米/分),那么现在上学所用的时间为:480÷40=12(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.
【例5】(难度等级※※)
王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?
【分析与解】
假设甲地到乙地的路程为300,那么按时的往返一次需时间300÷60×2=10(小时),现在从甲到乙花费了时间300÷50=6(小时),所以从乙地返回到甲地时所需的时间只能是10-6=4(小时).即如果他想按时返回甲地,他应以300÷4=75(千米/时)的速度往回开.
【例6】(难度等级※※)
刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?
【分析与解】
这道题没有出发时间,没有学校到韩丁家的距离,也就是说既没有时间又没有路程,似乎无法求速度.这就需要通过已知条件,求出时间和路程.
假设有A,B两人同时从学校出发到韩丁家,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到.B到韩丁家时,A距韩丁家还有10×2=20(千米),这20千米是B从学校到韩丁家这段时间B比A多行的路程.因为B比A每小时多行15-10=5(千米),所以B从学校到韩丁家所用的时间是
20÷(15-10)=4(时).由此知,A,B是上午7点出发的,学校离韩丁家的距离是15×4=60(千米).刘老师要想中午12点到,即想(12-7=)5时行60千米,刘老师骑车的速度应为
60÷(12-7)=12(千米/时).
【例7】(难度等级※※※)
小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?
【分析与解】
上山用了3时50分,即60×3+50=230(分),由230÷(30+10)=5……30,得到上山休息了5次,走了230-10×5=180(分).因为下山的速度是上山的2倍,所以下山走了180÷2=90(分).由90÷30=3知,下山途中休息了2次,所以下山共用90+5×2=100(分)=1时40分.
【例8】(难度等级※※※)
老王开汽车从A到B为平地(见右图),车速
是30千米/时;从B到C为上山路,车速是
22.5千米/时;从C到D为下山路,车速是
36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?
【分析与解】
设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).
【例9】(难度等级※※※)
汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
【分析与解】
想求汽车的平均速度=汽车行驶的全程÷总时间,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了。
在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用。
①把甲、乙两地的距离视为1千米,总时间为:1÷72+1÷48,平均速度=2÷(1÷72+1÷48)=57.6千米/时。
②我们发现①中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为[72,48]=144千米,这样计算时间时就好计算一些,平均速度=144×2÷(144÷72+144÷48)=57.6千米/时。
【例10】(难度等级※※)
如图,从A到B是12千米下坡路,从
B到C是8千米平路,从C到D是4
千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A到D 的平均速度是多少?
【分析与解】
从A到B的时间为:12÷6=2(小时),从B到C的时间为:8÷4=2(小时),从C到D的时间为:4÷2=2(小D
C
B
A
7
24313513⨯÷=时),从A 到D 的总时间为:2+2+2=6(小时),总路程为:12+8+4=24(千米),那么从A 到D 的平均速度为:24÷6=4(千米/时).
【例11】(难度等级 ※※)
有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
【分析与解】
假设上坡、走平路及下坡的路程均为24米,那么总时间为:24
÷4+24÷6+24÷8=13(秒),过桥的平均速度为 (米/
秒).
【例12】(难度等级 ※※※)
汽车往返于A ,B 两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?
【分析与解】
假设AB 两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).
【例13】(难度等级 ※※※)
有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走
平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度..
【分析与解】
假设上坡、平路及下坡的路程均为66米,那么总时间=66÷11+66÷22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒)
【例14】(难度等级※※※)
一只蚂蚁沿等边三角形的三条边由A点开始爬行一
周. 在三条边上它每分钟分别爬行50cm,20cm,
40cm(如右图).它爬行一周平均每分钟爬行多少
厘米?
【分析与解】
假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷
40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=
11 31 19
(厘米/分钟).
【例15】(难度等级※※※)
甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?
【分析与解】
全程的平均速度是每分钟(80+70)÷2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是
3000÷80=37.5分钟,后一半路程时间是80-37.5=42.5分钟.
第二讲相遇与追及
【专题知识点概述】
在今天这节课中,我们来研究行程问题中的相遇与追及问题.这一讲就是通过例题加深对行程问题三个基本数量关系的理解,使学生养成画图解决问题的好习惯!
在行程问题中涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.
一、相遇
甲从A地到B地,乙从B地到A地,然后两人在途中
相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两
人同时出发,那么
相遇路程=甲走的路程+乙走的路程
=甲的速度×相遇时间+乙的速度×相遇时间
=(甲的速度+乙的速度)×相遇时间
=速度和×相遇时间.
一般地,相遇问题的关系式为:速度和×相遇时间=路
程和,即
二、追及
有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及
问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:
追及路程=甲走的路程-乙走的路程
=甲的速度×追及时间-乙的速度×追及时间
=(甲的速度-乙的速度)×追及时间
=速度差×追及时间.
一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即t v S 差差
【重点难点解析】
1.直线上的相遇与追及
2.环线上的相遇与追及
【竞赛考点挖掘】
1. 多人多次相遇与追及
【习题精讲】
【例1】(难度等级 ※)
一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?
【分析与解】
(46+48)×3.5=94×3.5=329(千米).
【例2】(难度等级※)
两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?
【分析与解】
255÷(45+40)=255÷85=3(小时)。
45×3=135(千米)。
40×3=120(千米)。
.
【例3】(难度等级※※)
两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
【分析与解】
[3300-(82+83)×15]÷(82+83)
=[3300-165×15]÷165
=[3300-2475]÷165
=825÷165
=5(分钟)
【例4】(难度等级※)
甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?
【分析与解】
出发时甲、乙二人相距10千米,以后两人的距离每小时都缩短15-10=5(千米),即两人的速度的差(简称速度差),所以10千米里有几个5千米就是几小时能追上.
10÷(15-10)=10÷5=2(小时).
【例5】(难度等级※※)
]南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?.
【分析与解】
两人虽然不是相对而行,但是仍合力完成了路程,(50+60)×5=550(千米).
【例6】(难度等级※※)
军事演习中,“我”海军英雄舰追击“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?
【分析与解】
“我”舰追到A岛时,“敌”舰已逃离10分钟了,因此,在A岛时,“我”舰与“敌”舰的距离为10000米(=1000×10).
又因为“我”舰在距离“敌”舰600米处即可开炮射击,即“我”舰只要追上“敌”舰9400(=10000米-600米)即可开炮射击.所以,在这个问题中,不妨把9400当作路程差,根据公式求得追及时间.即(1000×10-600)÷(1470-1000)=(10000-600)÷470=9400÷470=20(分钟),所以,经过20分钟可开炮射击“敌”舰.
【例7】(难度等级※※※)
小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?
【分析与解】
小红让小蓝先跑20米,则20米就是小红、小蓝二人的路程差,小红跑5秒钟追上小蓝,5秒就是追及时间,据此可求出他们的速度差为20÷5=4(米/秒);若小红让小蓝先跑4秒,则小红6秒可追上小蓝,在这个过程中,追及时间为6秒,根据上一个条件,由追及差和追及时间可求出在这个过程中的路程差,这个路程差即是小蓝4秒钟所行的路程,路程差就等于4×6=24(米),也即小蓝在4秒内跑了24米,所以可求出小蓝的速度,也可求出小红的速度.综合列式计算如下:小蓝的速度为:20÷5×6÷4=6(米/秒),小红的速度为:6+4=10(米/秒)【例8】(难度等级※※※)
小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明
的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?
【分析与解】
爸爸要追及的路程:70×12=840(米),爸爸与小明的速度差:280-70=210(米/分),爸爸追及的时间:840÷210=4(分钟).【例9】(难度等级※※※)
上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?
【分析与解】
画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+ 8= 12(千米).
这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).
少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.
8+8+16=32.所以这时是8点32分。
【例10】(难度等级※※)
甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
【分析与解】
相遇后甲行驶了40×3=120千米,即相遇前乙行驶了120千米,说明甲乙二人的相遇时间是120÷60=2小时,则两地相
距(40+60)×2=200千米.
【例11】(难度等级※※)
小红和小强同时从家里出发相向而行。
小红
每分钟走52米,小强每分钟走70米,二人
在途中的A处相遇。
若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。
小红和小强的家相距多远?
【分析与解】
因为小红的速度不变,相遇地点不变,所以小红两次走的时间相同,推知小强第二次比第一次少走4分。
由(70×4)÷(90-70)=14(分),推知小强第二次走了14分,第一次走了18分,两人的家相距(52+70)×18=2196(米).
【例12】(难度等级※※※)
甲乙两车分别从A、B两地同时相向开出,4小时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A
地80千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A地?
【分析与解】
由4时两车相遇知,4时两车共行A,B间的一个单程.相遇后又行3时,剩下的路程之和10+80=90(千米)应是两车共行4-3=1(时)的路程.所以A,B两地的距离是(10+80)÷(4-3)×4=360(千米)。
因为7时甲车比乙车共多行80-10=70(千米),所以甲车每时比乙车多行70÷7=10(千米),又因为两车每时共行90千米,所以每时甲车行50千米,乙车行40千米.行一个单程,乙车比甲车多用360÷40-360÷50=9-7.2=1.8(时)=1时48分.
【例13】(难度等级※※※)
甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离.
【分析与解】
若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:(26-6)=20(分)。
同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50×
(26+6)=1600(米).所以,甲的速度为1600÷20=80(米/分),由此可求出A、B间的距离。
50×(26+6)÷(26-6)=50×32÷20=80(米/分)
(80+50)×6=130×6=780(米)
【例14】(难度等级※※※)
小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离?
【分析与解】
画一张示意图(可让学生先判断相遇点在中点哪一侧,为什么?)
离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米
小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).
因此,甲、乙两地的距离是(5+ 4)×2=18(千米).
【例15】(难度等级※※※)
甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离?
【分析与解】
画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):
可以发现第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了95千米,当它们共行三个A 、B 两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A 、B 两地间的距离多25千米,可得:95×3-25=285-25=260(千米).
第三讲 行程之流水行船
【专题知识点概述】
通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响.
一、基本概念
顺水速度=船速+水速, 水船顺V V V +=
逆水速度=船速-水速. 水船逆V V V -=
( 其中船V 为船在静水中的速度,水V 为水流的速度)
由上可得:船速=(顺水速度+逆水速度)÷2;
水速=(顺水速度-逆水速度)÷2.
二、流水行船中的相遇与追及
(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.
这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速.
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.
(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速.
也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.
这说明水中追及问题与在静水中追及问题一样.由上述讨论知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答
【重点难点解析】
1掌握流水行船的基本概念
2掌握流水行船中的相遇与追及
【竞赛考点挖掘】
1流水行船中的相遇与追及
【习题精讲】
【例1】(难度等级※)
一艘轮船在两个港口间航行,水速为每小时6千米,顺水下
行需要4小时,返回上行需要7小时.求:这两个港口之间
的距离?
【分析与解】
(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:(22+6)×4=112千米.
【例2】(难度等级※)
两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
【分析与解】
(352÷11-352÷16)÷2=5(千米/小时).
【例3】(难度等级※)
甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静
水中的速度和水流速度。
【分析与解】
顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)
【例4】(难度等级※※)
船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?
【分析与解】
本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.
船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).
暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9-15=5(千米/小时).
暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).【例5】(难度等级※※)
甲、乙两艘小游艇,静水中甲艇每小时行 2.2 千米,乙艇每小时行1.4 千米。
现甲、乙两艘小游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距18 千米的上游下行,两艇于途中
相遇后,又经过4 小时,甲艇到达乙艇的出发地。
问航道上水流速度为每小时多少千米?.
【分析与解】
18÷(2.2+1.4)=5(小时),所以经过 5 小时后两艇相遇。
2.2-18÷(5+4)=0.2(千米/小时),所以航道上水流速度为每小时0.2 千米.
【例6】(难度等级※※)
乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?
【分析与解】
乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。
甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返回原地比去时多用时间:12-3=9(小时).
【例7】(难度等级※※※)
甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船
追上甲船?
【分析与解】
相遇时用的时间:336÷(24+32)=6(小时),追及用的时间(不论两船同向逆流而上还是顺流而下):336÷(32—24)=42(小时)
【例8】(难度等级※※※)
小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
【分析与解】
此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=船速.路程差÷船速=追及时间,2÷4=0.5(小时).
【例9】(难度等级※※※)
乙两船的船速分别为每小时22千米和每小时18千米.两船先后从同一港口顺水开出,乙船比甲船早出发2小时,如果水速是每小时4千米,问:甲船开出后几小时能追上乙船?
【分析与解】
要求甲船追上乙船所用的时间,根据公式:路程差=速度差×追及时间,关键要求出路程差(速度差由题干所给条件容易求。